%0 Journal Article %T Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer %+ Laboratoire Charles Coulomb (L2C) %+ Laboratoire Aimé Cotton (LAC) %+ Laboratoire Albert Fert (ex-UMPhy Unité mixte de physique CNRS/Thales) %+ Université de Bâle = University of Basel = Basel Universität (Unibas) %+ Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N) %+ Laboratoire Nano-Magnétisme et Oxydes (LNO) %+ Synchrotron SOLEIL (SSOLEIL) %A Gross, Isabell %A Akhtar, W. %A Garcia, V. %A Martinez, L. J. %A Chouaieb, Saddem %A Garcia, K. %A Carretero, C. %A Barthélémy, A. %A Appel, P. %A Maletinsky, P. %A Kim, J. -V. %A Chauleau, J. Y. %A Jaouen, N. %A Viret, M. %A Bibes, M. %A Fusil, S. %A Jacques, Vincent %< avec comité de lecture %Z L2C:17-147 %@ 0028-0836 %J Nature %I Nature Publishing Group %V 549 %N 7671 %P 252-256 %8 2017-09-14 %D 2017 %R 10.1038/nature23656 %Z Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Journal articles %X Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space- inversion symmetry and thus allow electric-field control of magnetism or may produce emergent spin–orbit effects that enable efficient spin–charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen–vacancy defect in diamond, we demonstrate real- space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO$_3$ to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen–vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO$_3$ can be used in the design of reconfigurable nanoscale spin textures. %G English %2 https://hal.science/hal-01632358/document %2 https://hal.science/hal-01632358/file/Gross_BFO_Final.pdf %L hal-01632358 %U https://hal.science/hal-01632358 %~ CEA %~ CNRS %~ UNIV-PSUD %~ ENS-CACHAN %~ OPENAIRE %~ L2C %~ IRAMIS-SPEC %~ CEA-UPSAY %~ UNIV-PARIS-SACLAY %~ UNIV-PSUD-SACLAY %~ CEA-UPSAY-SACLAY %~ ENS-CACHAN-SACLAY %~ SYNCHROTRON-SOLEIL %~ MIPS %~ UNIV-MONTPELLIER %~ UP-SCIENCES %~ TEST-HALCNRS %~ CNRS-UPSACLAY %~ ANR %~ ENS-PARIS-SACLAY %~ GS-ENGINEERING %~ IRAMIS %~ GS-PHYSIQUE %~ INSTITUT-SCIENCES-LUMIERE %~ UM-2015-2021 %~ AIME-COTTON %~ C2N %~ UMPHY %~ LAF