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Univ. Paris-Sud, Université Paris-Saclay,
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Abstract. We describe the details of the binned bispectrum estimator as used for the official
2013 and 2015 analyses of the temperature and polarization CMB maps from the ESA Planck
satellite. The defining aspect of this estimator is the determination of a map bispectrum
(3-point correlation function) that has been binned in harmonic space. For a parametric
determination of the non-Gaussianity in the map (the so-called fNL parameters), one takes
the inner product of this binned bispectrum with theoretically motivated templates. However,
as a complementary approach one can also smooth the binned bispectrum using a variable
smoothing scale in order to suppress noise and make coherent features stand out above the
noise. This allows one to look in a model-independent way for any statistically significant
bispectral signal. This approach is useful for characterizing the bispectral shape of the
galactic foreground emission, for which a theoretical prediction of the bispectral anisotropy
is lacking, and for detecting a serendipitous primordial signal, for which a theoretical template
has not yet been put forth. Both the template-based and the non-parametric approaches are
described in this paper.
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1 Introduction

A fundamental question of observational cosmology is whether the primordial cosmological
perturbations were precisely Gaussian, or whether small departures from exact Gaussianity
can be detected at a statistically significant level and then characterized. Here the qualifica-
tion ‘primordial’ is essential because our goal is to probe the new physics at play in the very
early Universe. However, it is also important to study the non-Gaussianity that was subse-
quently imprinted at late times through known processes, in particular the nonlinear dynam-
ics of gravitational clustering, in order to ‘decontaminate’ the primordial non-Gaussianity.
Observations of the cosmic microwave background (CMB) anisotropies in temperature and
polarization are particularly well-suited to addressing this fundamental question, as they pro-
vide a clean probe of the initial conditions because most (but not all) of the CMB anisotropy
was imprinted well before nonlinear effects became important.

Non-Gaussianity is a vast subject because Gaussian stochastic processes are the excep-
tion rather than the rule, comprising a set of measure zero within the space of all possible
stochastic processes for generating an initial state. Given the highly exceptional nature
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of the stochastic processes that are exactly Gaussian, there is a great need to identify de-
partures from Gaussianity that are in some sense theoretically well-motivated. Bispectral
non-Gaussianity may be regarded as the leading-order correction to exact Gaussianity in
some sort of a perturbative expansion.

Early investigations of the statistics of large-scale structure of the universe, mainly on
grounds of simplicity, assumed Gaussian statistics before there was a well-motivated theo-
retical explanation for why the primordial cosmological perturbations should be very nearly
Gaussian. However in the mid-1980s the calculation of the cosmological perturbations gener-
ated from quantum vacuum fluctuations during inflation provided a theoretical justification
for using Gaussian statistics to model the large-scale structure. Indeed Gaussianity was
proclaimed as being one of the core predictions of inflation.

Inflation however does not predict exact Gaussianity no matter what model of inflation is
assumed. It cannot be modeled by a free field theory because at a minimum the gravitational
sector is nonlinear. Additional nonlinearity will of course also arise from other sources,
such as for example from the nonlinearity of the inflationary potential. The departures
from Gaussianity predicted within the framework of single-field inflation were calculated by
Maldacena [1] and by Acquaviva et al. [2]. Many other inflation models have been introduced
in the literature that can produce non-negligible non-Gaussianity. For example, models
where multiple scalar fields play a role during inflation, where isocurvature perturbations are
generated, or where inflation starts in an excited vacuum state. In some string-based models,
as well as in some modified gravity or effective-field theories, the kinetic part of the inflaton
Lagrangian can be non-standard, leading to novel bispectral signatures. Deviations from the
pure slow-roll phase in the inflaton potential can also produce oscillations in the bispectrum.
See e.g., [3] or [4, 5] for a review.

Under the assumption of statistical isotropy, the bispectrum of the map of a scalar
quantity reduces to a function of three multipole numbers B`1`2`3 , where the bispectrum
is symmetric under permutations and vanishes unless the `-triplet satisfies the triangle in-
equality [6]. If we include polarization, which in turn can be decomposed into E and B
components, then the bispectrum needs to be generalized to Bp1p2p3

`1`2`3
, where p1, p2, p3 = T,E

(we will not consider B-polarization in this paper). If we insist on exploiting the highest pos-
sible spectral resolution of the CMB maps (not necessarily the best idea), then the number of
reduced bispectral coefficients that can be measured is huge, scaling with `max as `3max, and
the individual coefficients are too contaminated by noise to be useful in detecting bispectral
Gaussianity. A major and unavoidable contribution to this noise arises from cosmic variance
— that is, from the departures from zero of Bp1p2p3

`1`2`3
that would occur even if the underlying

stochastic process were exactly Gaussian. While Gaussianity requires that the expectation
value of the bispectral coefficients, calculable only in the limit of an infinite number of sky
realizations, vanishes, the value calculated for any single sky realization will include fluctua-
tions about this expectation value. For this reason, in order to make any meaningful detection
of bispectral non-Gaussianity in the data, it is necessary to combine, in one way or another,
many measured bispectral coefficients in order to make the signal stand out over the noise.

There are basically two situations to be considered. If we have a simple parametric
model for the expected pattern of bispectral non-Gaussianity (generally parameterized by
an amplitude called fNL), then an optimal estimator can be constructed by summing the
observed bispectral coefficients over `1, `2, `3 using inverse variance weighting. Another situ-
ation to be considered involves non-parametric reconstruction of the bispectrum, where we
do not have a specific template in mind, but want to smooth the bispectrum in order to
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reduce the noise and see whether there is a broad signal that stands out over the noise at
a statistically significant level. This latter approach is particularly relevant for studying the
bispectral properties of foregrounds, for which a theory of the expected shape of the bispectral
non-Gaussianity is lacking.

Combining the bispectral coefficients is not only required from the physical point of view
(to obtain statistically significant results), but also computationally: computing O(`3max)
bispectral coefficients for each map is not feasible in practice. A natural solution, motivated
by the second case mentioned above as well as the observation that many of the templates
of the first case are very smooth, is to bin the bispectrum in harmonic space. This is the
basis of the binned bispectrum estimator, which was first described in [7], and which is the
subject of this paper (see also [8] for an independent investigation of the binned bispectrum
estimator, and [9] for a first rudimentary flat-sky estimator based on a binned bispectrum
applied to the MAXIMA data). The binned bispectrum estimator has established itself as
one of the three main bispectrum estimators used successfully for the official analysis of the
Planck data, both in 2013 [4] and in 2015 [5]. The other two are the KSW estimator [10–12]
and the modal estimator [13–15], and we will now briefly describe the main methodological
differences between these three estimators. In addition, other bispectrum estimators exist,
based on wavelets (e.g. [16]), needlets (e.g. [17]), and Minkowski functionals (e.g. [18]) (see [4]
for more complete references).

The KSW estimator (separable template fitting) is based on the observation that if the
primordial bispectrum template is separable as a function of k1, k2, k3 (or alternatively the
CMB bispectrum template is separable as a function of `1, `2, `3 modulo a possible overall
integral over r, the radial distance towards the surface of last scattering), then the terms in
the optimal estimator for fNL can be reordered as a product of terms depending only on k1, `1,
terms depending only on k2, `2, and terms depending only on k3, `3 (within an overall integral
over r). This significantly reduces the computational cost (by effectively replacing a three-
dimensional integral and sum by the product of three one-dimensional integrals and sums),
at the cost of losing the ability for full bispectrum reconstruction. The KSW estimator is
fast, but only works for separable templates and can only be used for the first case mentioned
above (template fitting).1

The modal estimator builds on the idea of the KSW estimator by first expanding the
theoretical bispectrum templates and the bispectrum of the map in a basis of separable
templates, the so-called modes. (For the Planck 2015 analysis two pipelines were used, one
with a basis of 600 polynomials, and the other with 2000.) The coefficients of the individual
modes are then computed using the KSW technique. In this way one can in principle treat
any bispectrum template, separable or not, as well as reconstruct the full bispectrum of
the map. These advantages come at the cost of often needing a large number of modes for
sufficient convergence, which can become computationally heavy.

The binned bispectrum estimator does not use the KSW technique and keeps the full
three-dimensional sum. The required computational reduction comes from reducing the
number of terms in the sum by binning the bispectrum in harmonic space, as will be discussed
in detail in this paper. In this way one can do both template fitting (with templates that do
not need to be separable) and full bispectrum reconstruction as mentioned above. Moreover,
the estimator is very fast when applied to a map, has a convenient modular structure (which

1The skew-C` extension [19] of the KSW estimator allows the determination of a so-called bispectrum-
related power spectrum, which contains the contribution to fNL (for a given shape) of all triangles with one
side equal to `.
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means for example that one can analyze an additional template without having to rerun the
map), and gives the dependence of fNL on ` as a free bonus. The possible drawback is that the
method works only for bispectra that are relatively smooth (or have rapid oscillations only in
a limited `-range) in order for a limited number of bins (about 50–60 in practice) to suffice.

The basic output of the binned bispectrum estimator is a binned, or coarse-grained,
pseudo-bispectrum. Here ‘pseudo’ indicates that full-sky spherical harmonic transforms have
been applied to a masked sky, so that the recovered a`m coefficients are in fact a convolution
of the real CMB multipole coefficients with the multipole coefficients of the mask. How one
corrects for the artefacts of the mask is discussed in detail in section 4. Below we shall
almost always assume the presence of a mask but will omit the qualification ‘pseudo’. The
coarse-grained pseudo-bispectrum can be combined with a library of theoretical templates
by means of an inner product that generates optimally matched filters. This approach was
described in [7], where it was shown that with a modest number of bins, the loss of information
compared to an unbinned analysis is negligible. One can thus determine the so-called fNL

parameter for various templates, but one can also construct other estimators, for example to
look for the acoustic peaks in the bispectrum (see [7]).

Section 2 describes the binned bispectrum and how it is calculated from a sky map.
Because there have been many refinements of the binned estimator (such as its generalization
to include polarization) since the previous paper, we will discuss the parametric analysis in
detail in section 3. As mentioned above, section 4 describes how to deal with the masked sky.
The implementation details of the code are discussed in section 5. The binned bispectrum
can also be used to carry out a non-parametric, or model-independent, analysis. In such an
analysis the binned bispectrum can be smoothed to search for a serendipitous statistically
significant signal of bispectral non-Gaussianity in the CMB for which templates have not
yet been proposed, or to characterize the bispectral properties of foregrounds without a
well-motivated theoretical template. The construction of the full smoothed bispectrum is
treated in section 6. The smoothing complicates the statistical analysis of the significance
of any non-Gaussian features because it introduces correlations between neighbouring bins.
In section 7 we develop a method to address this complication and provide an illustration
by applying it to the bispectrum of a realistic map containing a Gaussian CMB and radio
point sources. Some conclusions are presented in section 8. Appendix A provides both a
further discussion of the templates of section 3 and a further illustration of the techniques of
section 6 by presenting two-dimensional cross-sections of the smoothed template bispectra.

2 Binned bispectrum estimator

2.1 Binned bispectrum

In this paper we define the bispectrum by means of the expectation value

Bp1p2p3

`1`2`3
=

〈∫
dΩ̂Mp1

`1
(Ω̂)Mp2

`2
(Ω̂)Mp3

`3
(Ω̂)

〉
(2.1)

where Mp
` (Ω̂) is a map (as a function of position Ω̂ on the celestial sphere) where all but

the (2`+ 1) components having multipole number ` in the spherical harmonic decomposition
have been filtered out, so that

Mp
` (Ω̂) =

+∑̀
m=−`

ap`mY`m(Ω̂). (2.2)
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The label p refers in general to either temperature (T ), E-polarization (E), or B-polarization
(B), although in this paper we will only consider the former two. Inserting the expansion (2.2)
into (2.1) and using the Gaunt integral

∫
dΩ̂Y`1m1Y`2m2Y`3m3 =

√
N4

(
`1 `2 `3
m1 m2 m3

)
, we find

that

Bp1p2p3

`1`2`3
=
√
N `1`2`3
4

∑
m1,m2,m3

(
`1 `2 `3

m1 m2 m3

)
〈ap1

`1m1
ap2

`2m2
ap3

`3m3
〉, (2.3)

where we have defined

N `1`2`3
4 ≡ (2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)2

, (2.4)

which may be interpreted as the number of possible (`1, `2, `3) triangles on the celestial
sphere. (This quantity is sometimes denoted as h2

`1`2`3
in the literature.) The quantity

〈ap1

`1m1
ap2

`2m2
ap3

`3m3
〉 is the CMB angular bispectrum, while the quantity Bp1p2p3

`1`2`3
/N `1`2`3
4 is

known as the reduced bispectrum.

From these equations we can derive two mathematical properties of the bispectrum.
Firstly, the bispectrum is symmetric under the simultaneous interchange of its three multipole
numbers `1, `2, `3 and its three polarization indices p1, p2, p3. This means that it is sufficient
to consider only the subspace `1 ≤ `2 ≤ `3. It should be noted, however, that once we have
both temperature and polarization, imposing this condition means that we no longer have the
freedom to rearrange the polarization indices, so that for example the TTE, TET , and ETT
combinations correspond to three distinct bispectra. Secondly, because of the presence of the
Wigner 3j-symbol with all m’s equal to zero in (2.4), both the parity condition (`1 + `2 + `3
even) and the triangle inequality (consisting of |`1 − `2| ≤ `3 ≤ `1 + `2 and permutations
thereof) must be satisfied. Otherwise the bispectrum coefficient vanishes. Note that the
parity condition is a consequence of our starting point (2.1). One could also define the angle-
averaged bispectrum as in (2.3) but without the

√
N4 factor in front. That expression would

still include parity-odd modes as well in principle. The parity condition is a selection rule
that results under the assumption that the underlying stochastic process is invariant under
spatial inversion, which is the case for example for most scalar field models of inflation. In
that case the odd-parity bispectrum can only be noise from cosmic variance and thus is
not worth analyzing. In this paper we do not consider parity-odd combinations involving
B-polarization or chiral models where parity is not a good symmetry (like in the standard
electroweak model). See for example [20–22] for studies of parity-odd bispectra.

To compute the observed bispectrum with the maximum possible resolution, we would
simply evaluate the integral over the sky of triple products of maximally filtered observed
sky maps

Bp1p2p3,obs
`1`2`3

=

∫
dΩ̂Mp1,obs

`1
(Ω̂)Mp2,obs

`2
(Ω̂)Mp3,obs

`3
(Ω̂) (2.5)

for each distinct triplet satisfying the above selection rules. (In practice this integral is
evaluated as a sum over pixels.) The total number of triplets would be O(107) for a WMAP
or O(109) for a Planck temperature map.

But we can also use broader filters for the integral in (2.5), as we shall see later with
very little loss of information because a modest resolution in ` suffices for many physically
motivated templates for which the predicted Bp1p2p3

`1`2`3
varies slowly with its ` arguments. We

end up having to compute only O(104) bin triplets, leading to an enormous reduction in
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the computational resources required. We divide the `-range [`min, `max] into subintervals
denoted by ∆i = [`i, `i+1 − 1] where i = 0, . . . , (Nbins − 1) and `Nbins

= `max + 1, so that the
filtered maps are

Mp
i (Ω) =

∑
`∈∆i

+∑̀
m=−`

ap`mY`m(Ω̂), (2.6)

and we use these instead of Mp
` in the expression for the bispectrum (2.5). The binned

bispectrum is

Bp1p2p3,obs
i1i2i3

=
1

Ξi1i2i3

∫
dΩ̂Mp1,obs

i1
(Ω̂)Mp2,obs

i2
(Ω̂)Mp3,obs

i3
(Ω̂) (2.7)

where Ξi1i2i3 is the number of ` triplets within the (i1, i2, i3) bin triplet satisfying the triangle
inequality and parity condition selection rule. Because of this normalization factor, Bp1p2p3

i1i2i3
may be considered an average over all valid Bp1p2p3

`1`2`3
inside the bin triplet.

2.2 Variance

We start by considering only the temperature bispectrum. The covariance of the bispectra
B`1`2`3 and B`4`5`6 equals the average of the product minus the product of the averages.
Under the assumption of weak non-Gaussianity the calculation simplifies significantly. In
that case one can neglect the average value of the bispectra, and the average of the product,

〈B`1`2`3B`4`5`6〉 =
√
N `1`2`3
4 N `4`5`6

4 (2.8)

×
∑

m1,m2,m3,

m4,m5,m6

(
`1 `2 `3

m1 m2 m3

)(
`4 `5 `6

m4 m5 m6

)
〈a`1m1a`2m2a`3m3a

∗
`4m4

a∗`5m5
a∗`6m6

〉

(using the fact that B is real so that B = B∗), can be rewritten as the product of three
power spectra C` ≡ 〈a`ma∗`m〉 using Wick’s theorem

〈a`1m1a`2m2a`3m3a
∗
`4m4

a∗`5m5
a∗`6m6

〉 = C`1C`2C`3 [δ`1`4δ`2`5δ`3`6δm1m4δm2m5δm3m6

+ (14)(26)(35) + (15)(24)(36) + (15)(26)(34) + (16)(24)(35) + (16)(25)(34)], (2.9)

using obvious shorthand to denote the other permutations of δ-functions. Due to the δ-
functions, the covariance matrix is diagonal, so we need to consider only the (diagonal)
variance of B`1`2`3 . We use the identity∑

m1m2m3

(
`1 `2 `3

m1 m2 m3

)(
`1 `2 `3

m1 m2 m3

)
= 1 (2.10)

and the fact that for even parity of `1 + `2 + `3 the columns of the Wigner 3j-symbol can be
permuted to obtain

Var(B`1`2`3) = g`1`2`3N
`1`2`3
4 C`1C`2C`3 ≡ V`1`2`3 (2.11)

with g`1`2`3 equal to 6, 2, or 1, depending on whether 3, 2, or no `’s are equal, respectively,
and N4 defined as in (2.4). Similarly the variance of the binned bispectrum Bi1i2i3 =
(Ξi1i2i3)−1

∑
`1∈∆1

∑
`2∈∆2

∑
`3∈∆3

B`1`2`3 is given by

Var(Bi1i2i3) =
gi1i2i3

(Ξi1i2i3)2

∑
`1∈∆1

∑
`2∈∆2

∑
`3∈∆3

N `1`2`3
4 C`1C`2C`3 ≡ Vi1i2i3 (2.12)
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with gi1i2i3 equal to 6, 2, or 1, depending on whether 3, 2, or no i’s are equal, respectively.
The δ-functions in (2.9) lead here to conditions of equality on the bins, since due to the sum
over all `’s inside a bin, δ`a`b will always give 1 if `a and `b are in the same bin, and 0 if not.

With the noise and beam smoothing present in a real experiment, (2.12) becomes

Vi1i2i3 =
gi1i2i3

(Ξi1i2i3)2

∑
`1∈∆1

∑
`2∈∆2

∑
`3∈∆3

N `1`2`3
4 (b2`1C`1 +N`1)(b2`2C`2 +N`2)(b2`3C`3 +N`3) (2.13)

where b` is the beam transfer function and N` the instrument noise power spectrum. This
expression is exact only for an axisymmetric beam and isotropic noise; otherwise it is an
approximation (because the beam and noise properties would include off-diagonal matrix
elements). For a Gaussian beam, the beam transfer function is typically specified by the full
width at half maximum θFWHM (in radians), so that b` = exp

[
−1

2`(`+ 1)θ2
FWHM/(8 ln 2)

]
.

A pixel window function w` to account for pixelization effects is combined with the beam
transfer function according to b` → w`b`.

For bispectral elements including both T and E, the variance is replaced by the covari-
ance matrix in polarization space, whose expression without binning is

Covar(Bp1p2p3

`1`2`3
, Bp4p5p6

`1`2`3
) = g`1`2`3N

`1`2`3
4 (C̃`1)p1p4(C̃`2)p2p5(C̃`3)p3p6 ≡ V p1p2p3p4p5p6

`1`2`3
, (2.14)

where

C̃` =

(
(bT` )2CTT` +NT

` bT` b
E
` C

TE
`

bT` b
E
` C

TE
` (bE` )2CEE` +NE

`

)
. (2.15)

Here noise uncorrelated in T and E has been assumed. Similarly, for the binned case

Covar(Bp1p2p3
i1i2i3

, Bp4p5p6
i1i2i3

) =
gi1i2i3

(Ξi1i2i3)2

∑
`1∈∆1

∑
`2∈∆2

∑
`3∈∆3

N `1`2`3
4 (C̃`1)p1p4(C̃`2)p2p5(C̃`3)p3p6

≡ V p1p2p3p4p5p6
i1i2i3

. (2.16)

Some subtleties arise in the derivation of equation (2.14). The covariance matrix is in
principle an 8×8 matrix, given that there are 8 independent polarized bispectra TTT , TTE,
TET , TEE, ETT , ETE, EET , and EEE. As mentioned before, note that for example TTE
and TET are not the same: each polarization index pi is coupled to a multipole index `i, and
cannot be exchanged due to the restriction `1 ≤ `2 ≤ `3 that we will always impose in order to
reduce computation time. A naive calculation of this 8× 8 matrix appears to lead to a more
complicated expression in the case of equal `’s that is not proportional to g`1`2`3 . However,
one should treat the cases where two or three `’s are equal separately. For example, when
`2 = `3, one can exchange the last two polarization indices and one finds that TTE = TET
and ETE = EET . Hence in that case there are only 6 independent bispectra, and the
covariance matrix is 6×6. Similarly, when all three `’s are equal, the covariance matrix is 4×4.

However, it turns out that as far as computing fNL is concerned, when evaluating
the sum in (3.18), properly treating the special cases where `’s are equal by reducing the
dimension of the covariance matrix and bispectrum vector, the final result is identical to the
following calculation: taking the covariance matrix to be the 8 × 8 matrix as computed in
the case of all `’s unequal, multiplying it by g`1`2`3 , and then computing the sum in (3.18)
directly without treating the cases of equal `’s separately. This second computation is much
more convenient from a practical point of view. Finally it can be shown that the latter
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expression of the covariance matrix can be rewritten as the separable product involving only
2× 2 matrices in (2.14).

Similarly it can be shown that the variances of the combinations BT2E ≡ TTE +
TET + ETT and BTE2 ≡ TEE + ETE + EET used for the smoothed bispectrum (see
section 6) are also recovered correctly when using (2.14) or (2.16). Here one should use of
course that Var(BT2E) = Var(TTE) + Var(TET ) + Var(ETT ) + 2 Covar(TTE, TET ) +
2 Covar(TTE,ETT ) + 2 Covar(TET,ETT ), and similarly for Var(BTE2). So in the end,
while one should remember the caveats regarding (2.14) and (2.16) in the case of equal `’s
or i’s, for the practical purposes of this paper they can be used without any problem.

2.3 Linear correction term

The definition of the bispectrum in (2.1) assumes a rotationally invariant CMB sky and that
the bispectral expectation values have even parity (as a consequence of the parity invariance
of the underlying stochastic process, which we assume here). Because of rotational invariance,
the m dependence of the expectation can be factored out, and the sample reduced bispectral
coefficients provide a lossless compression of the data concerning the bispectrum. However,
in a real experiment as opposed to idealized observations of the primordial sky, two sources
of anisotropy arise that break rotational invariance and require corrections to the bispectrum
estimation to avoid spurious results.

The first is anisotropic superimposed instrument noise, due to for example an anisotropic
scanning pattern of the satellite. The second is anisotropy introduced by a mask needed
to remove the brightest parts of our galaxy and the strongest point sources. These two
anisotropic ‘contaminants’, unlike for example foreground contaminants, cannot be removed
by cleaning and must be accounted for in the analysis. These anisotropic contaminants can
mimic a primordial bispectrum signal. For example, due to an anisotropic scanning pattern
of the experiment, certain (large-scale) areas of the sky may have less (small-scale) noise
than other areas. This correlation between large and small scales produces a contaminant
bispectrum that peaks in the squeezed limit (bispectrum configurations with one small ` and
two large ones). As explained in the next section, that is also where the primordial so-called
local shape has its main signal. Since the CMB and the noise are uncorrelated, the effect will
average out to zero in the central value of the bispectrum over a large number of maps (no
bias), but it will increase the variance. And while an unbiased estimator will find the correct
central value when averaged over a large number of maps, a larger variance does mean that
there is more chance to find a value far from the true one when applied to a single map.

These contaminants can be mitigated by subtracting from the cubic expression of the ob-
served bispectrum given in (2.5) or (2.7) a linear correction term, as shown in [12, 23], that is,

Bp1p2p3,obs
i1i2i3

→
(
Bp1p2p3,obs
i1i2i3

−Bp1p2p3,lin
i1i2i3

)
. (2.17)

‘Cubic’ and ‘linear’ here mean cubic and linear in the observed map, respectively. The linear
correction term is

Bp1p2p3,lin
i1i2i3

=

∫
dΩ̂
[
Mp1,obs
i1

〈
Mp2,G
i2

Mp3,G
i3

〉
+Mp2,obs

i2

〈
Mp1,G
i1

Mp3,G
i3

〉
+Mp3,obs

i3

〈
Mp1,G
i1

Mp2,G
i2

〉]
, (2.18)

where the average is over Gaussian CMB maps with the same beam, (anisotropic) noise,
and mask as the observed map. The effect of the linear correction term on the measured
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value and variance of fNL (see section 3) is illustrated in great detail in section 4. With this
correction applied as well as an appropriate treatment of the masked regions that will be
discussed in section 4, we will see that we once again have an effectively optimal estimator
of the bispectrum of the sky.

3 Parametric bispectrum estimation

Once the binned bispectrum of a map has been determined, it can be compared with the
theoretical bispectra predicted by early Universe models. In particular the so-called fNL

parameter can be determined, which is a measure of the amplitude of the bispectrum, corre-
sponding roughly to the bispectrum divided by the power spectrum squared, although this
ratio is generally a momentum-dependent function and not a constant.

3.1 Bispectrum templates

3.1.1 Standard primordial and foreground templates

Since the temperature and E-polarization fluctuations are assumed to originate in density
fluctuations produced in the early Universe, for example during inflation, the predicted values
of the power spectrum and the bispectrum of the maps can be expressed in terms of the
primordial power spectrum P (k) and bispectrum B(k1, k2, k3) of the gravitational potential
Φ and the radiation transfer functions ∆p

` (k). One finds (see e.g. [24])

Cp1p2

` =
2

π

∫ ∞
0

k2dk P (k)∆p1

` (k)∆p2

` (k) (3.1)

and

Bp1p2p3,th
`1`2`3

= N `1`2`3
4

(
2

π

)3 ∫ ∞
0
k2

1dk1

∫ ∞
0
k2

2dk2

∫ ∞
0
k2

3dk3

[
∆p1

`1
(k1)∆p2

`2
(k2)∆p3

`3
(k3)B(k1, k2, k3)

×
∫ ∞

0
r2dr j`1(k1r)j`2(k2r)j`3(k3r)

]
(3.2)

where the j` are spherical Bessel functions. This expression should be multiplied by fNL to
find the full bispectrum, but we consider fNL an unknown parameter to be determined from
the data and define the theoretical bispectrum template Bth assuming fNL = 1. The radiation
transfer functions can be computed with freely available computer codes like CAMB.2 The
power spectrum is generally parametrized by its amplitude A, pivot scale k0, and reduced
spectral index3 ñ as P (k) = A(k/k0)−3+ñ.

Many inflation or other early Universe models predict a primordial bispectrum that
can be approximated by one (or a combination) of only a few distinct shapes in momen-
tum space (see e.g. [25, 26]). Hence it makes sense to search for these canonical shapes.
However, it should be kept in mind that these shapes are only approximations, and with
sufficient sensitivity and resolution the difference between slightly different templates that
all fall within the same approximate category can be resolved. Inflation models can also
produce shapes that are very different from the canonical shapes, for example with localized
features or oscillations. See [5] for an overview of all the different shapes that were tested

2http://camb.info.
3The reduced spectral index is related to the normal one by ñ = n−1, so that it is a quantity close to zero

instead of close to one.
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using the Planck 2015 data, as well as more complete references. The purpose of this paper
is not to give an exhaustive list of templates, but to describe the methodology of the binned
bispectrum estimator, providing only the most common templates as examples. In principle
any bispectrum shape can be investigated with the binned bispectrum estimator, as long as
it lends itself well to binning (either by being smooth everywhere, or by having rapid features
only in a small region of `-space, where the bin density can be increased without the total
number of bins becoming too large).

One often discussed property of templates is separability. A primordial template
is separable if the primordial bispectrum B(k1, k2, k3) can be written as a product
f1(k1)f2(k2)f3(k3), or as the sum of a few of such terms. Similarly, at the level of the bispec-
trum of the CMB, separability means that it can be written as a (sum of a few) product(s)
f1(`1)f2(`2)f3(`3). From (3.2) we see that separability of B(k1, k2, k3) implies separability of
the reduced bispectrum B`1`2`3/N

`1`2`3
4 , except for the overall integral over r. Separability is

a crucial feature for the oldest fNL estimator (KSW, [10]), which can only handle separable
templates (the integral over r is not a problem), but is of no importance for the binned
bispectrum estimator, which does not require any separation of factors in the bispectrum
templates.

The most well-known primordial bispectrum type is the so-called local bispectrum,

Blocal(k1, k2, k3) = 2[P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)]. (3.3)

It is called local because in real space it corresponds to the local relation Φ(x) = ΦG(x) +
f local

NL (Φ2
G(x) − 〈ΦG〉2) where the subscript G denotes the linear (Gaussian) part. Squeezed

configurations where one k (or `) is much smaller than the other two contribute the most
to the local bispectrum. The local bispectrum shape is typically produced in multiple-field
inflation models on superhorizon scales (see e.g. [25, 27]), or by other mechanisms that act
on superhorizon scales, such as curvaton models (see e.g. [28]).

The two other canonical primordial shapes are the equilateral and orthogonal templates.
The equilateral bispectrum is dominated by equilateral configurations where all k’s (or `’s) are
approximately equal, and is typically produced at horizon crossing in inflation models with
higher-derivative or other non-standard kinetic terms (or rather, the equilateral bispectrum is
a separable approximation to the bispectrum produced in such models, see [23]). It is given by

Bequi(k1, k2, k3) = −6[P (k1)P (k2) + (2 perms)]− 12P 2/3(k1)P 2/3(k2)P 2/3(k3)

+ 6[P (k1)P 2/3(k2)P 1/3(k3) + (5 perms)]. (3.4)

The orthogonal bispectrum [29] has been constructed to be orthogonal to the equilateral
shape in such a way that the bispectrum predicted by generic single-field inflation models
can be written as a linear combination of the equilateral and orthogonal shapes. It gets its
main contribution from configurations that are peaked both on equilateral and on flattened
triangles (where two k’s are approximately equal and the third is approximately equal to
their sum), with opposite sign, and is given by

Bortho(k1, k2, k3) = −18[P (k1)P (k2) + (2 perms)]− 48P 2/3(k1)P 2/3(k2)P 2/3(k3)

+ 18[P (k1)P 2/3(k2)P 1/3(k3) + (5 perms)]. (3.5)

It should be noted that the orthogonal shape is not at all orthogonal to the local shape (as
sometimes incorrectly stated in older literature). It has a large correlation (about 40–50%)
with the local shape at Planck resolution (see section 3.3 and table 1).
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In addition to these three shapes, it is also interesting to look for non-primordial con-
taminant bispectra, either to study these foregrounds or to remove them. In the first place a
bispectrum will be produced by diffuse extra-galactic point sources. These can generally be
divided into two populations: unclustered and clustered sources. The former are radio and
late-type infrared galaxies, while the latter are dusty star-forming galaxies constituting the
cosmic infrared background (CIB). Secondly, gravitational lensing of the CMB will produce
a bispectrum that mimics the local shape, because there is a correlation between the lenses
that produce modifications to the CMB power spectrum on small scales and the integrated
Sachs-Wolfe effect on large scales (both are due to the same mass distribution at low redshift).

The unclustered sources can be assumed to be distributed according to a Poissonian dis-
tribution, and hence have a white noise power spectrum (i.e., with an amplitude independent
of `). Then their bispectrum has a very simple theoretical shape [24]:

Bunclust
`1`2`3 = N `1`2`3

4 bps (3.6)

where bps, the amplitude of the unclustered point source bispectrum, is the parameter that
can be determined in the same way as the fNL parameters for the primordial templates. Like
most foregrounds, but unlike primordial signals, the amplitude depends on the frequency
channel, which allows a multi-frequency experiment like Planck to (partially) clean these
contaminants from its maps. The above relation is valid both in temperature and in po-
larization. However, since not all point sources are polarized, the amplitude bps is not the
same in temperature and polarization, with the difference depending on the mean polariza-
tion fraction of the point sources. Without taking into account that fraction, it would not
make sense to look at the mixed TTE and TEE components of its bispectrum, nor to try
to determine bps jointly from temperature and polarization maps. In practice for Planck
the contribution from polarized point sources is negligible (see [5]), so that we might as well
consider it a temperature-only template.

The clustered point sources (CIB) have a more complicated bispectrum. A simple
template that fits the data well was established in [30] (see also [5]):

BCIB
`1`2`3 = N `1`2`3

4 bCIB

[
(1 + `1/`break)(1 + `2/`break)(1 + `3/`break)

(1 + `0/`break)3

]q
, (3.7)

where the index is q = 0.85, the break is located at `break = 70, and `0 = 320 is the pivot scale
for normalization. In addition, bCIB is the amplitude parameter to be determined. As for the
unclustered point sources, it depends on the frequency. The CIB is found to be negligibly
polarized, so that the above template is only used in temperature.

The theoretical shape for the lensing-ISW bispectrum was worked out in [31–33] and is
given by

Bp1p2p3,lensISW
`1`2`3

= N `1`2`3
4

[
Cp2φ
`2

Cp1p3

`3
fp1

`1`2`3
+ Cp3φ

`3
Cp1p2

`2
fp1

`1`3`2
+ Cp1φ

`1
Cp2p3

`3
fp2

`2`1`3

+ Cp3φ
`3

Cp1p2

`1
fp2

`2`3`1
+ Cp1φ

`1
Cp2p3

`2
fp3

`3`1`2
+ Cp2φ

`2
Cp1p3

`1
fp3

`3`2`1

]
. (3.8)

Here CTφ` and CEφ` are the temperature/polarization-lensing potential cross power spectra,
while the CMB power spectra CTT` , CTE` , CEE` should be taken to be the lensed TT , TE,
EE power spectra. The functions fp`1`2`3 are defined by

fT`1`2`3 =
1

2
[`2(`2 + 1) + `3(`3 + 1)− `1(`1 + 1)] ,

– 11 –



J
C
A
P
0
5
(
2
0
1
6
)
0
5
5

fE`1`2`3 =
1

2
[`2(`2 + 1) + `3(`3 + 1)− `1(`1 + 1)]

(
`1 `2 `3

2 0 −2

)(
`1 `2 `3

0 0 0

)−1

, (3.9)

if `1+`2+`3 is even and `1, `2, `3 satisfy the triangle inequality, and zero otherwise. Using some
mathematical properties of the Wigner 3j-symbols we find that, under the same conditions
as above, the ratio of the two Wigner 3j-symbols can be computed explicitly as(

`1 `2 `3

2 0 −2

)(
`1 `2 `3

0 0 0

)−1

={
[`2(`2 + 1)− `1(`1 + 1)− `3(`3 + 1)][`2(`2 + 1)− `1(`1 + 1)− `3(`3 + 1) + 2]

− 2`1(`1 + 1)`3(`3 + 1)
} [

4(`1 − 1)`1(`1 + 1)(`1 + 2)(`3 − 1)`3(`3 + 1)(`3 + 2)
]− 1

2
. (3.10)

Note that there is no unknown amplitude parameter in front of this template: its fNL param-
eter should be unity. A further discussion of the templates presented in this section can be
found in appendix A, where we present two-dimensional sections of the template bispectra
according to the techniques described in section 6.

3.1.2 Isocurvature non-Gaussianity

The generalization of the binned bispectrum fNL estimator to the case where non-Gaussian
isocurvature components are present in addition to the standard adiabatic component was
treated in [34, 35]. For completeness we summarize the results here. In fact this boils down
to the joint analysis of a number of additional templates.

We make two simplifying assumptions: we consider only the local shape and assume the
same spectral index for the primordial isocurvature power spectrum and the isocurvature-
adiabatic cross power spectrum as for the adiabatic power spectrum. In that case the pri-
mordial bispectrum can be written as

BIJK(k1, k2, k3) = 2f I,JKNL P (k2)P (k3) + 2fJ,KINL P (k1)P (k3) + 2fK,IJNL P (k1)P (k2), (3.11)

where I, J,K label the different modes (adiabatic and isocurvature). (Note that unlike the
expressions before, we here include the fNL parameter in the expression for the theoretical
bispectrum.) The invariance of this expression under the simultaneous interchange of two
of these indices and the corresponding momenta means that f I,JKNL = f I,KJNL , explaining the
presence of the comma, and reducing the number of independent fNL parameters (from 8 to 6
in the case of two modes). Inserting this expression into (3.2), where ∆p1

`1
(k1)∆p2

`2
(k2)∆p3

`3
(k3)

should be replaced by
∑

I,J,K ∆p1 I
`1

(k1)∆p2 J
`2

(k2)∆p3K
`3

(k3), finally leads to the result

Bp1p2p3,th
`1`2`3

=
∑
I,J,K

f I,JKNL Bp1p2p3 I,JK
`1`2`3

, (3.12)

where

Bp1p2p3 I,JK
`1`2`3

= 6

∫ ∞
0

r2dr αp1 I
(`1

(r)βp2 J
`2

(r)βp3K
`3) (r), (3.13)

with

αp I` (r) ≡ 2

π

∫
k2dk j`(kr) ∆p I

` (k), βp I` (r) ≡ 2

π

∫
k2dk j`(kr) ∆p I

` (k)P (k). (3.14)
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Here we use the notation (`1`2`3) ≡ [`1`2`3 + 5 perms]/3! and it should be kept in mind that
the `i and pi are always kept together (so the pi are also permuted in the same way).

We can conclude that including the possibility of isocurvature non-Gaussianity in our in-
vestigations means that we have to replace the single local adiabatic bispectrum template by
the family of templates (3.13), each with their individual fNL parameter. In particular, if we
assume the presence of only a single isocurvature mode in addition to the adiabatic one (i.e.
one of cold dark matter, neutrino density, or neutrino velocity), we have six local fNL param-
eters to determine instead of just one, and these should always be estimated jointly (see sec-
tion 3.3). Two-dimensional sections of the isocurvature bispectra can be found in appendix A.

3.2 fNL estimation

We start by considering the case where we have only temperature. In order to estimate fNL

using a template Bth
`1`2`3

, the estimator

f̂NL =

〈
Bth,exp, Bobs

〉
〈Bth,exp, Bth,exp〉 (3.15)

is constructed using the inner product

〈BA, BB〉no binning =
∑

`1≤`2≤`3

BA
`1`2`3

BB
`1`2`3

V`1`2`3
. (3.16)

This definition satisfies the mathematical axioms of an inner product as long as bin triplets
with infinite variance are excluded from the sum. The theoretical bispectrum for the exper-
iment is related to the theoretically predicted infinite angular resolution bispectrum by the
relation Bth,exp

`1`2`3
= b`1b`2b`3B

th,fNL=1
`1`2`3

. For the binned estimator the template is first binned as

Bth,exp
i1i2i3

= (
∑

`1∈∆1

∑
`2∈∆2

∑
`3∈∆3

Bth,exp
`1`2`3

)/Ξi1i2i3 and then the above estimator can be used
with the binned version of the inner product:

〈BA, BB〉binned =
∑

i1≤i2≤i3

BA
i1i2i3

BB
i1i2i3

Vi1i2i3
. (3.17)

One sees that the above estimator is of the form f̂NL ∝
∑

[(Bth)2/V ][Bobs/Bth] (where
from now on we drop the explicit “exp” label). Since Vi1i2i3 is the theoretical estimate
of the variance of Bobs

i1i2i3
in the approximation of weak non-Gaussianity, the estimator is

inverse variance weighted: Bobs/Bth is an estimate of fNL based on a single bin triplet,
and all these estimates are combined, weighted by the inverse of their variance, V/(Bth)2.
The proportionality factor 1/〈Bth, Bth〉 is the normalization of the weights and gives the
theoretical (Gaussian) estimate for the variance4 of the total estimator f̂NL. This is the same
as saying that 〈Bth, Bth〉 is the χ2 or (S/N)2 of the estimator in the case fNL = 1.

The generalization of the fNL estimator to include polarization in the case without
binning was worked out in [11]. In that case the inner product (3.16) should be replaced by

〈BA, BB〉no binning =
∑

`1≤`2≤`3

∑
p1,p2,p3,

p4,p5, p6

Bp1p2p3,A
`1`2`3

(V −1)p1p2p3p4p5p6

`1`2`3
Bp4p5p6,B
`1`2`3

, (3.18)

4If we have independent quantities yi with variances vi and define the inverse-variance weights
as wi = (1/vi)/(

∑
j 1/vj), then the variance of the weighted mean

∑
i wiyi is

∑
i w

2
i vi =

(
∑

i vi/v
2
i )/(

∑
j 1/vj)

2 = 1/(
∑

j 1/vj).
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which involves the inverse of the covariance matrix given in (2.14). Computing this inverse
simply implies inverting the three 2× 2 matrices C̃` given in (2.15).

Deriving an equivalent expression for the binned estimator is straightforward, as long
as one keeps in mind that one should first bin the elements of the covariance matrix (since
that corresponds to the covariance matrix of the binned bispectrum) and only afterwards
compute the inverse. Trying to bin directly the elements of the inverse covariance matrix
(or one divided by these elements) is incorrect and leads to wrong results (in particular for
bins where CTE` crosses zero). So in the end the generalization of the binned bispectrum
estimator to include polarization is given by the prescription that the inner product (3.17)
should be replaced by

〈BA, BB〉binned =
∑

i1≤i2≤i3

∑
p1,p2,p3,

p4,p5, p6

Bp1p2p3,A
i1i2i3

(V −1)p1p2p3p4p5p6
i1i2i3

Bp4p5p6,B
i1i2i3

, (3.19)

involving the inverse of the binned covariance matrix given in (2.16). However, since the
multiplication with N `1`2`3

4 in combination with the binning couples the three C̃` matrices
in (2.16) together, the covariance matrix can only be inverted as a full 8 × 8 matrix that
is no longer separable in `. Fortunately this non-separability is irrelevant for the binned
bispectrum estimator.

We can quantify how much the estimator variance increases due to binning, compared
with an ideal estimator without binning:

R ≡ Var(f̂ ideal
NL )

Var(f̂binned
NL )

=
〈Bth, Bth〉binned

〈Bth, Bth〉no binning
. (3.20)

R is a number between 0 and 1. The closer R is to 1, the better the binned approximation
for the template under consideration. To show that 0 ≤ R ≤ 1 we need to rewrite (3.20) in
terms of a single inner product definition. It can be checked straightforwardly that the binned
inner product of the theoretical bispectrum can be rewritten as the exact inner product (no
binning) of the bispectrum template defined below:

〈Bth, Bth〉binned = 〈Bbin, Bbin〉no binning, (3.21)

where

Bp1p2p3,bin
`1`2`3

≡ 1

Ξi1i2i3

gi1i2i3
g`1`2`3

∑
p4,p5,p6,

p7,p8, p9

V p1p2p3p4p5p6

`1`2`3
(V −1)p4p5p6p7p8p9

i1i2i3
Bp7p8p9,th
i1i2i3

(3.22)

with (i1, i2, i3) the bin triplet that contains the `-triplet (`1, `2, `3).5 In addition it is simple
to show that

〈Bbin, Bbin〉no binning = 〈Bbin, Bth〉no binning. (3.24)

5This result follows from the identity (for any function u`1`2`3)∑
`1≤`2≤`3

1

g`1`2`3
u`1`2`3 =

1

6

∑
`1,`2,`3

u`1`2`3 =
1

6

∑
i1,i2,i3

∑
`1∈∆1

∑
`2∈∆2

∑
`3∈∆3

u`1`2`3

=
∑

i1≤i2≤i3

1

gi1i2i3

∑
`1∈∆1

∑
`2∈∆2

∑
`3∈∆3

u`1`2`3 . (3.23)
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Now we can rewrite R as

R =
〈Bbin, Bbin〉no binning

〈Bth, Bth〉no binning
=
〈Bbin, Bth〉no binning

〈Bth, Bth〉no binning
=

(〈Bbin, Bth〉no binning)2

〈Bth, Bth〉no binning〈Bbin, Bbin〉no binning
.

(3.25)
From the first expression, given that 〈x, x〉 ≥ 0 for an inner product, we see that R ≥ 0. And
the last expression implies that R ≤ 1 using the Cauchy-Schwarz inequality.

3.3 Joint estimation

If more than one of the above bispectrum shapes are expected to be present in the data, then
a joint estimation of the different fNL parameters is required. For this the Fisher matrix

FIJ = 〈BI , BJ〉, (3.26)

where I, J label the theoretical shapes (for example local and equilateral), is a crucial quan-
tity. The optimal estimation of the fNL parameter for shape I is given by

f̂ INL =
∑
J

(F−1)IJ〈BJ , Bobs〉. (3.27)

The estimate of the variance of f̂ INL is (F−1)II . If, on the other hand, the f̂ INL parameters
would have been estimated independently using (3.15) (as if there is only one bispectrum
shape present, but it is unknown which), then their variance is given by 1/FII .

Another useful quantity to define is the symmetric correlation matrix

CIJ ≡
FIJ√
FIIFJJ

(3.28)

giving the correlation coefficients between any two bispectrum shapes. By construction −1 ≤
CIJ ≤ +1, with CIJ = −1, 0,+1 meaning that the two shapes are fully anti-correlated,
uncorrelated, or fully correlated, respectively. Note that one could also define a correlation
matrix using the inverse of the Fisher matrix instead of the Fisher matrix itself in (3.28). That
would give us the correlation of the fNL parameters, while (3.28) represents the correlation
of the templates. As an example we show the correlation coefficients between the templates
of section 3.1.1 in table 1.

Suppose that we had only two shapes with non-zero correlation, but the amplitude of
the second was fixed by theory (as is the case for example for the lensing-ISW template that
has no unknown amplitude parameter). If the theory was fully trusted, it would be a shame
to do a joint estimation, with the associated increase in variance. In that case the influence of
the second shape on the first is more properly treated as a known bias that can be subtracted
without increasing the variance. The size of the bias can be found from (3.27), by using the
second equation (I = 2) to eliminate 〈B(2), Bobs〉 from the first equation (I = 1). After
expressing the elements of the inverse Fisher matrix in terms of the elements of the Fisher
matrix, the resulting equation for the first fNL parameter simplifies to:

f̂
(1)
NL =

1

F11
〈B(1), Bobs〉 − F12

F11
f

(2)
NL, (3.29)

the second term being the bias correction. Here f
(2)
NL is the known fNL parameter of the second

shape, most likely equal to one if the known amplitude was included in the template (as is

the case for example for the lensing-ISW template). The variance of f̂
(1)
NL is not influenced by

the bias correction and remains equal to 1/F11, the same as for a single shape. This result
can easily be generalized to more than two shapes.
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Local Equil Ortho LensISW UnclustPS CIB

Local 1 0.21 -0.44 0.28 0.002 0.006

Equilateral 1 -0.05 0.003 0.008 0.03

Orthogonal 1 -0.15 -0.003 -0.001

Lensing-ISW 1 -0.005 -0.03

Unclustered point sources 1 0.93

CIB point sources 1

Table 1. Correlation coefficients between the theoretical templates of section 3.1.1, as defined
in (3.28). The numbers are computed using the characteristics of the Planck experiment and are
for temperature. We see a large correlation between local and orthogonal and between local and
lensing-ISW. Equilateral and orthogonal are mostly uncorrelated, and the correlation between the
point source templates and the primordial ones is negligible.

4 Masking and filling in

The region near the galactic plane and around extragalactic point sources where reliable
subtraction of contaminants is not possible must be masked to prevent contamination of
the primordial bispectrum. Masking introduces a number of problems for estimating the
bispectrum because the process of filtering maps is nonlocal. If we naively analyze a masked
map in which the masked pixels are set to zero — or better yet, set equal to the average
value of the unmasked part of the map — by filtering it, say with a high pass filter, we would
observe a deficit of small scale power around the edges of the mask. A filter in frequency
space moves around the small scale power in real space. The power is smeared, so that if
there is no small scale power in the masked region, power from the unmasked region escapes
into the masked region without there being a compensating flux returning from the masked
region. Another edge effect tending to increase the small scale power around the border of
the unmasked region results if there is a jump discontinuity. Such a discontinuity contains
spurious small scale power that bleeds into the unmasked region after filtering. It is therefore
important to introduce artificially the right amount of small scale power into the masked
region and to avoid spurious jumps in the maps so that the two fluxes cancel after filtering.6

This process of filling in the masked regions is also known as ‘inpainting’.

Before showing quantitatively how masking affects the determination of fNL, we first
have to determine what the effect on the error bars would be if we had none of these problems,
but only less data due to the reduced fraction of the sky. When the bispectrum is determined
according to (2.7), it should be multiplied with a factor 1/fsky to correct for the partial sky
coverage [10], where fsky is the fraction of the sky that is left unmasked. In practice this
is done automatically when the integral is replaced by a sum over the pixels: the product
of maps is summed over all unmasked pixels, divided by the number of unmasked pixels,
and multiplied by 4π. In addition, the partial sky coverage increases the variance of the
estimator, the theoretical estimate of which becomes 1/(fsky〈Bth,exp, Bth,exp〉). If the mask
is not too large, this simple prescription for the variance works quite well.

6Large scale modes are much less affected by the mask. Since these mode extend out over large parts
of the sky, they can be reconstructed reasonably accurately even when some parts of the sky are missing.
Furthermore edge effects are also less important for a mask with larger holes. Consequently for a high
resolution experiment like Planck the use of inpainting algorithms has turned out to be absolutely crucial,
while for the lower resolution WMAP experiment, which moreover had larger error bars, less care was required.
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No linear correction With linear correction

Local Equil Ortho Local Equil Ortho

No mask, isotropic noise

TTT -0.1 ± 4.1 2 ± 58 5 ± 24 -0.1 ± 4.1 3 ± 57 4 ± 25

EEE 0.4 ± 24 -11 ± 170 6 ± 92 0.4 ± 24 -11 ± 171 7 ± 94

No mask, anisotropic noise

TTT 5.7 ± 84 2 ± 58 2 ± 35 -0.2 ± 4.2 3 ± 57 4 ± 24

EEE -23 ± 736 -22 ± 193 15 ± 197 0.4 ± 24 -20 ± 195 7 ± 94

Galactic mask, isotropic noise

– No filling in

TTT -0.2 ± 5.5 11 ± 78 -1 ± 58 0.3 ± 5.1 6 ± 70 6 ± 32

EEE 5 ± 32 -5 ± 199 1 ± 108 2 ± 28 -9 ± 202 3 ± 109

– Diffusive filling in

TTT 0.8 ± 6.2 6 ± 70 4 ± 28 0.3 ± 4.6 7 ± 69 4 ± 29

EEE 5 ± 31 -8 ± 196 1 ± 109 2 ± 28 -8 ± 198 2 ± 110

Point source mask, isotropic noise

– No filling in

TTT -0.7 ± 9.2 3 ± 73 6 ± 51 -0.4 ± 8.4 3 ± 65 7 ± 36

EEE 1 ± 27 -7 ± 170 10 ± 92 0.1 ± 23 -7 ± 170 9 ± 89

– Diffusive filling in

TTT 0.2 ± 6.3 2 ± 59 5 ± 25 -0.3 ± 4.3 3 ± 58 4 ± 24

EEE -0.1 ± 26 -0.1 ± 172 13 ± 98 -0.5 ± 24 -3 ± 173 12 ± 97

Gal + ps mask, anisotropic noise

– No filling in

TTT 0.3 ± 77 10 ± 93 3 ± 87 -0.7 ± 9.4 5 ± 76 10 ± 39

EEE -27 ± 719 -11 ± 214 17 ± 247 2 ± 30 -14 ± 207 4 ± 101

– Diff. filling in of ps mask only

TTT 1.6 ± 85 10 ± 78 -2 ± 70 0.02 ± 5.4 5 ± 71 7 ± 32

EEE -27 ± 752 -5 ± 213 16 ± 243 2 ± 31 -13 ± 210 2 ± 109

– Diff. filling in of both masks

TTT 2.7 ± 87 6 ± 72 3 ± 44 -0.04 ± 5.0 6 ± 69 4 ± 29

EEE -26 ± 756 -9 ± 210 16 ± 242 2 ± 31 -13 ± 208 1 ± 110

Table 2. Importance of filling in and of the linear correction term for determining fNL in the presence
of a mask and anisotropic noise. The results are based on a set of 100 Gaussian CMB simulations
at Healpix resolution nside = 2048 with power spectrum according to the Planck 2013 release values.
The simulations include smoothing by a 5 arcmin FWHM Gaussian beam and noise based on a white
noise power spectrum with amplitude 1.5 × 10−17 for temperature and 6 × 10−17 for E polarization
(in units made dimensionless by dividing by the CMB mean temperature T0 = 2.7255 K). Where
relevant the noise has been made anisotropic by modulating it using the hit count map of the Planck
143 GHz channel of the 2013 release. The maps are analyzed with the binned bispectrum estimator
using 54 bins and `max = 2500, and 100 maps were used for the linear correction term. The masks
used are shown in figure 1.
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Figure 1. The galactic (left) and point source mask (right) used in table 2. The galactic mask is the
fsky = 0.80 galactic mask included in the Planck 2013 release, and the point source mask is the one
based on the Planck LFI 30 GHz channel from the 2013 release (with a 4σ threshold level), which has
fsky = 0.96. The combined mask has fsky = 0.77.

To illustrate quantitatively the problems encountered in determining fNL with a mask,
we applied a series of tests to simulated CMB maps as described in table 2. The masks used
are shown in figure 1 while the details of the simulations are described in the caption of the
table. We find that when missing data in the masked regions are naively replaced with the
average of the unmasked part of the map (the “no filling in” lines in the table), the estimates
of fNL are unbiased but have much larger variance than expected, at least in temperature.
The expected increase in the standard deviation is only a factor 1/

√
fsky (i.e., 1.12 for the

galactic mask and 1.02 for the point sources) and in particular for the point source mask we
observe wider error bars in temperature for all three shapes. Including the linear correction
term (2.18) in the estimator reduces this effect to some extent, but in temperature this is
clearly not enough. The effect of the point source mask on the local shape is exacerbated
when the holes are smaller. For example, replacing the 2013 Planck LFI 30 GHz point source
mask with the 2013 Planck HFI 100 GHz channel mask (with a 5σ threshold level), which
has a much smaller beam and hence smaller holes (fsky = 0.99), increases the “no filling in,
no linear correction” error bars for the local shape from 9.2 to 29.5 (while the error bars
for equilateral and orthogonal become smaller). These results demonstrate the need for a
suitable filling in of the missing data in the masked regions of the temperature map, in
particular for the point source mask.

The simplest filling in method is diffusive filling in, which despite its simplicity worked
extremely well and was subsequently adopted for the other Planck bispectrum estimators
(KSW and modal) as well. It became the common method in both the 2013 and 2015 Planck
releases. After filling the masked regions with the average of the unmasked part of the map
as above, we fill each masked pixel with the average value of its neighboring pixels and this
procedure is iterated. We found that 2000 iterations sufficed for the Planck maps. One
can implement the iterative procedure in two different ways: compute the average of the
neighbors on the current iteration (Gauss-Seidel method, where some of the neighbor pixels
will already have been updated and others not) or on the previous iteration kept in a buffer
(Jacobi method, where all neighbor pixels will be on the previous iteration). While the
Gauss-Seidel implementation is anisotropic, we found that this has no impact on the results,
while on the contrary the faster convergence of that implementation is an advantage. This
scheme solves a discretized version of Laplace’s equation for the pixels where there is no data
with the boundary of the unmasked region providing Dirichlet boundary data. [See [36] for
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Figure 2. The top two panels show a zoom of a Gaussian CMB map with holes from the 2013
Planck HFI 100 GHz point source mask, before (left) and after diffusive filling in (right) with 2000
iterations. The bottom left panel shows what filling in the galactic mask looks like, with the bottom
right panel showing the difference between the maps with and without filling in. The units are
dimensionless (∆T/T0).

a discussion of how this scheme is related to constrained random Gaussian realizations for
filling in the missing data.] While this sort of ‘harmonic averaging’ is simple to implement
and dulls the sharp edges, it appears at first glance not to remedy the problem of missing
small-scale power described above, as the resulting maps have clearly visible bald spots, see
figure 2. However, unlike apodization which only dulls the edges, the diffusive filling in
scheme does create small scale structure inside close to the boundary of the mask. Given
that during harmonic transforms it is the wavelength of the modes that determines how far
they propagate, this is exactly what we need: the short wavelengths can only propagate small
distances and hence need only be reconstructed close to the edges. Figure 3 illustrates both
how the contamination due to the presence of the point source mask is localized around the
holes and how filling in remedies this problem. We use the Planck HFI 100 GHz point source
mask (with the smaller holes) for this figure, since the effect is larger and more apparent there.

– 19 –



J
C
A
P
0
5
(
2
0
1
6
)
0
5
5

-5e-07 5e-07 -5e-07 5e-07

Figure 3. Here we take one of the Gaussian CMB maps and filter out all modes except ` ∈ [1500, 1549]
in three different ways. First we take the unmasked map, filter it, and mask the result (1). Secondly,
we take the map, mask it with the 2013 Planck HFI 100 GHz point source mask, then filter it and mask
again (2). Finally, the third map (3) is the same as the second one, except that we have performed
diffusive filling in on the masked map before filtering. On the left is shown the difference (2)− (1) (no
filling in), while on the right we have (3)− (1) (with filling in). The units are dimensionless (∆T/T0).

After masking, filling in, and filtering the maps, we mask them once again before inte-
grating over products of maps. The masked region is never directly used in the calculation
of the bispectrum, but the filling in is crucial to avoid the influence of the masked region
spreading out over the sky when filtering the maps, as explained above. In addition the aver-
age of the filtered maps outside the mask is subtracted to remove any monopole. If this is not
done small-scale power (whose origin is from the two-point function) will combine with this
monopole to masquerade as (local) bispectral power, and this ‘aliasing’ can be a large effect.

Other more sophisticated filling in techniques include nonlinear methods based on spar-
sity (see [37–39]) or constrained Gaussian realizations [36]. Alternatively, and even better for
bispectrum determination, one can perform a full inverse covariance weighting (Wiener fil-
tering) of the maps (see e.g., [40, 41]). However as the results in table 2 show, these methods
do not appear necessary, as a combination of diffusive filling in and the linear correction term
leads to results that are effectively optimal for the temperature maps (meaning they cannot
be distinguished from the optimal results within the error bars). For E polarization the
situation is even simpler, at least at the Planck resolution and sensitivity. Not even diffusive
filling in is required. Just applying the linear correction term appears sufficient. However as
a precaution we also applied diffusive filling in to the Q and U maps for the Planck analysis.

Table 2 also highlights the importance of the linear correction term when there is
anisotropic noise. While there is hardly any impact for the equilateral shape and no bias for
any shape, for the local shape the error bars simply explode when we add anisotropic noise
to the map, both for temperature and for the E polarization mode. (For an explanation see
section 2.3.) However including the linear correction term described in section 2.3 suffices
to recover the same error bars as in the ideal case. As can be seen from (2.18), the linear
correction to the bispectrum of a given map, and hence to the fNL parameters via (3.15), in-
volves the average over a large number of Gaussian maps. In figure 4 we show the histogram
of the individual contributions of 199 Gaussian maps to the linear correction part of fNL for
one of the maps from the “no mask, anisotropic noise” case of table 2. The corresponding
mean values are for T : local 165 ± 0.5, equilateral −4 ± 8, orthogonal −40 ± 4, and for E:
local −415 ± 3, equilateral −20 ± 24, orthogonal 119 ± 11. As expected we see a hugely
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Figure 4. Histogram of the contribution of 199 individual Gaussian maps to the linear correction part
of fNL for one of the maps from the “no mask, anisotropic noise” case of table 2, for both temperature
(left) and E polarization (right). Results are shown for the local (blue), equilateral (green), and orthog-
onal (red) shapes. The vertical lines correspond to the cubic (uncorrected) part of fNL for that map.

significant linear correction for local, a very significant correction for orthogonal (due to the
large correlation with local), and no significant correction for equilateral. The error bars on
the linear correction term for a single map are much smaller (in this case of 199 maps about
a factor 7) than the error bars on the values of the different fNL parameters determined
from 100 maps in table 2, indicating that we have used enough maps to determine the linear
correction. Another way of representing the importance of the linear correction term in the
presence of anisotropic noise is shown in the scatter plot of figure 5.

5 Implementation of the estimator

A significant advantage of the binned bispectrum estimator is that it divides the bispectral
analysis and determination of fNL into three separate parts, the first two of which are com-
pletely independent. The first, slow, part is the computation of the raw binned bispectrum of
the map under consideration, including its linear correction. The second, much faster, part
involves the computation and subsequent binning of the theoretical bispectrum templates
one wants to test and of the expected bispectrum covariance. Finally, the third, extremely
fast, part (that runs in less than about a minute) is where the different analyses (for ex-
ample for different templates) are carried out using the raw binned bispectrum from part 1
and the quantities from part 2 as an input. In the case of fNL determination, this last part
corresponds to the evaluation of the sum over the bins and polarization indices in the inner
product (3.19) used in (3.15).

This approach has several advantages. Firstly, the full (binned) bispectrum is a natural
output of the code and can be studied on its own without a particular template in mind.
Such an analysis will be the subject of the last sections of the paper. Secondly, there is no
need for the bispectrum template to be separable, since nowhere in the method does the
need arise to split up the template into a separable form. Thirdly, once the bispectrum of a
map has been computed, modifications to the theoretical analysis (like for example testing
additional templates) is fast, since there is no need to rerun the observational part (which
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Figure 5. Scatter plot of the values of fNL without linear correction (horizontal axis) against the
values including linear correction (vertical axis), for the 100 maps of the “no mask, anisotropic noise”
case of table 2. Results are shown for temperature (left) and E polarization (right) and for the local
(blue), equilateral (green), and orthogonal (red) shapes. We clearly see the huge effect of the linear
correction term for the local shape (where a wide range of uncorrected values all map onto a small
range of corrected values, without any apparent correlation), some effect for orthogonal, and no effect
for equilateral (where the corrected and uncorrected values are very similar and highly correlated).

consumes by far the most time). This is in contrast with competing estimators such as
the KSW estimator, where the theoretical and observational steps are mixed together (a
separation is instead made in terms of `1, `2, `3), so that the full code has to be rerun for any
new template. Fourthly, with the binned bispectrum estimator the dependence of fNL on ` is
obtained almost for free, simply by leaving out bins from the sum when computing the final
inner product. In particular this has been used to study the dependence on `min and `max

in the Planck analysis. Finally, the binned bispectrum estimator compares favorably to the
other estimators in terms of speed: it is very fast on a single map.

The only disadvantage of this method is that the templates that can be studied accu-
rately have to be reasonably smooth, or if not then any rapid changes should be limited to a
small part of `-space, in order for the template to be well approximated by a binned template
with a not too large number of bins.7 For most primordial and foreground templates studied
so far, this is not a problem. Moreover, even for templates that do not satisfy this criterion,
the binned bispectrum estimator could still perform quite well. For example, among the tem-
plates discussed in sections 3.1.1 and 3.1.2, only the lensing-ISW template cannot be easily
binned. For a typical Planck binning the overlap is of the order of 60–70% (as opposed to
95% or higher for all the other templates considered). Nevertheless the binned bispectrum
estimator gives unbiased results even for this template, with error bars that are only slightly
widened.

7There are indications that the binned bispectrum estimator might even perform well for oscillating tem-
plates that do not satisfy these criteria. For the so-called constant feature model [5] with a primordial
bispectrum proportional to sin(ω(k1 + k2 + k3) + ϕ)/(k1k2k3)2, taking ϕ = 0 and ω = 100, we find an over-
lap of 94% for T -only with the standard Planck binning (i.e. not optimized for this template). This will be
investigated in more detail in a future publication.
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The code has been written mainly in Python, using some routines written in C. The code
is run on the computers of the Centre de Calcul de l’Institut National de Physique Nucléaire
et de Physique des Particules (CC-IN2P3) in Lyon, France8 and any explicit remarks about
computing time refer to that system.

5.1 Theoretical part

The theoretical part of the code consists of two steps: first determining the unbinned
theoretical bispectrum and power spectrum, and second, computing from these spectra
the binned bispectrum templates Bth

i1i2i3
and the inverse of the binned covariance matrix

(V −1)p1p2p3p4p5p6
i1i2i3

, see (3.15) and (3.19). This also requires experimental inputs in the form
of the beam transfer function b` and the noise power spectrum N`.

The first step is in some sense not really part of the estimator code. We have a code to
compute all the bispectra discussed in sections 3.1.1 and 3.1.2, but in principle an explicitly
computed theoretical bispectrum from any source could be used here. In our code we use the
radiation transfer functions ∆p I

` (with p the polarization index and I the isocurvature index)
computed with CAMB (slightly modified to write them to file, since these are not a normal
output of CAMB) to compute the primordial templates (3.2). For separable templates, this is
a fast calculation, since the triple integral over k1, k2, k3 becomes a product of single integrals.
For non-separable templates a brute force calculation is much slower, but while one might look
for smarter ways to compute such bispectrum templates, it should not be forgotten that (for a
given cosmology) for use in the binned bispectrum estimator, a template has to be computed
only once. Hence even a slow calculation might be acceptable. While this code can also
compute the power spectra from the radiation transfer functions according to (3.1), in practice
we use the power spectra computed by CAMB. These power spectra are used in the covariance
matrix and some foreground bispectrum templates. This code is similar to the code described
in [7], except for the inclusion of additional primordial templates and the generalization to
polarization and isocurvature. Since the calculation of the N `1`2`3

4 in real time is fast enough,
these are no longer precomputed and stored. The primordial bispectra are precomputed only
on a grid (with ∆` increasing to about 10 at high `). This is denser than the binning, and
thus accurate enough for the smooth local, equilateral, and orthogonal templates.

The second step involves the binning of the bispectrum templates and the covariance
matrix. The calculation of the covariance matrix from the power spectra as well as the calcu-
lation of the foreground templates is done directly in this step. As was seen in section 3.1.1,
the foreground templates are simpler to compute than the primordial templates, since there
are no integrals, so there is no need to precompute them, the required values can be computed
in real time while binning. As for the precomputed primordial templates, since these have
been precomputed only on a grid, other values are computed by three-dimensional linear
interpolation. While we developed a tetrahedral integration scheme to speed up the calcula-
tion of all binned quantities, as described in [7], recently we have moved away from using it.
Given that the theoretical computation is much faster than the observational computation,
there is no point in making additional approximations to speed it up. Performing an exact
calculation of the binned quantities (where the quantities are explicitly computed for each
value of `1, `2, `3 and then summed over the bin) is fast enough. We can thus also directly
compute the overlap between the binned and the exact template using (3.20).

The final output of this step consists of two files: one containing the binned theoretical
bispectrum for all requested shapes, polarization and isocurvature components; and another

8http://cc.in2p3.fr.
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containing the inverse of the binned covariance matrix for all polarization components. In
addition the exact Fisher matrix (3.26) (without binning) is produced to allow for the esti-
mation of the accuracy of the binning approximation using (3.20).

5.2 Choice of binning

The choice of binning is an important part of the implementation. In theory the idea is very
simple: one chooses the binning that makes the overlap parameter R defined in (3.20) as close
to one as possible. In practice this is not so simple, since both the number of bins and all the
bin boundaries are free parameters. Fortunately R does not depend strongly on the exact bin-
ning choice. Moreover, one does not need R = 1 to obtain results statistically indistinguish-
able from the exactly optimal results. For example, even with R = 0.95, which is about the
lowest overlap for any of the templates considered in the Planck analysis (except for lensing-
ISW), the increase in the standard deviation is only 2.6%. This should be compared to the 5%
uncertainty in the standard deviation due to its determination from 200 maps. Note that the
code allows the use of separate binnings for the T -only, the E-only, and the full T+E analyses,
although for reasons related to time a single binning was used for the Planck analysis.

We developed three optimization tools: one that checks which bin boundary can be
removed with the smallest decrease of R (reducing the number of bins by one), one that
checks where a bin boundary can be added with the largest increase in R (increasing the
number of bins by one; the bin boundary is added in the exact center of an existing bin), and
one that tries moving all the bin boundaries by a given amount (relative to the size of the bin)
and tells for which bin this increases R the most (leaving the number of bins unchanged). For
all of them one can indicate which shapes and polarizations (meaning T and/or E) should
be taken into account. These three tools are then used iteratively to optimize the binning
used as starting point, until no more significant improvements are obtained (as defined by a
certain threshold in the change of R). The starting point is arbitrary. For example a simple
log-linear binning (with bin sizes increasing logarithmically at low `, up to a certain value
of `, after which the binning becomes linear) or a binning that has already been partially
optimized in another way can be used. The latter could for example be done using the
method described in [7], which can provide a good starting point. (That method produces
suboptimal binnings and can benefit significantly from the procedure described here.) While
this method can likely be optimized further, for the Planck analysis the binning obtained in
this way produces effectively optimal results.

5.3 Observational part

The observational component of the code consists of two parts: one to compute the cubic
part of the bispectrum of the map according to (2.7), and the other to compute the linear
correction according to (2.18). First the map is fully prepared, which can be as simple as
reading an existing map and doing the masking and filling in, or involve the creation of CMB
and noise realizations. It is then saved in the form of a`m’s for later use with the linear
correction term, or for reproducibility in the case of generated random realizations.

The maps are then filtered according to (2.6). This leads to some practical issues that
had to be resolved, since in principle we need to hold twice (T and E) 50–60 maps (one
for each bin) of Planck resolution (nside = 2048) in memory for this calculation. However
our computer system has a limit of 16 GB per processor, which makes this impossible. We
managed to save space in two ways. In the first place, while all the preprocessing of the
maps is done in double precision, the final filtered maps are only kept in single precision,
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which saves a factor two in memory. Tests have shown that this has no significant impact
on the final result for fNL. Secondly, it is unnecessary to use nside = 2048 precision for the
maps that contain only low-` bins. Hence the filtered maps of bins up to about ` = 800 are
produced at nside = 1024, which saves a factor of four in memory for those maps (the number
of pixels in the map is 12n2

side), as well as speeding up the final computation where three
maps have to be multiplied and summed (see (2.7)). Using the nested Healpix9 format, it is
easy to multiply maps of different nside together.

We have developed two different ways of computing the linear correction term of a map.
In the first method, which was used for the Planck analysis and the analyses for this paper,
each job treats one of the Gaussian maps (see (2.18)), which is preprocessed and filtered
as above, and the filtered maps are held in memory. Then a filtered map of only the first
bin of the observed map is created and all required sums of products involving that map
are computed. Next this process is repeated for the second bin of the observed map, etc.10

The final result of this job is a temporary file with a linear correction term computed with
just one Gaussian map. Once all jobs have finished (with the results for the other Gaussian
maps), the results are summed and averaged to obtain the final linear correction term for the
map. This whole process (preprocessing the map and computing the cubic and linear terms)
for a single map at Planck resolution for all T + E (including mixed) components takes a
few hours, which is quite fast compared to other bispectrum estimators. (Computing the
theoretical part is much faster and requires only a single job, so can easily be done on the
side.) With this method one can simply add more Gaussian maps to the linear correction
term at a later stage if required, and investigate its convergence as a function of the number
of Gaussian maps. However, this first method of computing the linear correction term scales
very badly with the number of observed maps. Since the object 〈Mp1,G

i1
Mp2,G
i2
〉 in (2.18) is

too large to compute directly and save to file, if one has a set of similar maps (for example
to compute error bars), the linear correction term has to be recomputed for each map in the
same way as above, making this a very slow process.

For this reason we recently developed another way to compute the linear correction
term. This second method is based on the observation that while the object 〈Mp1,G

i1
Mp2,G
i2
〉

(consisting of 6612 maps for a full T + E calculation in the case of 57 bins) is too large to
handle, saving it in the form of a`m’s is doable. Moreover, we make use of the fact that
when multiplying several masked maps together (all with the same mask), it is enough if
only one of the maps is masked. Hence if the observed map in (2.18) is properly masked,
the Gaussian maps can be left unmasked (since the Gaussian maps are based on simulations,
they are full-sky maps). This has the advantage that no filling-in needs to be performed on
these maps, which would otherwise be required before conversion to a`m’s, as explained in
section 4. By limiting the number of considered bins per job in such a way that both the
filtered maps for those bins and all the product maps involving those bins can be kept in
memory at the same time, one job can compute the full average for the considered bins by
treating one Gaussian map after the other. Only at the end are the final maps converted
to a`m format and written to disk. This precomputation for the linear correction term can
be run with a modest number of jobs (about 100) in a reasonable amount of time (less than

9http://healpix.sourceforge.net.
10In an earlier version of the code these filtered maps of the observed map, which are also produced during

the cubic calculation, were saved to disk at that time, and then read in here. However, the required I/O
turned out to make this actually slower than when these filtered maps are recreated on the fly, which also has
the advantage of using much less disk space.
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a day for 200 maps). Once the precomputation has finished, the linear correction for any
map can be quickly computed using (2.18). Each job reads in a number of product maps
(i.e. for certain values of i1 and i2; the number being determined by memory considerations),
and converts them back to pixel space. They are then multiplied with the filtered observed
maps as explained above for the first method. The main difference is that the results are now
for the full average of all the Gaussian maps, instead of for a single one. Another (small)
advantage of this second method is that at this step we only need to multiply two maps
together and not three. Once all jobs are finished, the temporary files containing results
for different i1-i2 bins are combined to get the full linear correction for the observed maps.
While this second method with precomputation is slower if one is only interested in a single
map, its much better scaling with the number of maps makes it by far the preferred method
when dealing with a set of maps, for example to compute error bars.

The final result of this part are two files for each map, one containing the binned cubic-
only bispectrum of the map and the second its linear correction, both containing all requested
polarization components. These can then be combined with the results from the theoretical
part to compute fNL according to (3.15), which takes less than a minute even when producing
convergence plots and dependence on ` as well, or be studied directly without the assumption
of a theoretical template, as discussed in section 6.

6 Smoothed binned bispectrum

The previous sections described how the binned bispectrum of a map can be analysed para-
metrically by computing the fNL parameters corresponding to a selection of theoretically
motivated templates. But one advantage of the binned bispectrum estimator is that the full
(binned) three-dimensional bispectrum is a direct output of the code, which can be studied
non-parametrically, thus searching for any deviations from Gaussianity even when no suitable
template is available. Here we describe the smoothing procedure that must first be applied to
the binned bispectrum in order to enhance the signal-to-noise of any possible non-Gaussian
features, which otherwise would remain hidden in the noise. The next section describes the
statistical analysis subsequently applied to this smoothed binned bispectrum to assess the
statistical significance of any non-Gaussian features appearing as extreme values.

We first normalize the binned data by dividing by the square root of the expected bin
variance, so that each bin triplet in the absence of a bispectral signal would have noise obeying
a normalized Gaussian distribution. Thus for the bin triplets for which there is data, we define

BTTTi1i2i3 =
BTTT
i1i2i3√

V TTTTTT
i1i2i3

, BEEEi1i2i3 =
BEEE
i1i2i3√

V EEEEEE
i1i2i3

,

BT2E
i1i2i3 =

BT2E
i1i2i3√

Var(BT2E)i1i2i3
, BTE2

i1i2i3 =
BTE2
i1i2i3√

Var(BTE2)i1i2i3
. (6.1)

For the mixed T and E components we analyzed only the combinations BT2E ≡
TTE + TET + ETT and BTE2 ≡ TEE + ETE + EET , with corresponding vari-
ance Var(BT2E) = Var(TTE) + Var(TET ) + Var(ETT ) + 2 Cov(TTE, TET ) + 2
Cov(TTE,ETT ) + 2 Cov(TET,ETT ), and similarly for Var(BTE2). This projection entails
a loss of information but allows the same analysis to be used as for TTT , as described below.
Results for the unsymmetrized mixed bispectra will be discussed in a future publication.
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As discussed in section 2.1, only bin triplets containing `’s that satisfy both the parity
condition and the triangle inequality contain data. However, among the bin triplets contain-
ing data, we noticed that some triplets systematically produced outliers. It turned out that
these bin triplets contained very few valid `-triplets [for example, the hypothetical bin triplet
([50, 100], [50, 100], [200, 300]) would contain only one valid `-triplet (100,100,200), since the
triangle inequality imposes that l3 ≤ l1 + l2]. While the theoretical variance calculation is
exact, the computation of the observed bispectrum using Healpix spherical harmonic trans-
forms contains some numerical inaccuracies, so that the bispectrum in points outside the
triangle inequality is not zero but contains leakage.11 For bin triplets like the above example
with many `-triplets violating the triangle inequality, a significant mismatch between the
theoretical and the actual standard deviation of the bispectrum in that bin is observed. The
obvious solution is to remove such bin triplets from the data. Moreover, the statistical anal-
ysis described in the next section assumes that bin triplets contain many valid `-triplets in
order for Gaussian statistics to apply to the noise from cosmic variance, which constitutes
another reason to exclude such triplets. After some experimentation, we adopted the selec-
tion criterion that the ratio of valid `-triplets to the ones satisfying only the parity condition
(but not the triangle inequality) in a bin triplet should be at least 1%, finding this a good
threshold for rejecting systematic outliers. The results are insensitive to the precise threshold
used. For the Planck binning with 57 bins (which is used for the results in this section and
the next), this criterion excluded 293 out of 13020 bin triplets.

If we were looking for a sharp bispectral feature of a linewidth narrow compared to the
binwidth, there would be no motivation to smooth. We would simply examine the statistical
significance of the extreme values of the renormalized binned bispectrum described above
taking into account the look elsewhere effect. However for broad features, as are likely to
arise from galactic foregrounds, smoothing increases statistical significance by averaging over
and thus diminishing the noise. One approach would be to use binning with a range of bin
widths, but this approach has the disadvantage that the statistical significance for detecting
a feature depends on how it is situated relative to the neighbouring bin boundaries. Instead
we rather smooth using a Gaussian kernel and renormalize so that in the absence of a signal
the single pixel distribution function is again a unit Gaussian. For a Gaussian kernel Kσbin

of width σbin, we have

Bp1p2p3,smoothed
i1i2i3

=
∑
i′1

∑
i′2

∑
i′3

Kσbin
(i1 − i′1, i2 − i′2, i3 − i′3)Bp1p2p3

i′1i
′
2i
′
3

(6.2)

where the Gaussian smoothing kernel

Kσbin
(∆i1,∆i2,∆i3) =

(
2πσbin

2
)−3/2

exp

[
−1

2

∆i1
2 + ∆i2

2 + ∆i3
2

σbin
2

]
(6.3)

is used. Numerically the kernel is applied in the Fourier domain.
Without boundaries this smoothing and renormalization procedure would be straight-

forward. However near the boundary the Gaussian smoothing kernel would extend into the
region where there is no data. To minimize boundary effects, we first extend the fundamental
domain (where i1 ≤ i2 ≤ i3) to the five identical domains obtained by permuting (i1, i2, i3)
and pad with zero data beyond the boundaries of this extended domain as well as for triplets

11This results because the pixelization breaks the spherical symmetry as must be the case with any pix-
elization of the sphere.
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inside the domain for which there is no data. The smoothing causes power to leak out into
the zero padded regions, and to correct for this leakage, we construct a mask consisting of
ones in the domain of definition and zeros outside. After smoothing the signal-to-noise bis-
pectrum B, we renormalize by dividing by the mask that has undergone the same smoothing
procedure. For the bin triplet statistic to be a Gaussian of unit variance, we generate 1000
Monte Carlo realizations going through the same procedure and compute the variance, with
which we divide our smoothed renormalized bispectrum.

The result using different smoothing lengths is illustrated in figure 6 as two-dimensional
slices showing B as a function of `1 and `2 for a fixed bin in `3. As a further illustration, to
show what certain known non-Gaussian features look like in this representation, we present in
appendix A slices of the smoothed theoretical template bispectra from sections 3.1.1 and 3.1.2.
With the color scale used in figure 6, both dark red and dark blue represent extreme values
with small p values if Gaussianity is assumed, and thus suggest the presence of statistically
significant bispectral non-Gaussianity. A correct analysis of the significance would also take
into account the look elsewhere effect — that is, that the small probability to exceed, calcu-
lated for a fixed bin, is too small because it does not reflect that an improbable value could
have occured in any of a number of bins. The analysis of this issue is complicated by the corre-
lations between the bins that result from the smoothing, an issue analyzed in the next section.

7 Statistical analysis

This section addresses how to assess the statistical significance of possible bispectral non-
Gaussianity in the binned bispectrum that has been smoothed according to the procedure
described in the previous section. Even in the case of a Gaussian sky, where before the
smoothing over bins has been applied the single-bin distribution function is a normalized
Gaussian for which the values in distinct bins are statistically independent, after this smooth-
ing procedure fluctuations in neighboring bins become correlated, complicating the analysis.
We consider here how to deal with this complication.

In the absence of smoothing, we face the following statistical problem. We have a binned
bispectrum that has been rescaled so that we have N bins and the bispectrum value in each
bin xi, where i = 1, . . . , N , has a probability distribution function well approximated by a
normalized Gaussian distribution. Moreover, values in different bins are almost statistically
independent. The quadratic correlation vanishes, but some of the higher order joint cor-
relations do not precisely vanish, a feature that we shall neglect here. The corrections to
Gaussianity and to statistical independence are suppressed when ` is large and when there
are many `-triplets containing data in a bin. Thus we have the distribution function

p(x1, . . . , xN ) = (2π)−N/2 exp

[
−1

2

N∑
i=1

xi
2

]
, (7.1)

and since we are interested in extreme values, we define two new derived statistics

Xmin = min(x1, . . . , xN ); Xmax = max(x1, . . . , xN ), (7.2)

and accordingly define the p-values

pmin(X) = P (Xmin < X); pmax(X) = P (Xmax > X) (7.3)
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Figure 6. Effect of different smoothing lengths on the bispectrum of one of the Gaussian maps
from table 2 with galactic and point source masks and anisotropic noise. From left to right and top
to bottom are shown: no smoothing, smoothing using σbin = 0.5, 1, 1.5, 2, 2.5 and 3. The slices
correspond to `3 ∈ [1291, 1345].
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where Xmin and Xmax are the derived random variables defined above. If either of these
p-values are extremely small, then we have evidence of bispectral non-Gaussianity directly
in the unsmoothed binned bispectrum, and this p-value can be converted into a σ for the
normal distribution using the inverse error function as is customary.

For this simple unsmoothed case it is not hard to give the probability distribution func-
tion for the extreme value statistics Xmin and Xmax. Given the (complementary) cumulative
distribution function for the normal distribution (integrating from right to left)

Φ(x) =
1√
2π

∫ +∞

x
dt exp

[
−1

2
t2
]
, (7.4)

the analogous distribution for the maximum extreme value for N variates is given by

Φmax(Xmax;N) = 1−
(

1− Φ(Xmax)
)N

(7.5)

and we may straightforwardly obtain an analogous expression for the case of the minimum
value. (Below we shall only give results for the case of the maximum.) For X � 1 we obtain
an approximation to Φmax(Xmax;N) by inserting the following expression [42]

ln
[
Φ(X)

]
≈ −

[
X2

2
+ ln(X) +

1

2
ln(2π)

]
(7.6)

into (7.5).
When we consider extreme values of multivariate Gaussian distributions with correla-

tions, there is, as far as we know, no way of obtaining an analytic result for the extreme
value distribution for Φmax(Xmax). After the smoothing described in the previous section is
applied, the probability distribution defined in (7.1) must be replaced with

p(x) = (2π)−N/2 exp

[
−1

2
xTC x

]
(7.7)

where the correlation matrix C has all ones on the diagonal, but also a lot of positive off-
diagonal elements as the result of the smoothing process, rather than all zeros away from the
diagonal. It is these off-diagonal elements that prevent us from solving analytically for the
extreme value statistic probability distribution function.

Instead we postulate an Ansatz to approximate the cumulative distribution function
(CDF) of the extreme value statistic Φmax, which has one adjustable parameter Neff , the
effective number of independent bins, which will be smaller than the actual number of bins
N as the result of the smoothing. The Ansatz states that the CDF given in (7.5) [and
approximated using (7.6)] holds where N has been replaced with Neff . For a given level of
smoothing, we fit Neff to the tail of the CDF, which has been determined empirically by
Monte Carlo simulations. We then assess the quality of the approximation, in particular in
the tail of the distribution where X is very large, which is the range of values of particular
interest here. It should be stressed that we do not need a good approximation to the entire
CDF. It suffices to have an approximation that works well asymptotically, in the extreme
tail of the distribution where p-values cannot feasibly be obtained by Monte Carlo methods.
Thus the Ansatz serves as an asymptotic approximation for the tail of the distribution.

To demonstrate the validity of our Ansatz in a simplified context very similar to the case
of interest, we generate a three-dimensional periodic cubic lattice filled with 643 independent
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Figure 7. Fitting the extreme values of the smoothed bispectrum. The horizontal axis gives the
p-value and the vertical axis the maximum bin deviation in number of σ. The solid curves show
the CDFs for the smoothed 643 cubes (figure on the left) for σsmoothing = 2, 5, and 10 (respectively
from top to bottom blue, green and red) and for the more realistic situation (figure on the right) for
σsmoothing = 1, 2, and 3 as described in the main text. We show only the 5% most extreme values,
since we are interested in the extreme tail of the distribution. The dashed curves show non-linear least
square fits to these curves using the Ansatz where a distribution with a smaller number Neff degrees
of freedom is used to approximate the distribution with correlations between bins. Here (from top to
bottom in the figure on the left) Neff = 61900, 3709, and 351 are used to represent the 643 = 2.6×105

degrees of freedom with various degrees of correlation as the result of the smoothing (see the main
text for the values of the figure on the right). The fit provides a good approximation, especially at
the small p-values that are of the greatest interest for this application.

realizations of a normal Gaussian random variable. This cube is then smoothed using a
Gaussian smoothing kernel with widths σsmoothing = 2, 5, and 10. The smoothed cube is
rescaled so that the variable at each lattice point has unit variance. For each smoothing
width, the extreme value statistic (maximum) is taken for 106 realizations and only the
greatest 5% of the extreme values are retained. Figure 7 (left) shows the empirical CDF for
the extreme values, which are compared to the functional form of the Ansatz for the best-fit
values of Neff according to the approximation given in (7.6).

The above discussion demonstrates that an extreme value distribution for Neff indepen-
dent Gaussian variates can be used to approximate the distribution for Nbin variates with
correlations due to smoothing. However, the geometry of the allowed bins is complicated and
must be taken into account. Thus simulations must be carried out to determine Neff for a
given smoothing scale in the more realistic case of the actual bins used for the bispectrum
analysis. We show that the Ansatz is still a good approximation also in this case in figure 7
(right). We generate random numbers in the domain of definition of the binned bispectrum,
and smooth it as for the real data. Restricting to those bin triplets that contain enough
valid data (see the discussion in section 6), these simulations are a good approximation to a
Gaussian CMB map’s bispectrum.

We now illustrate this method by applying it to a realistic situation. We add a point
source map to a simulated Gaussian CMB map with anisotropic noise, generated as described
in the caption of table 2. The point source simulation was created with the Planck Sky Model,
at 143 GHz, with a beam with a FWHM of 5 arcmin, and contains faint infrared sources,
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Smoothing Before After

length template cleaning template cleaning

(σ) Xmax p-value Xmax p-value

1 33.4 e−553 5.1 1.5× 10−3

2 51.2 e−1308 3.6 0.15

3 59.2 e−1751 4.4 3.3× 10−3

Table 3. Maximum bin values and associated p-values for the bispectrum of a simulated Gaussian
CMB + point sources map before and after cleaning of the point source contribution, for various
values of the smoothing length. See main text for a more detailed explanation.

as described in [43], and faint radio sources with the improved parameters described in [44].
The galactic and point source masks were applied as described in section 4.

The binned bispectrum of this map was evaluated applying the linear correction and
the filling in procedure, and the fNL’s were determined individually for each of the templates
described in section 3.1.1. The unclustered point source contribution was detected with high
significance in this contaminated map: bps = (64.8±0.8)×10−29. This signal is much stronger
than the one detected in the cleaned Planck maps, but of the same order of magnitude as
the forecast at 217 GHz (see [5]). No statistically significant detection of a nonzero fNL

was obtained for the other templates, with the exception of the CIB template. But the CIB
bispectrum has significant overlap with the unclustered point source bispectrum (see table 1),
so this result is not surprising. The nonzero result for bCIB disappears in a joint analysis of
the unclustered point source and CIB templates. Finally we smooth the bispectrum with a
few different values of the smoothing length, namely σsmoothing = 1, 2, 3.

Apart from studying the contaminated bispectrum, we can also try to remove the esti-
mated point source contribution from the measured binned bispectrum, simply by subtracting
the corresponding smoothed template (3.6) with the measured amplitude. We can then check
if there are remaining non-Gaussian features in this cleaned bispectrum using the method
described above. Table 3 gives the maximum bin values for the bispectrum before and after
the template cleaning is applied. The minima are not given because the inclusion of the
point sources tends to gives a positive bispectral contribution. The p-values were calculated
using simulations of 106 Gaussian realizations and fitting the CDF for Neff to the empirical
distribution. We found that the smoothing lengths σsmoothing = 1, 2, and 3 correspond to
Neff = 8664, 1948, and 588 respectively. We see that a highly statistically significant detection
is found using the above procedure on the uncleaned bispectrum. We also observe that the
template cleaning procedure is successful; however, some detectable unsubtracted residual
remains. This residual, however, has little overlap with the known theoretically motivated
primordial templates.

8 Conclusions

This paper gave a detailed description of the binned bispectrum estimator, which was one
of the three estimators used for the official 2013 and 2015 Planck analyses. The estimator
determines the full three-dimensional bispectrum of a map, binned in harmonic space. This
binned bispectrum can then be combined with a library of theoretical bispectrum templates to
determine the so-called fNL parameters. This aspect of the binned bispectrum estimator was
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first described in [7], but many new developements took place since that paper was published
and are detailed here. These include the treatment of the masked sky using diffusive filling
in, a method which was subsequently adopted by the other bispectrum estimators, and
the generalization to include polarization. The binned bispectrum estimator code is fast,
has a convenient modular structure, separability of the templates is not required, and the
dependence of fNL on ` is obtained automatically, thus providing additional information.

Moreover, the binned bispectrum of the map can also be used directly for non-parametric
(blind) non-Gaussianity searches. This is useful to investigate the non-Gaussianity of those
foregrounds for which there is no theoretically motivated template, or to check for any non-
Gaussian primordial signal in a cleaned map beyond the standard templates. For this purpose
the binned bispectrum is first smoothed with a Gaussian kernel to increase the statistical
significance of any broad features and make them stand out above the noise. The smoothing
complicates the statistical analysis of the significance of non-Gaussian features by introducing
correlations between neighbouring bins. In this paper we described how to address this
complication using approximated extreme value statistics. We illustrated this procedure on
the bispectrum of a realistic map that contains a Gaussian CMB and radio point sources,
both before and after cleaning the bispectrum with the point source template.

Further applications of the binned bispectrum estimator can be found in the Planck
analyses of 2013 [4] and 2015 [5]. In those papers we determined the fNL values for various
theoretical templates, and showed the full smoothed binned bispectrum of the cleaned Planck
sky map. A statistical analysis of the Planck smoothed bispectrum according to the method
described here will be given in the next Planck release. Applications of the binned bispectrum
estimator to foreground maps in order to determine their smoothed bispectra and characterize
their non-Gaussianities are planned for a future paper. These bispectra can then be used as
templates in a parametric estimation to investigate if contamination remains in cleaned maps.

To conclude we add some comments regarding the possibility of extending our binned
estimator methodology to the trispectrum. The reduced trispectrum depends on five scalar
variables, which we can represent in the following way. First there are the lengths of the sides
of the quadrilateral `1, `2, `3, and `4. Since the quadrilateral must close, we can write (in
the flat-sky approximation for simplicity): `1 + `2 + `3 + `4 = 0. But unlike in the case of a
triangle, for which the lengths of the sides create a rigid polygon with all angles between the
sides determined, for the quadrilateral an ‘internal brace’ is needed to render it rigid. We must
additionally specify one more parameter, which we could for example take to be `12 = |`1+`2|,
and now the quadrilateral would be completely rigid, at least in the two-dimensional context
that is of interest here. To generalize the technique using filtered maps developed in this
paper for the bispectrum to the trispectrum, we cannot simply multiply four filtered maps
and take the average. We must, with the parameterization used above for the trispectrum,
after taking the products of the filtered `1 and `2 maps, apply the `12 filter before multiplying
by the filtered `3 and `4 maps, and then take the average in the final step. In other words,
writing F1 to indicate filtering with respect to the `1 bin, etc., and M for the CMB map:

Trispectrumi1i2i3i4i12
=

∫
dΩ̂F12(F1(M)F2(M))F3(M)F4(M). (8.1)

This extension will be explored in a future paper.
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A Two-dimensional sections of the smoothed theoretical bispectra

To illustrate the smoothed signal-to-noise bispectrum B that we introduced in section 6 and to
show what certain known types of non-Gaussianity look like, we present here slices of the theo-
retical template bispectra that we discussed in sections 3.1.1 and 3.1.2. In figure 8 we show the
normalized smoothed templates (with smoothing length σbin = 2) for six theoretical shapes:
local, equilateral, orthogonal, lensing-ISW, unclustered point sources, and CIB (clustered)
point sources. All are shown both for TTT and EEE, except the point source templates
which are TTT -only, and for two different slices: `3 ∈ [700, 741] and `3 ∈ [1291, 1345]. The
templates have been normalized with the expected standard deviation assuming the standard
Planck cosmology and the same noise and beam properties as in section 4. Moreover, the tem-
plates have been multiplied by such values of fNL as would lead to a 30σ detection given those
noise and beam properties. Obviously that means different values of fNL for each template as
they all have different error bars. Explicitly these error bars σfNL

are for TTT : local 4.7, equi-
lateral 61, orthogonal 32, lensing-ISW 0.21, unclustered point sources 7.0×10−30, CIB point
sources 3.6× 10−28; and for EEE: local 24, equilateral 178, orthogonal 95, lensing-ISW 3.0.

In the three primordial templates, we see the bispectral acoustic oscillations. For the
local shape, as expected, the signal is peaked in the squeezed limit (i.e., for a small `1 and a
large `2 and `3). The equilateral shape, on the other hand, is peaked for configurations where
all `’s are equal, although that is difficult to see in these figures since they show just one
bin in `3 and the value is also modulated by the acoustic oscillations. The orthogonal shape
explores configurations in the equilateral and flattened (`1 + `2 ≈ `3 with `1 ≈ `2) domains,
the latter being visible in the figures, although again modulated by the acoustic oscillations.
We also see its anti-correlation with the local shape (see table 1). The lensing-ISW signal is
highly concentrated in the squeezed limit, and hence has a large correlation with the local
shape. The point source templates are featureless and the statistical weight is concentrated
for configurations where all three `’s are large.

Figures 9 and 10 show the isocurvature templates discussed in section 3.1.2. Considering
only the adiabatic mode together with one isocurvature mode (for which we take consecutively
cold dark matter density isocurvature, neutrino density isocurvature, and neutrino velocity
isocurvature) gives six independent bispectrum templates. These are denoted respectively
by aaa, aai, aii, iaa, iai, and iii with a for adiabatic and i for isocurvature (see section 3.1.2
for more details). Since the pure adiabatic aaa template is just the standard local template
from figure 8, it is not shown here again. The other five templates correspond to one row
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Figure 8. Smoothed theoretical templates for (from top to bottom) the local, equilateral, orthogonal,
lensing-ISW, unclustered point sources, and CIB (clustered) point sources shapes, as defined in sec-
tion 3.1.1. The templates are normalized by the expected standard deviation of the bispectrum (using
the beam and noise characteristics of section 4), so that a dimensionless signal-to-noise bispectrum
results. Moreover, they have all been multiplied by such fNL values as would give a 30σ detection.
The first two columns are for TTT , respectively for ` ∈ [700, 741] and ` ∈ [1291, 1345], while the two
last columns show the same ` ranges, but for EEE. Except for the last line, which contains both
point source templates for TTT only.
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Figure 9. Smoothed theoretical isocurvature bispectra for `3 ∈ [700, 741]. The first row presents the
5 different TTT bispectra one can have when considering just the adiabatic and the cold dark matter
density isocurvature mode, excluding the purely adiabatic bispectrum. The second and third row are
the same, but taking instead the neutrino density and neutrino velocity isocurvature mode, respec-
tively. Finally the last three rows are similar to the first three, but for EEE. The bispectra, all with
fNL = 1, have been normalized by the expected standard deviation assuming the beam and noise char-
acteristics of section 4, so that a dimensionless signal-to-noise bispectrum results. The colour scale is
logarithmic (with the white in the middle corresponding to values smaller than 10−9 in absolute value).
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Figure 10. Similar to figure 9, but for `3 ∈ [1291, 1345].
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in the figures. The different rows then correspond to the different isocurvature modes and
different polarization components, as explained in the captions. The difference between the
two figures is the choice of bin for `3.

Since we want to show the relative size of these templates, we use a normalization
different from the first figure. The smoothed bispectra are still normalized with the same
expected standard deviation as before, but they all have fNL = 1. Hence their signal-to-noise
ratios are all very small and vary a lot from one template to another, so we have chosen a
logarithmic colour scale over a large range. Since the isocurvature templates are all based on
the local shape, they are peaked in the squeezed limit. The cold dark matter isocurvature
case falls faster as a function of ` than the others (its power spectrum is proportional to `−4

instead of `−2). The colour scale was chosen to make apparent which regions are positive
and which are negative. We see that, as is the case for the power spectrum, the acoustic
oscillations are not in phase for different isocurvature sources.

References

[1] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary
models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

[2] V. Acquaviva, N. Bartolo, S. Matarrese and A. Riotto, Second order cosmological perturbations
from inflation, Nucl. Phys. B 667 (2003) 119 [astro-ph/0209156] [INSPIRE].

[3] M. Liguori, E. Sefusatti, J.R. Fergusson and E.P.S. Shellard, Primordial non-Gaussianity and
bispectrum measurements in the cosmic microwave background and large-scale structure, Adv.
Astron. 2010 (2010) 980523 [arXiv:1001.4707] [INSPIRE].

[4] Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXIV. Constraints on
primordial non-Gaussianity, Astron. Astrophys. 571 (2014) A24 [arXiv:1303.5084] [INSPIRE].

[5] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial
non-Gaussianity, arXiv:1502.01592 [INSPIRE].

[6] X.-C. Luo, The angular bispectrum of the cosmic microwave background, Astrophys. J. 427
(1994) L71 [astro-ph/9312004] [INSPIRE].

[7] M. Bucher, B. Van Tent and C.S. Carvalho, Detecting bispectral acoustic oscillations from
inflation using a new flexible estimator, Mon. Not. Roy. Astron. Soc. 407 (2010) 2193
[arXiv:0911.1642] [INSPIRE].

[8] B. Casaponsa, R.B. Barreiro, E. Mart́ınez-González, A. Curto, M. Bridges and M.P. Hobson,
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