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Abstract

We examine implicit representations of parametric or point cloud models, based on interpo-
lation matrices, which are not sensitive to base points. We show how interpolation matrices can
be used for ray shooting of a parametric ray with a surface patch, including the case of high-
multiplicity intersections. Most matrix operations are executed during pre-processing since they
solely depend on the surface. For a given ray, the bottleneck is equation solving. Our Maple code
handles bicubic patches in < 1 sec, though numerical issues might arise. Our second contribu-
tion is to extend the method to parametric space curves and, generally, to codimension > 1, by
computing the equations of (hyper)surfaces intersecting precisely at the given object. By means
of Chow forms, we propose a new, practical, randomized algorithm that always produces cor-
rect output but possibly with a non-minimal number of surfaces. For space curves, we obtain 3
surfaces whose polynomials are of near-optimal degree; in this case, computation reduces to a
Sylvester resultant. We illustrate our algorithm through a series of examples and compare our
Maple prototype with other methods implemented in Maple i.e., Groebner basis and implicit ma-
trix representations. Our Maple prototype is not faster but yields fewer equations and seems more
robust than Maple’s implicitize; it is also comparable with the other methods for degrees up
to 6.

Key words: Matrix representation; sparse resultant; Chow form; ray shooting; randomized
algorithm; implicitization; space curve; Maple implementation

1 Introduction

In manipulating geometric objects, it is essential to possess robust algorithms for changing represen-
tation. This paper considers three fundamental representations, namely implicit, parametric (possibly
with base points), and point clouds. We offer two results on algorithms operating on the latter two
representations. Our algorithms construct implicit equations or implicit matrix representations of
parametric curves and (hyper)surfaces by means of some type of interpolation through points. In
general, approaches to implicitization include resultants, Grobner bases, moving lines and surfaces,
and interpolation techniques.

Implicit matrix representations are quite robust, since they do not require developing the implicit
equation; instead, they reduce geometric operations on the object to matrix algebra, e.g. [EKKI15]
BLB12]. Our matrix representation uses interpolation matrices. The method has been developed
for plane curves, and (hyper)surfaces. The columns of the matrix are indexed by a superset of the



implicit monomials, i.e., those in the implicit polynomial with non-zero coefficient [EKKL13]]. This
monomial set is determined quite tightly for parametric models, by means of the sparse resultant of
the parametric polynomials, thus exploiting the sparseness of the parametric and implicit polynomi-
als. When the object is given as a point cloud, this superset is taken to be all monomials with total
degree < &, where 6 is an educated guess of the total degree of the implicit polynomial.

Our contribution is twofold. First, we reduce certain geometric operations, most notably ray
shooting, to univariate solving, after preprocessing by means of matrix operations. To check whether
the computed intersections of the ray with the implicit surface lie on the given parametric patch,
we employ inversion by means of bivariate solving. Our method is not sensitive to intersections
of high multiplicity, nor to surfaces with base points, and it can be applied to objects given either
parametrically or as a point cloud. But it exhibits numerical issues when the interpolation matrix
dimension is large, say of a few hundreds. On the other hand, the straightforward method of solving
the system by equating the parametric expressions to the ray coordinates typically exhibits robustness
issues, especially at the presence of base points. We present experiments based on an open-source,
Maple implementation.

Second, we extend the method to varieties of codimension higher than 1. Given a variety in
parametric form, and starting with the powerful and classic theory of Chow forms, which generalizes
resultant theory, we design an original, practical algorithm that uses randomization in order to com-
pute implicit hypersurfaces containing the variety. The question is reduced to computing a (sparse)
resultant. For space curves in 3D-space, our method yields a small number of implicit polynomials
defining the curve set-theoretically. Their degree is near to the optimal degree and the algorithm is
significantly simpler and is expected to be much faster than computing the optimal-degree polyno-
mials. Self-intersections do not affect the degree of the output.

Figure 1: Left: The space curve of Exam. [3| Right: The two implicit surfaces defining the curve.

The rest of the paper is organized as follows: Sec.[2] overviews previous work. Sec. 3| examines
ray shooting when the surface is represented by interpolation matrices. Sec. 4] employs the Chow
form to handle higher codimension varieties. We conclude with future work and open questions.

2 Previous work

A direct method to reduce implicitization to linear algebra is to construct a square matrix M, indexed
by all possible monomials in the implicit equation (columns) and different values (rows) at which
all monomials get evaluated. The vector of coefficients of the implicit equation is in the kernel of
M, even in the presence of base points. This idea has been extensively used [CGKWOO0, [DokO1}
MMO02, BI§9]. In [EKKL13,[EKK15], sparse elimination theory is employed to predict the implicit
monomials and build the interpolation matrix.

Resultants, and their matrix formulae, have been used to express the implicit surface equation,
e.g., in [MC92], under the assumption of no base points. This technique reduces ray shooting (and



surface-surface intersection) to substituting the parameterization of one object into the resultant ma-
trix, then solving the resulting univariate polynomial.

Our method, unlike previous methods, works also for objects defined by point clouds. Moreover,
the interpolation matrices are mostly numeric, except for one symbolic row that captures the second
object, namely the ray or the second surface. This allows for several preprocessing operations to be
executed numerically. In [EKK15], Membership and Sidedness predicates are expressed in terms of
operations on the interpolation matrix. This approach is extended to ray shooting here.

A modern method for representing implicit equations by matrices is based on the theory of syzy-
gies, e.g., [SC95! [Bus14], and handles base points. It yields matrices whose entries are linear polyno-
mials in the implicit variables and they indirectly represent implicit objects: their rank drops exactly
on the curve or surface. They allow for geometric operations, such as surface-surface intersection
[BLB12] and, more recently, ray shooting [SBAD16]], to be executed by linear algebra operations.
Their advantage is that the matrices are much smaller than interpolation matrices, and allow for
inversion by solving an eigenproblem on these matrices.

Chow forms have been studied in computational algebra, in particular for varieties of codi-
mension > 2, since they provide a method to describe the variety by a single polynomial, e.g.
[GKZ94| IDS9S]]. Given a d-dimensional irreducible variety V in n-dimensional space, and d + 1
linear forms H; on V, the Chow form Ry of V is a polynomial whose variables are the coefficients of
the linear forms and that vanishes whenever the linear forms vanish on V.

For example, the Chow form of a space curve in projective 3D-space is a polynomial in the
indeterminates ug, 1y, us,u3,vp, vi,v2,v3 that vanishes whenever the planes

Hy = upxg + uyx1 + upxpy +usxz =0,
(D

H; = voxg +vixi +vaxp +vixs =0,

intersect on the curve.

There are many ways to describe Ry. The most common is by using the maximal minors of the
(d+1) x (n+ 1) matrix whose rows are the normals to the hyperplanes H;, see Sec. These are
known as Pliicker coordinates or brackets and are the variables of Ry. Equivalently, the dual Pliicker
coordinates or dual brackets can be used; these are the maximal minors of a (n —d) x (n+ 1) matrix
whose rows are n — d points that span the intersection L of the hyperplanes H;. There are algorithms
to recover the implicit or affine equations of V from Ry [GKZ94, Stu08]]. Here we adopt a practical
method that avoids conversion but may yield a multiple of Ry. Our algorithm requires a parametric
representation of V.

2.1 Interpolation matrices

This section describes implicitization by an interpolation matrix M for a plane curve or a (hy-
per)surface given either in parametric form, or, as a point cloud. If the input object is affinely
parameterized by rational functions

xi:ﬁ(t),i:1,...,n,t:(tl,...,tn,l) 2)

then it is possible to predict the implicit monomials. This set is included in the predicted (implicit)
polytope computed by software ResPol[] [EEKP14]]. If the input is a point cloud, we consider a
coarse estimation of the monomial set by guessing the total degree of the variety and taking all the
monomials of that degree or lower.

The set S of monomials is used to construct a numerical matrix M, expressing a linear system
whose unknowns are the coefficients ¢; of the monomials with exponents in § in the implicit poly-
nomial, as discussed above. To obtain the linear system in the ¢; we substitute x; by its rational

Ihttp://sourceforge.net/projects/respol
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parametric expression x; = f;(¢) into equation Zl.S:ll cix =0, x%:=x{"---xn and evaluate the
parameters ¢ at generic points (randomized in practice) 7, € C*~!, k=1,...,u, u >|S|, avoiding
values that make the denominators of the parametric expressions close to 0.

Letting m; = m;(t) denote the monomial x% after substituting x; by its parametric expression in

(@), and m;|;~, its evaluation at t = 7, we end up with a matrix M of the form:

ml‘t:n m\S\‘l:ﬂ
M= . | 3)
Mmili=g, - Mmgli=g,

Typically u = |S| for performing exact kernel computation, and p = 2|S| for approximate numeric
computation. When constructing matrix M it is assumed that the parametric hypersurface is sampled
sufficiently generically by evaluating the parametric expressions at random points 7, € C"*~ !,

Let us recall some further properties. Let M’ be the (|S| — 1) x |S| numeric matrix obtained by
evaluating the monomials S at |S| — 1 points 7, k =1...,|S| — 1. We obtain the |S| x |S| matrix M (x),
which is numeric except for its last row, by appending the row of monomials S to matrix M’

M) = [;‘f )] . @

Notice that matrices M’, M and M(q), for g a point lying on the hypersurface have the same
kernel of corank r. Matrix M (x) has an important property:

Lemma 1. [EKKI5, Lem.7] Assuming M’ is of full rank, then det M (x) equals the implicit polyno-
mial p(x) up to a constant.

3 Ray shooting

This section examines the geometric operation of ray shooting implemented by means of linear al-
gebra so as to avoid computation of the implicit equation. Our main motivation is to complete the
properties of interpolation matrices used in expressing the implicit form of objects initially given
either by a parameterization or a point cloud. Our experimental results are preliminary but show that
our approach can be competitive to well-established methods possessing optimized implementations.

In particular, the representation by interpolation matrices reduces ray shooting at a surface patch
to operations on the interpolation matrix and univariate equation solving. An analogous approach ap-
plies to computing surface-surface intersections by determining the implicit curve of the intersection
in the plane of the parameters of one surface, discussed in Sec. [5]

Given a parameterization as in (2)), the (hyper)surface is represented by an interpolation matrix
of the form (). The standard case of surfaces is n = 3. We substitute the parametric ray into
the monomials S(x) of the surface’s implicit support. This defines the last row of the interpolation
matrix. Let the ray be given by

xi=rip),i=1,...,n, p>0,

where the r; € R[p] are linear polynomials in p. The ray may lie in arbitrary dimension but again,
the standard 3D case is n = 3. Starting with the square matrix M in expression (), we substitute x;
by r;(p) in the monomials of the last row S(x):

M



where S(p) is a row vector of monomials in p. The intersection points correspond to the real roots
of polynomial equation p(p) = detM(p) = 0, which expresses the implicit equation by Lem.
evaluated at x; = r;(p). Of course, if the ray is totally included in the (hyper)surface, then p is
identically 0. In the following, we assume that it is not the case. Lastly, our algorithm uses inversion
of the parameterization to check whether the intersection points lie on the patch.

The structure of M(p) allows us to perform numeric operations so as to obtain another matrix
with same determinant, that is easier to compute. Our goal is to use some preprocessing time, without
knowledge of the ray, so as to accelerate the actual ray shooting computation. This preprocessing can
be considered as a better representation of the surface, amenable to geometric operations. We apply
a PLU-decomposition or QR-decomposition on M’.

3.1 Computation

It shall be easier to discuss matrix operations on the transpose matrices, namely M? and (M’),
although mathematically equivalent with operations on the original matrices. Below, we employ
the PLU-decomposition, but we have also experimented with the QR-decomposition with analogous
results.

First, consider the standard PLU-decomposition on |S| x | S| — 1 matrix (M")T:

(M) =PLU,

where P,L are square |S| X |S| permutation and lower-triangular matrices, respectively, where L has
a unit diagonal, and U is a numeric rectangular |S| x |S| — 1 upper triangular matrix, with the last
row equal to zero. We use the above decomposition to derive an analogous decomposition of M(p).

Clearly, P~! = PT, hence we can write square |S| x |S| matrix L~'PTM(p)T as follows:
L7'PT (M) [ S(p)"] = [U|L™'P"S(p)"], (6)
where [-|-] indicates concatenation of matrices, and S(p) is a row vector, hence the right-hand side

is clearly a square |S| x |S| matrix.

Now, detM(p) = det(L~'P"M(p)T) because det L = 1. To compute the determinant, we use the
right-hand side of equation (6)), which is a square upper triangular matrix. Its diagonal is the diagonal
of U with one last element equal to the last element of column L~'PTS(p)”. Since U is numeric,
the determinant equals, up to a constant nonzero factor, the last element on the column L' PTS(p)T.
Hence, it suffices to store the last row of L~!'PT, which depends on the surface, and compute its inner
product with vector S(p)”, for any given ray. This discussion establishes the following:

Lemma 2. Given M(p)T = [(M')T | S(p)] as defined above, consider the PLU-decomposition (M")T =
PLU, which can be computed at preprocessing, and does not require knowledge of the particular ray.

It is possible to compute the determinant detM(p ), up to a nonzero scalar factor, as the inner product

of the last row of L~!PT multiplied by column vector S(p)?. An analogous result follows if one

computes the QR-decomposition (M")T = QOR.

Given p(p) = detM(p), we employ any state-of-the-art real solver to approximate all positive
real roots py. For every root p; > 0, for some j, we obtain the intersection point x; = r;(p;) in
implicit space. An alternative is to use solvers that only require values of the polynomial p(p) and,
eventually, its derivative p/(p), such as the Newton-Raphson method. We have experimented with
this method and the results are comparable in terms of numerical accuracy and speed.

The last step consists in computing the corresponding vector (1,2, ...,t,_1) € R"~! that maps
to this implicit point, by inverting the parameterization. Hence we check whether the point lies on
the patch of interest. Assuming a normal and proper parameterization, there is a unique solution
(t1,t2,...,tp—1) € R""! such that ri(pj) = fi(t1,12,. .. ,t,—1). Since we are dealing with patches here,



we may not want to consider the missing points of the parameterization if we do not have a nor-
mal (surjective) parameterization. In that situation, the normal parameterization hypothesis can be
forgotten.

There are several ways to solve the inversion problem, including methods for solving the overcon-
strained system r;(p;) = fi(t),i=1,...,nforevery p;. Alternatively, we have used real solving meth-
ods applied to the following well-constrained system of n polynomialsint,...,t,—1: r;{(p;) — fi(t) =
0, fori=1,...,n. Then, we substitute all real roots into the last polynomial r,(p;) — f(¢), and keep
the root that satisfies it, or best satisfies it if approximate numerical computation is involved. This
approach works satisfactorily for n = 3 in our experiments.

3.2 Asymptotic and practical complexity

Let us first consider the asymptotic bit complexity, if we omit preprocessing. Let D be the maximum
total degree of any monomial in S, hence polynomial p(p) has degree D. Real solving of this poly-
nomial costs O*(D?|S|), e.g. [TE08]. Inversion is then required to check which solutions belong to
the relevant patch; it is reduced to bivariate solving and evaluation of the polynomials r;(p;) — fi(f)
defined by the parametric equations, for every real root p; of p(p) = 0. If these polynomials have
total degree & in s, and bitsize 7, then each system is solved in bit complexity 0*(8'? + §'072), see
e.g. [DET09], and this is repeated for each of the O(D) roots p;. It turns out that this is the bottleneck
in practice, which can be explained by the analysis since D is only a few times larger than d. For
example, the bicubic surface has D = 18 and 0 = 6.

We now experiment with code developed on top of the basic method E], running Maple 14 on a
laptop with a 3 GHz Intel Core i5 processor. Runtimes are averaged over at least 3 runs.

Example 1. The standard benchmark of a bicubic surface has an implicit equation of total degree 18,
with a support of 715 monomials. Here, the predicted support is optimal. However, matrix size
makes computations such as PLU- or QR-decompositions over @ infeasible. We use floating-point
numbers, but then numerical error becomes significant. A concrete ray we experimented with was
x1=p—13, xp =124 p, x3 =3 —5p. If we omit preprocessing, the total runtime is up to 0.12 sec,
and the bottleneck is inversion.

Our method may be juxtaposed to the direct approach of solving the 3 x 3 system f;(1,2) = ri(p),
i =1,2,3, which takes about 0.02 sec on Maple and is substantially more accurate numerically, on
this example. But numerical issues arise for the direct approach when the parameterization has base
points. Both direct and our method handle intersection points with high multiplicity easily.

Let us also compare with the matrix representation based on syzygies and employed for ray
shooting by [SBAD16]. This method is very robust and can handle bicubic surfaces with preprocess-
ing and ray-shooting runtimes both below 1 msec, using a C++ implementation and state-of-the-art
libraries such as LAPACK and Eigen. The second runtime may increase in the case of multiple inter-
section points, but base points pose no limitation. We have focused on methods potentially offering
exact solutions if given enough precision; hence, we have not compared to methods relying on a tri-
angular mesh since they are completely different and may need to refine candidate solutions against
the parametric patch.

To avoid numerical issues, our approach may employ exact rational computation for the PLU-
or QR-decompositions. This is feasible with medium-size inputs: e.g., for the Moebious surface, a
predicted support of size 21 allows for QR decomposition over the rationals and solving following
Lem[2]in 2 sec. Note that this surface has complex base points which make certain real solvers to
fail for simple rays. On simpler examples, e.g., the crossed surface x; =11, xy =1, x3 = tlzt%, with
implicit equation x3 — x%x%, the direct method is up to 2 times faster and equally accurate as ours.

ZMaple implementation at http: //ergawiki.di.uoa.gr/experiments/simpl.mpl
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4 Beyond hypersurfaces

This section examines the case of varieties of codimension greater than 1. A fundamental tool in
algebraic elimination is the Chow form of a variety.

Definition 1. Let V C P" be a d-dimensional irreducible variety and Hy, . . ., H; be linear forms where
H; =ujoxo+ -+ uinx,, i=0,...,d @)

and u;; are new variables, 0 <i <d,0 < j <n. The Chow form Ry of V is a polynomial in the
variables u;; such that
Rv(u,'j) :O@VQ{H() :0,...,Hd:0} #0.

The intersection of the d + 1 hyperplanes H; defined in equation (7) is a (n —d — 1)-dimensional
linear subspace L of P". The set of k-dimensional linear subspaces L of P is the Grassmannian
G(k,n). Those subspaces L that intersect V form a hypersurface Z(V') on the Grassmannian G(n —
d — 1,n) by [GKZ94, Prop.2.2,p.99]. The Chow form is the unique polynomial, up to a scalar factor,
that defines Z(V). To recover V from Z(V') we have the following:

Proposition 3. [GKZ94, Prop.2.5,p.102] A d-dimensional irreducible subvariety V C P" is uniquely
determined by its Chow form. More precisely, a point & € P” lies in V if and only if any (n—d — 1)-
dimensional plane containing & belongs to the Chow form.

Consider a variety V as in Prop. 3| parameterized as
xi=fi(t), i=0,....n,t=(to:- 1),

and d + 1 hyperplanes Hy = --- = H; = 0, where H; is defined as in equation (7). Substituting x; =
fi(t) in every equation H; = 0, we obtain an overdetermined system of equations in the parameters ¢
which we can eliminate by using resultants. This reduces the computation of any Chow form to the
computation of a multivariate resultant:

Corollary 4. Consider any V C P" of dimension d, with parameterization x; = fi(¢), i =0,...,n.
Then, the Chow form Ry is the resultant of the hyperplane equations H;, where one eliminates ¢.

Recall that Ry is a polynomial in the Pliicker coordinates, i.e., the maximal minors of the (d +
1) x (n+ 1) matrix whose rows are the normals to the hyperplanes H;. To obtain a representation for V
as intersection of implicit hypersurfaces from its Chow form one can apply [GKZ94, Cor.2.6,p.102],
or [DS95, Prop.3.1]. Both methods reduce to applying a rewriting algorithm such as the one in
[Stu08]] and typically yield more implicit polynomials than necessary, all of degree equal to the
degree of V.

To illustrate the approach in [DS935]], let us focus on varieties of codimension 2 in P3,ie., space
curves. Consider the planes Hy, H; in equation (I)). The Chow form Ry is a polynomial in the brackets
7, j], where [i, j] denotes the maximal minor indexed by the columns 0 < i, j < 3, of the matrix

up Uy Uz u3
U .= .
Yo Vi V2 V3

Ry is then rewritten as a polynomial in the dual brackets [[i, j]]. The dual brackets are substituted
by the determinant u;v; — u;v; of the corresponding minor of U. Finally, the result is expanded as a
polynomial whose variables are polynomials in the vy, vy, v2,v3 and its coefficients are polynomials
in the ug,u;,u>,u3. The latter polynomials are all of degree equal to the degree of V and form a
system of implicit equations of V.



4.1 Implicit representations for space curves

We now derive implicit representations by avoiding complex computations, such as the rewriting
algorithm. Suppose that we have a space curve parameterized as

xi=fi(t), i=0,...,3, t=(to:11).

Let line L be defined by a symbolic point & = (& : -+ : &3) and a sufficiently generic point G ¢ V.
Define two planes Hy,H; that intersect along L, by choosing one more random point Py and Py,
respectively. Let their equations be as in (I), where the coefficients now are linear polynomials in &.
The Sylvester resultant of this system, where we set x; = f;(¢), eliminates # and returns a polynomial
in & which vanishes on V (but not only on V), thus offering a necessary but not sufficient condition,
see Algorithm

Lemma 5. Let § = max{deg f;(t),i=0,...,3} and RS be the Sylvester resultant of

Ho(fo(t) ... 2 f3(z)) and Hi(fo(t) : ... : f3(1)).

Then R‘g factors into a degree 6 polynomial defining a surface S}’ containing the space curve V, and
a polynomial £ f , where EJ is a linear polynomial defining the plane passing through points G, Py, P;.

Proof. The degree of the Sylvester resultant in the coefficients of each of the Hy,Hi, is 8, and its
total degree is 20; & is involved (linearly) in the coefficients of both Hy and Hj, since it is taken to
lie in the intersection of the two planes. Hence the degree of the sought polynomial in & is 26.

It vanishes only in two cases: if & belongs to the plane defined by G, By and Py, or if & belongs
to a line passing by G and intersecting V. Hence we can divide (possibly several times) the sought
polynomial in & by the equation Ej, of the plane defined by G, Py and Py, thus obtaining an equation
of the conical surface of vertex G and directrix V. Since such a conical surface is of degree 9, its
equation is Res(Ho, H;)/Ey . O

Theorem 6. Let p : P'(R) — P3(R) be a rational parameterization of a space curve V and S5/, i =
1,2, 3 be three conical surfaces obtained by the method above with 3 different random points G; ¢ V.
We distinguish two cases.

1. If V is not planar and the points G; are not collinear, then V = S‘C,; N ng N S‘(,;3.

2. If V is contained in a plane &7, at least two of the points G; are not in & and if the G; are not
collinear, then V = M;—; 2,355

Proof. Case (1). Since Sgi are three different cones (or cylinders when G; are at infinity), they have
no 2-dimensional component in common. We first reduce the problem to the case

G =P.:=(1:0:0:0), G,=PFR:=(0:1:0:0), G3=P.:=(0:0:1:0).

We shall prove that an algebraic space curve is the intersection of the 3 cylinders spanned by the
curve itself and of directions X, %, and X3 respectively.

Let % be an irreducible component of (Sg N ng N 533). Since G1,G3,G3 are not collinear, there
exists a map ¢ € PGL(4,R) that sends G, to Py,, G» to P, and G3 to Py,. By linearity of ¢ (in
particular, ¢ preserves alignment), we have ¢(S‘(,;1) = ng(lv) and similar equalities for ¢(ng) and

(])(S%). Also, ¢(V) is a rational variety parameterized by ¢ o p.
Thus, if € C 553, then ¢ (%) C ng(v)' By this argument, we only have to prove that there is no

rational space curve ¢ (V) for which Sf;(lv) N ¢X(2V) N S;?V) contains another curve different than ¢(V).

For convenience, ¢ (V) is denoted by V and ¢ (%) is denoted by % in what follows.



Remark 1. Since V does not lie in the plane at infinity, we can switch to the affine setting.

We now have “nicer" expressions for our surfaces:
o 5" = {(x1.p2(t1), p3(01)) | 11,11 € RY,
o 502 = {(p1(t).x2. p3(11)) | 2,11 € R,
° Slx}g ={(pi(t1),p2(t1),x3) | x3,11 € R}.

Since ¥ C SP /1, there is a (not necessarily rational) parameterization of ¢ given by ¢ : f; € R —
(q1(t1), p2(@(t1)), p3(@(t1))), where ¢; and ¢ are continuous piecewise smooth maps.

Remark 2. We see that ¢ (resp. ¢1) is not locally constant: otherwise, a part of 4’ would be included
in a straight line (resp. a plane), which contradicts the fact that V is not planar.

We can thus pick a small interval I := (a,b) C R such that g; is injective and so, without loss of
generality, we assume that @;(t;) = 1.

Also, since V is not planar and p is rational, the sets of non regular points of the three maps
Ty, il — (pz(ll),pg(l‘l)), T, (11— (pl(l‘l),p3(l‘1)) and Ty i1 — (pl(l‘l),pg(l‘l)) are finite. Shrinking
I if necessary, we assume there is no such non regular point in /.

Now, we have a local curve (1) = {(q1(t1), p2(t1), p3(t1)) | 1 € I} included in (S?1 N S?z N SI‘;X3 )
Using the fact it lies on SCXZ , we have another parameterization of ¢(I) given by r(t;) = (r1(t1), p2(t1),
r3(t1)) with r; injective on I and r;(I) C p;(R). Similarly, g(I) C SCX3 gives a third parameterization
s(t) = (s1(t1), s2(t1), p3(t1)) with s; injective on I and s;(I) C p;(R).

Comparing s with g and r, we have s(t;) = (s1(t1), p2(t1), p3(t1)). Lastly, since 7, is regular on
1, there is only one branch in 7, (s(I)) and so s; ' (s(I)) = p; '(s(I)). The curve % is thus locally
contained in V; it follows that € = V.

Case (2). Let us look more closely at Remarks [[]and [2] where we used the non-planarity hypoth-
esis:

1. At Remark [I] we used the fact that V is not contained in the plane containing Gy, G, and G3.

2. At Remark 2] we used the fact that the points G; do not belong to a plane containing V, i =
1,...,3.

These facts are still valid under the assumption of G; ¢ &, hence the proof of Case (1) holds. O

4.2 The general case

Let us generalize the construction above. Let V C P" be a d-dimensional variety parameterized as
xi=fit),i=0,...,n,t =(to: - :1g),

and G be a set of n —d — 1 sufficiently generic points G; notin V. Let L be the (n —d — 1)-dimensional
linear subspace defined by a symbolic point & = (& : --- : &,) and the points in G. Chose d + 1 sets
of d random points P, = {P;1,...,Paq}, Pij ¢ V. Let H;, i =0,...,d be the hyperplane defined as the
span of the points &, G, P,. Substitute x; = f;(¢) in each H; to obtain

Ho(fo(t) ... fu()) =0, ..., Ha(fo(t) = ... fulr)) =0. (®)

The resultant of the polynomials in (8) eliminates ¢ and returns a polynomial Rg in & which van-
ishes on V (but not only on V), thus offering a necessary but not sufficient condition, see Algorithm|[I]
To achieve the hypothesis of Prop. [3| one may iterate for a few distinct pointsets G thus obtaining
implicit hypersurfaces RS = 0 whose intersection is V.



To compute the resultant one option is to use interpolation in conjunction with information on its
support. This might be obtained from degree bounds on RS, as explained below, or by the computa-
tion of the monomials of the polynomials in (§)) using software ResPol from [EFKP14]. The latter
is analogous to the basic approach for defining the interpolation matrix by the support obtained from
the resultant polytope, see Sec.[2.1]

In the general setting we do not have a result similar to Lem. [5] Our method gives rise to extra-
neous factors, whose expressions and powers are less clear than in the case of space curves. From
experiments, it appears that there are only extraneous factors of degree codim(V'). Of course, there
are other extraneous factors depending on the chosen method for computing the resultant, e.g., inter-
polation, or as the determinant of the Macaulay matrix.

To find the degree of R in &, first note that the degree in ¢ of every H;(fo(t) : ... : f,(t)) is
0 = max{deg, fj(t), j =0,...,n}, and that the coefficients of the H,’s are linear polynomials in &.
The resultant of these polynomials has degree in the coefficients of each H; equal to 8¢, therefore
total degree (d + 1)89, see e.g. [CLO0S, Thm.3.1].

A tighter bound on the degree of R‘(,; can be obtained by considering sparse resultants and mixed
volumes [[CLOQS5, Ch.7]. Denote

MV_; :MV(H07 s 7Hi—17Hi+17‘ .- 7Hd)7 0<i< d7

the mixed volume of all polynomials excluding H;. The degree of the sparse resultant in the coeffi-
cients of H; is known to equal MV_;, therefore its total degree equals Z?:() MYV_;. Both degree bounds
above are typically much larger than the degree of V.

An issue arises of course at sampling: all generated points & lie on V, whereas we are trying
to compute a hypersurface containing V. We expect that the kernel of M will have large dimension
and among the kernel vectors we may choose one or more “small" vectors to define the implicit
equation. Here “small” may refer to the number of non-zero vector entries, or to the total degree of
the monomials corresponding to its non-zero entries.

We can avoid interpolation if there exists a rational or, even better, determinantal formula, for the
resultant, such as Sylvester’s for curves in P, or D’ Andrea’s formula for sparse resultants [D”A02],
which are optimal for generic coefficients. For arbitrary coefficients, an infinitesimal perturbation
may be applied.

Algorithm 1: Implicit equation

Input :V C P’ parameterized by x; = fi(t),i =0,...,n.
Output A polynomial vanishing on V.

(1) Define (n —d — 1)-dimensional linear subspace L by affinely independent random points
G={Gy,...,Gy_q_1} : G; €V, and consider symbolic point & = (&,...,&,).

(2) Define d 4 1 hyperplanes H; through G, &, P;, for random points P; affinely independent
from points in G.

(3) Setx; = fi(t) in the H;: their resultant, where we eliminate 7 is the sought polynomial in &.
Compute it by formula or by interpolation as in Sec. [2.1]

4.3 Examples and complexity

In this section we illustrate our method through examples of curves in 3D and 4D space and a surface
in 4D space.

We switch from the projective to the affine setting and set & = (&;,...,&,) = (x1,...,x,), for
emphasizing these are the implicit variables. For curves in any ambient dimension we compute
the resultant directly using the Sylvester matrix, and also by interpolation, employing degree bounds
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relying on mixed volume. For d > 1 we use the Macaulay (or the toric resultant) matrix. Interpolating
the resultant leads to matrices with very large kernels: on the upside, the polynomials we obtain from
the kernel vectors are of degree no greater than those of the former method. Moreover, among
them we can find a number of polynomials of small degree and, often, smaller than the degree
predicted by degree bounds: these polynomials define the variety set-theoretically, in other words, as
the intersection of a few surfaces.

Example 2. Consider the twisted cubic curve affinely parameterized as:
V={(@tr*r)eR 1t cR}.
The implicit equations of V are
x%—xz :x%—xlm =x1x—x3=0. 9

Let L be the line passing through symbolic point & = (x1,x2,x3), and generic point G ¢ V (here
the set G consists of only one point also denoted G). We define two random planes H, (x;,x2,x3),
H,(x1,x2,x3), intersecting at L by considering additional random points P;,P, ¢ L, respectively.
Then, the Sylvester resultant of Hy(¢,#%,13) = H»(t,1*,+3) = 0 is a polynomial of degree 6 in & which
factors into the degree 3 polynomial

32y — 16x3 4 56x1x3 + 16x1x2 — 80x3 —
—32x% - 40x§ + 42x% — 2x3x2x1 + 56x3x) —
—5x3x22 + 5x32x1 — SX3x12 — 48x22x1 + 24x2x12
and the expected extraneous linear factor raised to the power 3.

This yields a surface containing V' but not of minimal degree. Repeating the procedure 3 times,
the ideal of the resulting polynomials equals the ideal defined from the polynomials in (9).

Alternatively, we may interpolate the Sylvester resultant above. We take as predicted support the
lattice points in a 3-simplex of size 6. The 84 x 84 matrix constructed has a kernel of dimension
65. The corresponding 65 kernel polynomials are of degrees from 2 to 6. Among them, the three

polynomials of minimal degree 2: x;x3 — x%, X1Xp — X3, —Xp +x%, define the twisted cubic exactly.
In contrast, [DS95] Sec. 3.3] gives 16 (homogeneous) implicit equations, all of degree 3.

Example 3. Consider the space curve in Fig.[I|affinely parameterized as:

1—2 2t 1—2\?
V= R} :7eR}.
{<1+t2’1+t2’<1+t2> < <

It is the intersection of two cylinders:

x%—X3:x%+x3—1:0. (10)

Let line L be defined from the symbolic point & = (x1,x2,x3), and “generic" point G ¢ V. Define
two random planes H; and H, that intersect at L, by choosing random points Py, P, ¢ L, respectively.
Then, the Sylvester resultant of

-2 26 1-12, -2 2t 1-£%,
H H
1(1+t2’1+[2’(1+1‘2) )a 2(1+[2’1—|—t2’(1+t2))

is a polynomial of degree 8 in & which factors into the following degree 4 polynomial:

29 4 120x; — 56x3 — 182x3 + 168x1x, — 110x7 — 78x3 +
—1—90)6%)63 — 12xx3 + 7Ox%x3 — 18x1x3 — 120x1x% + 40x%xz +
+156x3 + 5613 +49x3 4 25xT — 48x%xy — 72x3x; +
120323 + 28x3x3 + 12x3x7 — 168x3x1 +222x3xF —
*30)63)6? — 120x2x% —48x3xpx1 — 102)@)6%)61 + 76x3x%x2
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and the expected extraneous linear factor raised to the power 4. This yields a surface containing V' but
not of minimal degree. As in the previous example, repeating the procedure 3 times, the ideal of the
resulting polynomials equals the ideal defined from the polynomials in (I0). Note that all iterations
produce polynomials of degree 8 which all factor into a degree 4 polynomial vanishing on V and a
degree 1 polynomial raised to the power 4, as predicted by Lem. 5]

Alternatively, we interpolate the Sylvester resultant above using as support the lattice points in a
3-simplex of size 8. The 165 x 165 matrix constructed has a kernel of dimension 133. The degrees of
the corresponding 133 kernel polynomials vary from 2 to 8. Among them, there are two polynomials

of degree 2. They coincide with those in (10).

The equations above were obtained by choosing random points with integral coordinates and
relatively close to the curve. When we increase the range or allow for non-integral points, in order to
have better chances to avoid the non-generic points, the size of the coefficients increase. For example,
using random points with integral coordinates in a box of size 100 around the curve yields equations
as below, where we omit most terms:

3983438998535755975578507593x* + - - - — 6421697880560981054975490304

Example 4. We illustrate Lem. [5] in two more examples. For the space curve of parametric degree
4 in [RSS13]], we compute the 3 implicit equations of degree 4 in 0.171 sec. For the Viviani curve
which has parametric degree 4 and implicit equations: x% —i—x% +x§ =4a?, (x;—a)? —i—x% =a?, we

compute 3 implicit equations of total implicit degree 4, and degree 74 in the parameter a, in 7.72 sec.

Example 5. Consider the curve in R* with parameterization:
(x1,X2,%3,%4) = (P —t =1, 24202 1,12 +1— 1,12 =2t +3)

The curve is defined by 5 implicit equations of degrees 1,2,2,2 and 3. Our algorithm computes 5
equations of degree 6 in 0.06 sec. These equations contain linear extraneous factors raised to the
power 3. When these are divided out we obtain 5 degree 3 equations which define the curve set
theoretically.

Example 6. We tested our method on a surface in R* with parametric degree 2. It has an implicit
representation defined by 7 equations all of degree 3. The resultant of the hyperplane equations is of
degree 12, while the polynomial computed as the determinant of the Macaulay matrix is of degree 15
and factors into 4 polynomials: an irreducible polynomial of degree 4 that contains the surface, two
polynomials due to the Macaulay resultant, and a power of a linear polynomial due to our method. A
total of 5 polynomials define the surface set-theoretically.

In all examples in this section, we used our Maple implementation of Algorithm[I} We compared
to Maple’s native command algcurves [implicitize] on a laptop with a 2GHz Intel Celeron
processor running Maple 18. Our implementation is slower per output equation for curves of degree
larger than 6, see Fig.[2] For curves of moderate and high degrees, the Sylvester resultant computation
(or interpolation) represents more than 99% of our algorithm’s computation time.

Though the runtime per equation is lower, the number of implicit equations that implicitize
outputs cannot be predicted and it seems to be only dependent on the input degree: for inputs of the
same degree it always returns the same number of implicit equations. For degrees larger than 8, their
number is greater than 100. In contrast, our algorithm can return the implicit equations one by one,
and Thm. [6] guarantees that 3 of them define the curve set-theoretically. For parameterizations of
degree up to 4, implicitize computes a small number of implicit equations whose total degree is
lower than the degree of those computed by our method. On the other hand, our algorithm always
outputs equations of the same total degree equal to the degree of the parameterization, by Lem.[5} For
instance, when the degree of the parameterization is 4, implicitize typically returns 7 equations
of degree 3 and 11 equations of degree 4, whereas our algorithm returns 3 equations of degree 4. For
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Figure 2: Runtime (sec) per output equation vs parametric degree. Our method’s times are in (light)
blue on both graphs, Maple’s native command’s are in (dark) red.

Examp.[3] implicitize computes the two equations in (I0). This cannot be done by our algorithm
unless we know which apex G for the conical surface should be used: for this example these are
points at infinity.

The largest example that we computed is of a parametric space curve of degree 18 in less than 3
min.

We also compared our method against implicitization using Groebner basis and the method of
matrix representations based on syzygies [BLB12]] using the authors” Maple code. For parameteri-
zations of degree up to 6 all methods are comparable in running time. For larger degrees Groebner
basis outperform our method by a factor that depends on the degree and the number of monomials in
the parametric polynomials and ranges from 10 to 103. The method based on syzygies yields a matrix
M which has the drop of rank property and, moreover, its minors of size Rank(M) give a system of
implicit equations of the variety. However, computing these minors, unlike the computation of M, is
very inefficient and it is not in the spirit of this method. On the upside, our algorithm always outputs
3 implicit equations, while in both other methods their number depends on the input and is typically
much larger than 3.

Our algorithm was also implemented in Sage with similar runtimes as in Maple.

5 Future work

Interesting mathematical questions arise in studying the complexity of our method, namely how to
bound the degree and the number of computed conical implicit surfaces in the general case by results
similar to Thm. [6| This requires to study the extraneous factors of the computed equations and to
distinguish them into those coming from the chosen method to compute the resultant, and those
inherited in our method.

Interpolation matrices extend to other geometric operations such as surface-surface intersection,
assuming one surface is either parameterized or given by a point cloud, and the second is parameter-
ized. The first surface is captured by matrix M’ through a point sample. The parameterization of the
second surface is substituted into the last row S(x). Now detM is an implicit equation of the inter-
section curve, defined in the parametric plane of the second surface. We may avoid developing the
determinant but instead we may operate on the matrix. For instance, we can sample the intersection
curve by fixing values of one parameter and solving the resulting univariate polynomial det[M’|S(¢)]
in the other parameter ¢, much like we did with ray shooting.

The interpolation matrices seem to extend beyond the codimension 1 case: given a variety of
codimension > 1 (i.e., in (2)) we have t = (11,...,#7) with d < n—2), we can construct a matrix M (x)
as in Sect[2.T| that still “represents” the variety, under some assumptions on the support S used: point
g € C" lies in the variety iff Rank(M(q)) = Rank(M’). However, in that situation, matrix M’ is never
of full rank. The implicit equations of the variety can be found among the non-zero minors of M (x)
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of size Rank(M’), but this computation is very expensive. Similar properties hold for the matrix
representations in [[Bus14] but these matrices are smaller in size.
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