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Abstract

The paper presents several problems coming from astronomy that may be tackled using probability theory
and statistics. Due to the nature of data the common question of these problems is what is the pattern
hidden in the data. The probabilistic framework allows a statistical and morphological description of these
patterns.
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1. Introduction. Spatial data are sets of observations made of elements having two components : location
and characteristic. The location component gives the coordinates where the observation took place. The
characteristic component is represented usually by a multi-dimensional real vector containing measures as-
sociated to an astronomical object at the corresponding location. Astronomical data is a very good example
of spatial data. Depending, on the studied object, examples of such characteristics are : mass, radius, lumi-
nosity, morphological type, brightness, time occurrence, age, light curve, temperature, etc.

In many situations, the spatial character of the data induces a strong morphological component to the pos-
sible answers that might be given to questions issued from the data analysis. Therefore, the question almost
always arising is what is the pattern hidden in the data ?

This paper shows several examples of how this questions arises in different cases of astronomical data analy-
sis. One common point of these questions is that their respective answers are based on the probability and
statistics theory.

The probabilistic framework allows the construction of powerful methodologies based on the following steps :
data observation and exploratory analysis, hypothesis and model formulation, building simulation algorithms,
statistical inference and hypothesis verification. The main advantage of using the probabilistic approach is
that the local exploratory analysis of the data can be naturally transformed in rich information. This trans-
formation is achieved by means of the integration mechanism implicitly given by the probability density
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describing the model.

Let d be the observed data set and let us assume that the pattern we are looking for it is the realisation of
a stochastic model described by the probability density

p(x, θ|d) = p(x|d, θ)p(θ). (1)

with p(x|d, θ) and p(θ), the conditional law of the pattern and the prior density for the model parameters,
respectively.

The conditional law in (1) can be written as

p(x|d, θ) = exp

[
−
Ud(x|θ) + Ui(x|θ)

Zd(θ)

]
(2)

where the term Ud(x|θ) is called the data energy, the term Ui(x|θ) is the interaction energy. The interaction
energy builds the pattern, while the data energy position the pattern in the data field.

The key hypothesis in defining the pattern model (2) is that the pattern x is a complex entity made of rather
simple objects {x1, x2, . . . , xn} that interact. Typical example of interactions are attraction or repulsion of
two objects if the objects are enough close. There is a lot of freedom in defining such interactions, provided
the model (2) is well defined. Depending on the type of interaction the objects exhibit, the pattern is built
from local interactions, the model becomes Markovian. This may lead to the writing of the energy functions
in a simplified form, known under the name of Hammersley-Clifford factorization [5, 17].

The main challenge to be overcome whenever adopting this modelling framework is that the normalizing
constant in (2) given by Zd(θ) cannot be always computed in an analytical close form. The solution to this
drawback is to build MCMC simulation algorithms in order to do statistical inference. If an appropriate
optimization technique is available, the hidden pattern in the data is given by the joint estimator :

(x̂, θ̂) = arg min
Ω×Ψ

{
Ud(x|θ) + Ui(x|θ)

Zd(θ)
− log p(θ)

}

with Ω and Ψ the corresponding state spaces for the pattern and the parameters, respectively.

2. Marked point processes for studying galaxy structure distribution. Marked point process
are probabilistic models dealing with configurations of random points having random characteristics or
marks [1, 17, 5]. By their definition, these processes are particularly adapted for analysing spatial point
patterns [3].

It is a fact, that at very large scale, the galaxy distribution is not uniform [4]. The galaxy positions are
spread in our Universe forming intricate structures such as clusters, walls and filaments. The galactic fila-
mentary pattern can be seen as the realisation of a marked point process whose realisations are configuration
of segments that align and connect.

The Bisous model is a marked point process constructed for modelling such patterns [8]. It was success-
fully applied for detecting them and for characterizing the filaments from a statistical and morphological
perspective [10, 11, 16]. The filamentary pattern is estimated by the segments configuration maximising
the probability density describing the model. For this purpose a simulated annealing procedure based on a
tailored Metropolis-Hastings procedure was built. Non-informative priors were chosen for the model param-
eters. The morphological characterisation of the filamentary pattern was done using the sufficient statistics
of the model : the total number of segments, the number of segments connected at one extremity and the
number of segments connected at both extremities. Several other cosmological questions were addressed us-
ing the Bisous model. In [15, 13] it was shown that the spin axes of spiral galaxies are preferentially aligned
with galactic filaments, whereas the minor semi-axes of elliptical galaxies are preferentially perpendicular
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Figure 1: Example of multi-scale filaments in GAMA data : the model proposed in [16] in order to
state the existence of cosmic filaments at different resolution levels.

to filaments. These results indicate that spiral galaxies form through peaceful accretion of matter that is
falling to filaments. The formation of elliptical galaxies is dominated by galaxy mergers that happen along
the filaments. The paper [14] investigated the connection between Bisous filaments and underlying velocity
field using N-body simulations. It was showed that Bisous filaments detected purely from dark matter halo
distribution is very well aligned with underlying velocity field. It confirms that the filaments detected in
galaxy/halo distribution are physical systems, not only visual structures. The distribution of galaxies along
the filaments was analysed in [12]. For that, the two point correlation function was used. It was showed that
the galaxy distribution along filaments is not uniform : there is regularity in this galaxy distribution, where
the distance between galaxies is roughly 10 Mpc. The Figure 1 shows a detection result on a sample of the
GAMA (Galaxy And Mass Assembly ) survey.

3. Spatial statistics for studying spatial debris. Spatial debris are small celestial bodies produced
by the artificial satellites around the Earth. These debris are pieces that can be detached from a satellite
by an obsolescence effect or that originate from an accidental collision of two satellites. Our undergoing
project is to study the debris distribution using statistics for spatio-temporal point processes [2]. The main
question these tools may answer is to check whether these debris behaviour is completely random, repulsive
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Figure 2: Cloud of spatial debris around the Earth.

or clustering. The most challenging problem is to use spatial statistics and modelling to detect the regions
with a high probability for the collision of the existing debris with a new satellite. The Figure 2 illustrates
the debris distributions around the Earth.

4. Heavy tail distributions for studying the Öpik-Oort cloud comets planetary perturbations.

The comets, in the Solar System, have very elongated orbits. Due to this property, a comet may come close
to a giant planet (Jupiter, Saturn, Uranus or Neptune). Such a close encounter with a planet is able to
modify significantly the comet trajectory. This mechanism is the main factor responsible of the transport
of the comet in the Solar System. Since, this is a highly chaotic mechanism, any individual motion cannot
be truthfully modelled over few encounters with any planet. An alternative solution to this problem is to
consider probabilistic modelling and statistical inference.

In [9], such a study has been initiated. A sample of Öpik-Oort cloud comets affected by the four giant planets
was analysed. The considered phase space was given by the perihelion distance and the ecliptical inclination
of the comets trajectories. The obtained results indicated that heavy tail distributions should be used to
model the planetary perturbations around the trajectories of the giant planets. The perturbations in this
region of the phase space were forming a spatial pattern that was naturally explained by the Öpik theory [6].
Actually, another study on a simplified model is carried out. This study aims to understand the separate
effect of each planet on the trajectory of a comet. A partial result of this study is showed in Figure 3. For
the perturbations with a perihelion distance of 5.1 A.U., perihelion argument, w, and inclination angle, i
a parameter estimation à la [9] was done. The obtained results exhibit a pattern made of two ”arrows”
oriented from left to right. The symmetry axes of these two arrows are rather close to a perihelion argument
of w = 20 and w = 160 degrees, respectively. These values correspond to a trajectory crossing the Jupiter’s
orbit. Hence, the perturbations distributions in this region tend to exhibit a heavy tail character. The final
conclusions of these two studies should be used to obtain a general probabilistic model for the planetary
perturbations.

5. MCMC Bayesian inference for studying orbit detection. The study of binary asteroids is of
particular interest. The process of their formation and evolution have began since the formation of the Solar
System. Therefore, the detection of large number of them and their study may have important implications
for understanding and verifications of theoretical models of dynamical evolution of the Solar System.

Furthermore, the study of binary asteroids is important to prevent possible collisions with the Earth. Orbit
determination is one of the classical problems of celestial mechanics. This is an inverse problem : determine
the orbital parameters from observations. Moreover, calculate the orbit of a single asteroid with great accu-
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Figure 3: Tail exponent for planetary distributions for perturbation with a perihelion distance of 5.1
A.U.. The x and y axes represent, the inclination angle and the perihelion argument, respectively.
The values lower than 2 indicate a heavy tail character of the distribution.
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Figure 4: Orbit detection for the 66652 Borasisi binary system : observed positions (black) and
computed positions (blue) with the parameters of the detected orbit.

racy is much easier than the orbit of binaries. This problem is more complicated due to the relative motion
of its components. In addition, the determined orbit allows to derive essential physical characteristics of the
considered objects, such as mass and density.

The statistical ranging method for heliocentric orbit of simple asteroid has been investigated by [18]. For
binary asteroids relative orbit determination the method was applied by [7]. For their purpose, the authors
used Bayesian modelling and MCMC inference. Our current approach is work in progress. The Figure 4
shows a partial result of our method. We aim to continue on the directions opened by previously cited au-
thors. Nevertheless, the main distinction of our method consists in the modelling choice : we sample directly
the orbital parameters conditioned by the observation, while in the previous methods the orbits were derived
through the sampling of observational coordinates.

6. Conclusions. The present paper shows by means of several examples, the key role that probability and
statistical methodology plays in analysing astronomical data. The choice of the mathematical models depends
on the problems to be tackled : marked point processes, regular variation tails distributions, spatio-temporal
processes and many others. Almost all these models need special algorithms to be simulated. In most of
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the cases, the models are sampled using a MCMC algorithm. The mathematical problems to be solved are
typical for the probabilistic framework : existence and properties of the models, convergence properties of the
simulation algorithms and precision of the inference procedures built for these models. The common point of
all these problems is that the solution we are looking for is represented by a pattern in a chaotic dynamics.
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