
HAL Id: hal-01503188
https://hal.science/hal-01503188v2

Submitted on 27 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Duality and hypoellipticity: one-dimensional case studies
Laurent Miclo

To cite this version:
Laurent Miclo. Duality and hypoellipticity: one-dimensional case studies. Electronic Journal of
Probability, 2017, 22, �10.1214/17-EJP114�. �hal-01503188v2�

https://hal.science/hal-01503188v2
https://hal.archives-ouvertes.fr


Duality and hypoellipticity: one-dimensional case studies

Laurent Miclo
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Abstract

To visualize how the randomness of a Markov process X is spreading, one can consider subset-
valued dual processes I constructed by intertwining. In the framework of one-dimensional diffu-
sions, we investigate the behavior of such dual processes I in the presence of hypoellipticity for X.
The Pitman type property asserting that the measure of I is a time-changed Bessel 3 process is
preserved, the effect of hypoellipticity is only found at the level of the time change. It enables to
recover the density theorem of Hörmander in this simple degenerate setting, as well as to construct
strong stationary times by introducing different dual processes.

Keywords: One-dimensional diffusions, hypoellipticity, duality by intertwining, Bessel 3
process, Hörmander’s density theorem, strong stationary times.
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1 Introduction

The technique of duality by intertwining associates to a Markov process X a dual Markov process,
which here will be taking subsets of the state space of X as values, showing how randomness is
spreading. In particular, this approach offers decompositions of the time-marginal laws of X that
are useful to deduce that they admit a density with respect to a reference measure, at positive
times. In our program to recover Hörmander’s theorem by following this probabilistic way, we
investigate here the effects of hypoellipticity on duality, by considering the simple one-dimensional
framework.

We begin by studying a toy model on R. Consider the hypoelliptic stochastic differential
equation (s.d.e.) on X B pXptqqtPr0,τq, with τ P p0,`8s the potential explosion time,

@ t P r0, τq, dXptq “
?

2Xnptq dBptq ` dt, (1)

where n P N B t1, 2, 3, ...u and where pBptqqtě0 is a standard Brownian motion.
In the next section, we will check that X is hypoelliptic of order n at 0 and that τ is a.s. infinite.
Let I stand for the set of nonempty closed intervals from r´8,`8s, which are either included

into r´8, 0q or into r0,`8s and which are different from t´8u and t`8u. Denote S the set of
singletons from I, i.e. S B ttxu : x P Ru. Consider µ` an µ´ the speed measures associated to X
on R` and p´8, 0q (whose definition will be recalled in Sections 2 and 3, respectively). We define
a Markov kernel Λ from I to R by

@ ι P I, @ A P BpRq, Λpι, Aq B

$

’

’

’

&

’

’

’

%

δxpAq , when ι is the singleton txu,

µ´pιXAq
µ´pιq

, when ι P IzS is included into r´8, 0q,

µ`pιXAq
µ`pιq

, when ι P IzS is included into r0,`8s,

(2)

where BpRq stands for the set of Borel subsets from R and δx for the Dirac mass at x. We will
check later on that the above expression are well-defined, as the denominators are finite.

Our first goal is the following construction of a dual process I with respect to X, a solution of
(1):

Theorem 1 There exists a process I B pIptqqtě0 taking values in I such that

Ip0q “ tXp0qu, (3)

@ t ą 0, PrIptq P Ss “ 0, (4)

@ t ě 0, LpXptq|Ir0, tsq “ ΛpIptq, ¨q, (5)

where the conditional law in the l.h.s. is with respect to the trajectory Ir0, ts B pIpsqqsPr0,ts. In
particular, we have for any t ě 0, the decomposition

LpXptqq “

ż

Λpι, ¨qLpIptqqpdιq,

and the r.h.s. is absolutely continuous with respect to the Lebesgue measure for t ą 0.

As implied by (4), I immediately grows into a segment with non-empty interior. But contrary
to the elliptic case, where the dual process never return to S, I collapses into the singleton t0u at
τ0, the time when X hits 0 (this happens in positive time when Xp0q is negative). The process I is
continuous (for the Hausdorff topology on the compact subsets of r´8,`8s), except at τ0, when
I may be non left-continuous. Point (4) in Theorem 1 will be deduced from the fact that the law
of τ0 has no atom outside 0. Note that without this requirement, the trivial dual process defined
by Iptq B tXptqu, for all t ě 0, would be suitable.
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Remark 2 At first view, the discontinuity of I at τ0 may be perturbing in the above diffusion
context. But it is just a suggestion that the segment-valued process I is not the appropriate object
to look at. Indeed, it would be better to consider the probability measure-valued Markov process
pΛpIptq, ¨qqtě0, which is continuous at τ0, due to the fact that µ´ gives an infinite weight to the
left neighborhoods of 0, which implies that

lim
xÑ0´

Λpr´8, xs, ¨q “ δ0. (6)

Concerning probability measure-valued process, note that the deterministic flow pLpXptqqqtě0 of
time-marginal laws can also be seen as a (not very useful) dual, with respect to the kernel Λ which
to a given probability measure associates a random point sampled according to this distribution.
In some sense, we are looking for dual processes strictly between the opposite pδXptqqtě0 and
pLpXptqqqtě0.

˝

After τ0, the behavior of I depends on n:
‚ For n P Nzt1u, in finite time the process I hits r0,`8s and stays there afterward.
‚ For n “ 1, the process I converges to r0,`8s in large time, but never reaches it (starting from
a singleton).

This dichotomy is also valid when Xp0q is non-negative and will be reformulated in terms of
strong stationary times in the next sections.

But whatever n P N, Theorem 1 recovers, on this example, the density part of Hörmander’s
theorem, stating that for all t ą 0, the law of Xptq is absolutely continuous with respect to the
Lebesgue measure.

This study can be extended to any hypoelliptic diffusion on R (or on an interval of R), but we
found the circle case more instructive.

Let a and b be two smooth functions on T B R{Z, such that a is non-negative,
?
a is smooth

and vanishes at most at a finite number of points, write N for their set. Assume that for any
x P N, bpxq ­“ 0. Consider on C8pTq the Markov generator

L B aB2 ` bB, (7)

and let X B pXptqqtě0 be a corresponding diffusion process. The generator L is hypoelliptic and
we are looking for the behavior in law of X for large times.

Let us write N B tyk : k P ZNu, where the representative points in r0, 1r satisfy 0 ď y0 ă y1 ă
¨ ¨ ¨ ă yN´1 ă 1 and where N P N (what follows is also trivially true in the classical elliptic case
where N “ 0). For k P ZN , let Ik be the projection on T of the interval pyk, yk`1q (for l “ N ´ 1,
it is the interval pyN´1, y0` 1q), to which is added yk if bpykq ą 0 and yk`1 if bpyk`1q ă 0. Remark
that pIkqkPZN forms a partition of T. Denote for k P ZN , µk the speed measure associated to the
restriction of L to Ik. Let I stand for the set of non-empty closed intervals from T which are
included into one of the Ik, for k P ZN and let S B ttxu : x P Tu. Define a Markov kernel Λ from
I to T by

@ ι P I, @ A P BpTq, Λpι, Aq B

$

&

%

δxpAq , when ι “ txu P S,

µkpιXAq
µkpιq

, when ι P IzS with ι Ă Ik and k P ZN .
(8)

In Section 4, it will be checked that the last r.h.s. is well-defined, i.e. 0 ă µkpιq ă `8 for
ι P IzS with ι Ă Ik and k P ZN .

Theorem 1 extends to this context:

Theorem 3 Let X be a diffusion on the circle whose generator is the hypoelliptic elliptic L given
in (7). There exists a dual process I associated to X satisfying all the statements of Theorem 1,
where I and Λ are defined as in (8).
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The process I collapses into a singleton when X hits N. But our definition of the dual process
I will not always be optimal, with respect to the construction of strong stationary times. We will
see that sometimes it is better to let the dual process I collapses into a pair of points when X
exits from the segments Ik which are open, for k P ZN . The description of the evolution of the
corresponding dual process is a little more involved and left to Section 4, as well as the definition
of another Markov kernel (48) replacing (8) and Theorem 24, the extension of Theorem 3 in this
situation. Nevertheless and similarly to the toy model case, we deduce from Theorem 24 the density
part of Hörmander’s theorem for the one-dimensional generator (7).

Another interest of the dual process I, associated to the Markov kernel (8) and constructed in
Theorem 3, is to quantify the convergence to equilibrium of X, but only when b takes different
signs over N, in which case I converges a.s. for large time. When b has a constant sign over N,
the process I does not converge a.s. for large time. Indeed, writing I C rY,Zs, one of the two
processes Y or Z ends up being Markovian, with a behavior of the same nature as X, after the first
time X goes through N. In this situation, X admits an invariant probability measure π absolutely
continuous with respect to the Lebesgue measure. The support of π is T but its density vanishes
on N. It is then natural to consider rI the set of non-empty closed intervals from T and to define
a Markov kernel rΛ from rI to T by

@ ι P rI, @ A P BpTq, rΛpι, Aq B

$

&

%

δxpAq , when ι “ txu P S,

πpιXAq
πpιq , when ι P rIzS.

(9)

Theorem 3 is still valid when Λ is replaced by rΛ:

Theorem 4 Let X be a diffusion on the circle whose generator is the hypoelliptic elliptic L given
in (7), where b has a constant sign over N. There exists a dual process rI B prIptqqtě0 associated to
X taking values in rI and satisfying all the statements of Theorem 1, with I and Λ replaced by rI
and rΛ defined in (9).

The dual process rI converges a.s. in finite time to the whole state space T, so we are able to
construct a strong stationary time for X and to deduce the weak convergence of LpXptqq toward π
for large times. The dual process rI never collapses to a singleton: in this situation the deduction
of the density part of Hörmander’s theorem is straightforward, since we have, whatever the initial
condition,

Pr@ t ą 0, rIptq P rIzSs “ 1.

The plan of the paper is as follows: the next two sections are respectively devoted to the
restriction of the toy model to R` and to R´. In Section 4 we consider the circular hypoelliptic
diffusion and its dual process mentioned in Theorem 3. Section 5 deals with the situation where b
has a constant sign over N and in particular Theorem 4. Finally Appendix A recalls and adapts
some computations from [12] and [3] about the segment-valued dual processes.

2 On R`

The situation treated here is quite similar to that from [12]. This section serves as a reminder of
some notions from the theory of duality by intertwining.

We begin by some general considerations about the diffusion X B pXptqqtPr0,τq whose evolution
is described in (1). The generator L associated to X is the operator acting on C8pRq via

@ f P C8pRq, @ x P R, Lrf spxq B x2nB2fpxq ` Bfpxq.
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The Itô term in (1) can be transformed into a Stratanovitch term (see for instance Chapter 4 of
Revuz and Yor [13]):

?
2Xnptq dBptq “

?
2Xnptq ˝ dBptq ´

1

2
d
A?

2Xnptq, B
E

“
?

2Xnptq ˝ dBptq ´ nX2n´1ptq dt,

where x¨, ¨y stands for the bracket of semi-martingales. It follows that the generator can be rewritten
under the Hörmander’s form L “ V 2

1 `V0, where V0 and V1 are the vector fields on R, seen as first
order differential operators, whose coefficients are given by

@ x P R,
"

V0pxq B 1´ nx2n´1,
V1pxq “ xn.

To see that L satisfies the Hörmander’s condition (cf. Hörmander [8] or the pedagogical paper of
Hairer [7]), define for all l P Z`, the set of vector fields Vl through the iteration

V0 B tV1u,

@ l P Z`, Vl`1 B Vl Y trU, V s : U P Vl and V P tV0, V1uu,

where r¨, ¨s stands for the usual Lie bracket. For any x P R, let Vlpxq B tV pxq : V P Vlu. For any
x P Rzt0u, we have V0pxq ­“ t0u, so that L is elliptic on Rzt0u. At 0, the first l P Z` such that
V0p0q ­“ t0u is l “ n, so that L is hypoelliptic of order n at 0, as announced in the introduction.

Despite the above choice of R as state space, starting from R`, the process X lives in R`.
Indeed, to check the status of the point 0 seen from R`, let us introduce the scale and speed
functions associated to L:

@ x ą 0, σ`pxq B exp

ˆ

´

ż x

1

1

u2n
du

˙

“ expppx1´2n ´ 1q{p2n´ 1qq, (10)

µ`pxq B
1

x2nσ`pxq
“ v1`pxq, (11)

where

@ x ą 0, v`pxq B
1

σ`pxq
“ exp

ˆ
ż x

1

1

u2n
du

˙

“ exppp1´ x1´2nq{p2n´ 1qq.

The interest of these functions is that on p0,`8q, we can write

L “
1

µ`
B

ˆ

1

σ`
B

˙

. (12)

The corresponding scale and speed measures, also written σ` and µ`, are given by

@ z ě y ą 0, σ`pry, zsq “

ż z

y
σ`pxq dx,

µ`pry, zsq “

ż z

y
µ`pxq dx “ v`pzq ´ v`pyq.

By considering their limits as y goes to 0`, these expressions can be extended to

@ z ą 0, σ`pr0, zsq “ `8,

µ`pr0, zsq “ v`pzq.
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We get that

ż 1

0
σ`pr0, xsqµ`pxqdx “ `8,

ż 1

0
µ`pr0, xsqσ`pxqdx “

ż 1

0
v`pxqσ`pxq dx “

ż 1

0
1 dx “ 1 ă `8.

Thus using Chapter 15 from Karlin and Taylor [10], it appears that 0 is an entrance boundary for
the restriction of L on R`: when Xp0q is distributed on R`, the positions of the process X are in
p0,`8q for any t P p0, τq.

The status of `8 can be investigated similarly. Since σ`pyq converges to expp´1{p2n´ 1qq as
y goes to `8, it appears that for any x ą 0, σ`prx,`8qq “ `8 and consequently

ż `8

1
σ`prx,`8qqµ`pxqdx “ `8.

Furthermore, we have as x ą 0 goes to `8,

µ`prx,`8qqσ`pxq “
v`p8q ´ v`pxq

v`pxq

“

ˆ

exp

ˆ
ż `8

x

1

u2n
du

˙

´ 1

˙

„

ż `8

x

1

u2n
du

“ x1´2n{p2n´ 1q.

It follows that
ż `8

1
µ`prx,`8qqσ`pxqdx

"

“ `8 , if n “ 1,
ă `8 , if n P Nzt1u.

Thus when X starts from an initial distribution on R`, we deduce again from Chapter 15 of Karlin
and Taylor [10] that `8 is a natural boundary if n “ 1 and an entrance boundary if n P Nzt1u.
In both cases, `8 cannot be reached, so that τ “ `8 a.s.

Following the approach developed in [12], we would like to construct an intertwining dual to
X. In this section, we restrict our attention to the case where X starts from R`.

Consider

I` B tpy, zq : y, z P r0,`8s, y ď zuztp`8,`8qu,

I̊` B tpy, zq P p0,`8q2 : y ă zu

(the interior of I`X R2
`) and the diagonal S` B tpy, yq : y P R`u Ă I`. As in the introduction,

the element py, zq P I` should be interpreted as the compact interval ry, zs in R` \ t`8u and the
elements of S`, as singletons. This is illustrated by the following definition of the Markov kernel
Λ` from I` to R`:

@ py, zq P I`, @ A P BpR`q, Λ`ppy, zq, Aq B

$

&

%

δypAq , if y “ z,

µ`pry,zsXAq
µ`pry,zsq

, otherwise.

Note that the above expression is well-defined, as we have

µ`pr0,`8qq “ v`p`8q ´ v`p0q “ exp

ˆ
ż `8

1

1

x2n
dx

˙

´ 0 ă `8. (13)
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Let L` be the diffusion generator on I̊` given by

L` B pznBz ´ y
nByq

2 ` pny2n´1 ´ 1qBy ` pnz
2n´1 ´ 1qBz (14)

`2
ynµ`pyq ` z

nµ`pzq

µ`pry, zsq
pznBz ´ y

nByq.

Complete this definition on t0u ˆ p0,`8q by

L` B pznBzq
2 ` pnz2n´1 ´ 1qBz ` 2

z2nµ`pzq

µ`pr0, zsq
Bz, (15)

on p0,`8q ˆ t`8u by

L` B pynByq
2 ` pny2n´1 ´ 1qBy ´ 2

y2nµ`pyq

µ`pry,`8qq
By, (16)

and on p0,`8q P I`,

L` B 0, (17)

namely p0,`8q (alias r0,`8s) is absorbing for L`.
More precisely, L` is defined on D`, the set of continuous and bounded functions on I` which

are smooth on each of the subsets I̊`, t0uˆ p0,`8q and p0,`8qˆt`8u. Since D` is an algebra,
we define the carré du champs ΓL`

associated to L` via

@ F,G P D`, ΓL`
rF,Gs B

1

2
pL`rFGs ´ FL`rGs ´GL`rF sq. (18)

For instance on I̊`, we compute that

@ py, zq P I̊`, ΓL`
rF,Gspy, zq “ pznBz ´ y

nByqrF spz
nBz ´ y

nByqrGs.

It is not difficult to check that for any f P C8b pR`q, the set of bounded smooth functions on
R`, the mapping Λ`rf s is an element of D`.

The interest of Λ` and L` is the intertwining relation L`Λ` “ Λ`L, in the sense that,

@ py, zq P I`zS`, @ f P C8b pR`q, L`rΛ`rf sspy, zq “ Λ`rLrf sspy, zq. (19)

This can be checked by direct computation, as in Lemma 20 from [12]. Alternatively, as in
[3], one can resort to an algebra A` of convenient observables, containing the mappings Λ`rf s for
f P C8b pR`q, see Appendix A below with p0, 1q replaced by R`.

Following the arguments leading to Proposition 4 from [12], we get that the martingale problems
associated to pD`,L`q are well-posed:

Theorem 5 For any probability distribution m0 on I`, there is a unique (in law) continuous
Markov process I B pY ptq, Zptqqtě0 whose initial distribution is m0 and whose generator is L` in
the sense of martingale problems: for any F P D`, the process MF B pMF ptqqtě0 defined by

@ t ě 0, MF ptq B F pY ptq, Zptqq ´ F pY p0q, Zp0qq ´

ż t

0
L`rF spY psq, Zpsqq ds

is a local martingale. Furthermore the diagonal S` is an entrance boundary for I: for any t ą 0,
we have pY ptq, Zptqq R S`.

7



Remark 6 On I`zS`, the process pY ptq, Zptqqtě0 is constructed as a solution to the s.d.e.’s
associated to the generator L`, see Appendix A, with c “ 0 in (50). For instance on I̊`, we have,
up to the corresponding explosion time,

dY ptq “ ´
?

2Y nptqdW ptq `

ˆ

nY 2n´1ptq ´ 1´ 2
µ`ptY ptq, Zptquq

µ`prY ptq, Zptqsq

˙

Y nptq dt,

dZptq “
?

2ZnptqdW ptq `

ˆ

nZ2n´1ptq ´ 1` 2
µ`ptY ptq, Zptquq

µ`prY ptq, Zptqsq

˙

Znptq dt,

where pW ptqqtě0 is a standard Brownian motion and where

µ` B
ÿ

xPp0,`8q

xnµ`pxqδx. (20)

For any x0 P R`, to get the singleton px0, x0q as a starting point, an approximation by px0, x0`
εq, for small ε ą 0, is performed.

Stone-Weierstrass theorem enables us to see that the algebra A` of observables presented in
Appendix A is dense in the space of continuous functions on I`zS`, endowed with the uniform
convergence on compact subsets (but this is not true on I`, since the elementary observables
vanish on S`, so that the composed observables from A` does not separate the elements of S`).
We strongly believe the martingale problems associated to pA`,L`q are equally well-posed (cf.
Section 4.4 of Ethier and Kurtz [5] for valuable information in this direction).

˝

As a consequence, we have the following result (this sentence is slightly misleading, since a
preliminary version of Corollary 7 plays an important role in the proof of Theorem 5, to be able to
let the process I start from the singletons from S`, see [12]), for which we need to introduce some
notations:

ς` B 2

ż `8

0
µ`pBIpsqq

2 ds (21)

(where µ`pBIpsqq “ pY psqq
nµ`pY psqq` pZpsqq

nµ`pZpsqq, according to (20)), with the conventions
that xnµ`pxq “ 0 for x P t0,`8u, a priori ς` P p0,`8s, but we will see in Corollary 7 below that
ς` is finite a.s. Let the time change pθ`ptqqtPr0,ς`s be defined by

@ t P r0, ς`q, 2

ż θ`ptq

0
µ`pBIpsqq

2 ds “ t, (22)

and θ`pς`q B limtÑpς`q´ θ`ptq.
We are interested in the process R` B pR`ptqqtě0 given by

@ t ě 0, R`ptq B µ`pIpθ`pt^ ς`qqq. (23)

Proposition 14 from [12] and its proof lead to the following result.

Corollary 7 The process R` is a Bessel process of dimension 3 starting from µ`pIp0qq and stopped
when it hits µ`pp0,`8qq. In particular, ς` is finite a.s. and is the hitting time of µ`pp0,`8qq by
R`. More precisely, we have (conditioning by the initial value Ip0q for the second point):
‚ for n P Nzt1u or Ip0q of the form py0,`8q for some y0 P r0,`8q, we have θ`pς`q ă `8 and
the process I hits p0,`8q in finite time (a.s.)
‚ for n “ 1 and Ip0q not of the form py0,`8q for some y0 P r0,`8q, we have θ`pς`q “ `8 and
the process I does not hit p0,`8q in finite time (a.s.).
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Proof

More precisely, Proposition 14 from [12] shows that r0, ς`q Q t ÞÑ R`ptq is a Bessel process of
dimension 3 (stopped if ς` ă `8). If ς` was to be infinite, we would end up with

lim
tÑ`8

µ`pIpθ`ptqqq “ `8,

in contradiction with the fact that µ`pr0,`8qq ă `8. So ς` must be finite a.s. From (21), we
deduce that

lim inf
tÑ`8

µ`pBIptqq “ 0,

namely

lim sup
tÑ`8

Iptq “ p0,`8q,

and in particular

lim inf
tÑ`8

Y ptq “ 0,

lim sup
tÑ`8

Zptq “ `8.

‚ For n P Nzt1u, since 0 and `8 are entrance boundaries for X, we know from Theorem 1

in [12] that I hits p0,`8q in finite time, say τ. So the mapping R` Q θ ÞÑ
şθ
0 µ`pBIpsqq

2 ds is
increasing on r0, τq and constant on rτ,`8q. It follows that limtÑpς`q´ θ`ptq “ τ.
‚ For n “ 1 and Zp0q ­“ `8, since `8 is not an entrance boundary, we know from Theorem 1

in [12] that Z does not hit `8 in finite time. Thus the mapping R` Q θ ÞÑ
şθ
0 µ`pBIpsqq

2 ds is
increasing and limtÑpς`q´ θ`ptq “ `8.

When Zp0q “ `8, since 0 is an entrance boundary for X, the proof of Theorem 1 in [12] shows
that Y hits 0 in finite time. At this hitting time, I hits p0,`8q and we are in the situation where
θ`pς`q ă `8.

�

Corollary 7 can be seen as an illustration of Theorem 1 from [12] for elliptic diffusions X defined
on R (here p0,`8q), stating that the dual process hits the whole state space in finite time for all
initial distributions if and only if both boundaries are of entrance type. But in the present context,
we are not so much concerned with the behavior in large time as with the behavior in small time
and with the influence of hypoellipticity. According to Corollary 7, the latter does not modify
the Pitman-type property that the process of the volumes pµ`pIptqqqtě0 of the dual process is a
stopped Bessel 3 process, up to a time change. The impact is to be found in the time change itself:

Proposition 8 Fix py, zq P I` and consider the process I defined in Theorem 5 starting from
py, zq. There are several behaviors for the time change θ` as t goes to 0`:
‚ If py, zq ­“ p0, 0q, we have

θ`ptq „
t

2pynµ`pyq ` znµ`pzqq2
.

‚ If py, zq “ p0, 0q, we have

θ`ptq „
1

pp2n´ 1q lnp1{tqq1{p2n´1q
.

Thus in the latter case, the volume µ`rIs begins by evolving very slowly (since the inverse function
θ´1` ptq is negligible with respect to t, for tÑ 0`) and the order n of hypoellipticity can be recovered
through

n “
1

2

ˆ

1` lim
tÑ0`

lnplnp1{tqq

lnp1{θ`ptqq

˙

.
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For multidimensional diffusions X, the hypoellipticity should also impact the germ of the shape
of the dual process, see [3] for a first approach to the elliptic case.

Proof of Proposition 8

When py, zq ­“ p0, 0q, we have µ`pty, zuq “ ynµ`pyq`z
nµ`pzq ą 0, so by continuity of the diffusion

pIptqqtě0, we get as θ Ñ 0`,

2

ż θ

0
µ`pIpsqq

2 ds „ 2pynµ`pyq ` z
nµ`pzqq

2θ,

and this leads immediately to the first point.

When py, zq “ p0, 0q, according to (15), the diffusion I is given by

@ t ě 0, Iptq “ p0, Zptqq,

where pZptqqtě0 is solution to the s.d.e.

@ t ą 0, dZptq “
?

2ZnptqdW ptq `

ˆ

nZ2n´1ptq ´ 1` 2
µ`pt0, Zptquq

µ`pr0, Zptqsq

˙

dt,

where pW ptqqtě0 is a standard Brownian motion. We compute that for all z ą 0,

µ`pt0, zuq

µ`pr0, zsq
“

µ`pzq

µ`pr0, zsq
“

z2nµ`pzq

v`pzq
“

1

σ`pzqv`pzq
“ 1,

so that the above s.d.e. is

@ t ą 0, dZptq “
?

2ZnptqdW ptq ` pnZ2n´1ptq ` 1qdt,

from which we deduce that a.s. Zptq „ t for small t ą 0.
Since for any t ą 0, we have µ`pzq “ v`pzq, (22) can be rewritten under the form,

ż θ`ptq

0
expp´2Z1´2npsq{p2n´ 1qq ds “

expp´2{p2n´ 1qq

2
t.

Since for any ε ą 0, we can find (a random) t ą 0 sufficiently small so that for any s P p0, tq,

p1´ εqs ď Zpsq ď p1` εqs, we are led to study the behavior for small θ ą 0 of
şθ
0 expp´αs1´2nq ds,

where α ą 0 is a constant (that will take the values 2p1 ´ εq{p2n ´ 1q and 2p1 ` εq{p2n ´ 1q). A
usual integration by parts shows that for small θ ą 0,

ż θ

0
expp´αs1´2nq ds „ θ2n expp´αθ1´2nq,

and by consequence,

ln

ˆ
ż θ

0
expp´αs1´2nq ds

˙

„ ´
α

θ2n´1
.

These considerations show that for small t ą 0,

2

p2n´ 1qθ2n´1
„ lnp1{tq,

and this leads to the announced result when py, zq “ p0, 0q.
�

Due to (19), the arguments of Section 4 of [12] show that the processes X and I can be coupled
in the following way:

10



Theorem 9 Let m0 be a probability distribution on I` and consider m0 B m0Λ`. There exists a
coupling of X with initial distribution m0 and of I with initial distribution m0 such that for any
t ě 0,

LpXptq|Ir0, tsq “ Λ`pIptqq.

Furthermore, the construction of I from X is adapted, in the sense that given the trajectory X, for
any t ě 0, the conditional law of Ir0, ts depends only on Xr0, ts.

Remark 10 Note that conversely, for any probability distribution m0 on R`, we can find a law
m0 on I` such that m0 “ m0Λ`. It is sufficient for instance to take m0 B

ş

δpx,xqm0pdxq, as it was
done in Theorem 1 (at least when LpX0q is supported by R`). But in general it is not the unique
possible choice, e.g. when m0 “ Λ`ppy, zq, ¨q, for some py, zq P I`zS`, just consider m0 “ δpy,zq.

˝

As a classical consequence, going back to Diaconis and Fill [4] in the framework of finite Markov
chains (see also [12] for one-dimensional diffusions), we obtain the existence of strong stationary
times when n “ 1. Recall that a strong stationary time τ for X is a finite stopping time (with
respect to a possibly enlarged filtration for X) such that τ and Xpτq are independent and such
that Xpτq is distributed according to the invariant distribution π, the probability distribution
whose density is proportional to µ` (π exists due to (13)).

Corollary 11 As in Corollary 7, there are two situations:
‚ for n P Nzt1u, whatever the initial distribution supported by R`, there exists a strong stationary
time for X.
‚ for n “ 1, for some initial distributions on R` (in particular for any initial Dirac measure), a
strong stationary time does not exist for X.

Proof

When n P Nzt1u, the first time I hits p0,`8q is a strong stationary time for X, see for instance
[12] for more details.

When n “ 1, since `8 is not an entrance boundary for X, the proof of Theorem 1 in [12] shows
that there is no strong stationary time τ for X, if the initial law of X is of the form Λpr0, x0s, ¨q,
for any x0 P R` (because τ would be stochastically bounded below by the hitting time of r0,`8s
by I starting from p0, x0q, which is infinite), see also Fill and Lyzinski [6]. In particular, there is no
strong stationary time for X starting with Xp0q “ 0. Let us extend this result to all initial Dirac
measure. So let x0 P R` be given and assume, by contradiction, there is a strong stationary time
for X starting from x0. Then one would be able to construct a strong stationary time for X started
from 0, by considering the first time X hits x0 (which is a.s. finite) and by adding to it a strong
stationary time for X starting from x0. This is in contradiction with our previous observation, so
there is no strong stationary time for X starting from x0.

As at the end of the proof of Corollary 7, remark that if the initial distribution of X is of the
form Λ`prx0,`8s, ¨q, for some x0 P R`, then there exists a strong stationary time for X, consider
again the first time I hits p0,`8q.

�

Here we are more interested in the following density result, which is the easy part of the
Hörmander’s theorem and corresponds to the last statement of Theorem 1 when LpX0q is supported
by R`.

Corollary 12 Under the assumption of Theorem 9, write for any t ě 0, mt B LpXptqq and
mt B LpIptqq. Then we have

mt “

ż

Λ`pι, ¨qmtpdιq.
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In particular, for any t ą 0, mt is absolutely continuous with respect to the Lebesgue measure on
R`.

Proof

The above equality is obtained by taking the expectation in Theorem 9. From Theorem 5, for any
t ą 0, the set of singletons S` is negligible with respect to mt. Furthermore for any ι P I`zS`,
Λpι, ¨q is absolutely continuous with respect to the Lebesgue measure on R`. We can thus conclude
to the validity of the last statement of Corollary 12.

�

3 On R´

The situation of R´ follows a pattern similar to the investigation of the previous section. Putting
together the results on R´ and R` will lead to Theorem 1.

On R´, it is then more convenient to consider

@ x ă 0, σ´pxq B exp

ˆ

´

ż x

´1

1

u2n
du

˙

“ expppx1´2n ` 1q{p2n´ 1qq, (24)

µ´pxq B
1

x2nσ´pxq
“ v1´pxq, (25)

where

@ x ă 0, v´pxq B
1

σ´pxq
“ exp

ˆ
ż x

´1

1

u2n
du

˙

“ expp´px1´2n ` 1q{p2n´ 1qq.

These modified scale and speed functions, where the base point 1 has been replaced by ´1, lead
to the corresponding scale and speed measures on R´, still denoted σ´ and µ´. We compute that

ż 0

´1
σ´prx, 0sqµ´pxqdx ă `8,

ż 0

´1
µ´prx, 0sqσ´pxqdx “ `8,

ż ´1

´8

σ´pp´8, xsqµ´pxqdx “ `8,

ż ´1

´8

µ´pp´8, xsqσ´pxqdx

"

“ `8 , if n “ 1,
ă `8 , if n P Nzt1u.

Thus when X starts from an initial distribution supported by R´, 0 is an exit boundary (i.e. it is
a.s. attained in finite time). Furthermore, depending on n “ 1 or n P Nzt1u, ´8 is an entrance or
a natural boundary.

As a summary, conditioning by the initial position, we have the following a.s. behavior for
X: starting from Xp0q ă 0, the diffusion will reach 0 in finite time and instantaneously pass to
p0,`8q, where X will next live forever. Of course, when Xp0q “ 0 or Xp0q ą 0, the first stage or
the first and second stages of this description has/have to be removed.

We now come to the construction of the dual process I when the initial distribution of X is
supported by p´8, 0q.

Consider

I´ B tpy, zq : y, z P r´8, 0q, y ď zuztp´8,´8qu,

I̊´ B tpy, zq P p´8, 0q2 : y ă zu,

S´ B tpy, yq P I´ : y P p´8, 0qu.

12



Again, the element py, zq P I´ should be interpreted as the compact interval ry, zs in r´8, 0q. Let
Λ´ be the Markov kernel from I´ to p´8, 0q given by:

@ py, zq P I´, @ A P Bpp´8, 0qq, Λ´ppy, zq, Aq B

$

&

%

δypAq , if y “ z,

µ´pry,zsXAq
µ´pry,zsq

, otherwise.

Note that the above expression is well-defined, as we have for any x P p´8, 0q,

µ´pp´8, xqq “ v´pxq ´ v´p´8q “

ˆ

exp

ˆ

´
x1´2n

2n´ 1

˙

´ 1

˙

exp

ˆ

´
1

2n´ 1

˙

ă `8. (26)

Let L´ be the diffusion generator on I̊´ given by

L´ B pznBz ´ y
nByq

2 ` pny2n´1 ´ 1qBy ` pnz
2n´1 ´ 1qBz (27)

`2
ynµ´pyq ` z

nµ´pzq

µ´pry, zsq
pznBz ´ y

nByq,

and complete this definition on t´8u ˆ p´8, 0q by

L´ B pznBzq
2 ` pnz2n´1 ´ 1qBz ` 2

z2nµ´pzq

µ´pr0, zsq
Bz. (28)

More precisely, L´ is defined on DpL´q, the set of continuous functions on I´ which are
smooth on each of the subsets I̊´ and t´8u ˆ p´8, 0q. It is not difficult to check that for any
f P C8b pp´8, 0qq, the mapping Λ´rf s is an element of DpL´q.

As in the previous section, the interest of Λ´ and L´ is the intertwining relation L´Λ´ “ Λ´L,
in the sense that,

@ ι P I´zS´, @ f P C8b pp´8, 0qq, L´rΛ´rf sspιq “ Λ´rLrf sspιq. (29)

Again, this can be computed directly as in Lemma 20 of [12] or by introducing, as in [3] (see also
Appendix A), an algebra A´ Ă DpL´q and a measure µ´ B

ř

xPp´8,0q x
2nµ´pxq, similarly to what

was done in the previous section, replacing R` and µ` by p´8, 0q and µ´.
The martingale problems associated to pDpL´q,L´q are also well-posed:

Theorem 13 For any probability distribution m0 on I´, there is a unique (in law) continuous
Markov process I B pY ptq, ZptqqtPr0,τIq whose initial distribution is m0 and whose generator is L´
in the sense of martingale problems: for any F P DpL´q, the process MF B pMF ptqqtě0 defined by

@ t P r0, τIq, MF ptq B F pY ptq, Zptqq ´ F pY p0q, Zp0qq ´

ż t

0
L´rF spY psq, Zpsqq ds

is a local martingale. The diagonal S´ is an entrance boundary for I: for any t P p0, τIq, we have
pY ptq, Zptqq R S´. Furthermore, the explosion time τI corresponds to the “hitting” time of 0 by Z,
in the sense that

lim
tÑτI´

Zptq “ 0. (30)

Proof

The arguments are similar to those of Proposition 4 in [12], except that in this previous paper, the
situation of an exit boundary was not considered. So let us sketch the necessary modifications.
First consider the case where m0 “ δι0 , for some ι0 P I´. Consider ε ą 0 such that ι0 Ă r´8,´2εq.
Let Lε be the generator acting like L on p´8,´εq and such that ´ε is an reflecting boundary
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(i.e. a Neumann condition is imposed at ´ε on the functions entering in the domain of Lε). Use
Proposition 4 in [12] to construct the corresponding generator Lε and an associated I´,ε-valued
diffusion Iε B pYε, Zεq, where I´,ε stands for the elements of I´ included into r´8,´εs. The
process Zε is stopped at the time τIε it hits ´ε. Up to this stopping time τIε , Iε is the unique (in
law) solution of the martingale problem associated to Lε starting from ι0. Due to the Dirichlet
condition on Zε, some functions from DpLq are missing to conclude that pIεpt^τIεqqtě0 is a stopped
solution of the martingale problem associated to L and starting from ι0. To go around this little
difficulty, rather stop Iε when Zε hits ´2ε. When ε ą 0 varies, all these processes are consistent,
so we can apply Kolmogorov’s extension theorem to get a process I as in the above theorem. Its
uniqueness is shown similarly by stopping. For more general initial distribution m0, just condition
by Ip0q, see for instance the book of Ethier and Kurtz [5].

�

Lemma 14 The hitting time τI is a.s. finite.

Proof

This result would be obvious, if we already had Theorem 17 below at our disposal, since it provides
a coupling such that Zptq ě Xptq for all t P r0, τIq and we already know that X hits 0 in finite
time.

But the finiteness of τI can also be proven directly. According to Appendix A, Z satisfies

@ t P r0, τIq, dZptq “
?

2ZndW ptq ` γpY ptq, Zptqqdt, (31)

where

@ py, zq P I´zS´, γpy, zq B nz2n´1 ´ 1` 2
ynµ´pyq ` z

nµ´pzq

µ´pry, zsq
zn.

Define

@ z P p´8, 0q, rγpzq B γp´8, zq “ nz2n´1 ´ 1` 2
z2nµ´pzq

µ´pp´8, zsq
.

Since ynzn ą 0, z2n ą 0 and µ´pry, zsq ď µ´pp´8, zsq for any y ă z P p´8, 0q, we get

@ py, zq P I´zS´, γpy, zq ě rγpzq. (32)

Consider the diffusion rZ B p rZptqqtPr0,rτq on p´8, 0q, where rτ is the explosion time, starting with
rZp0q “ Zp0q and solution of the s.d.e.

@ t P r0, rτq, d rZptq “
?

2 rZndW ptq ` rγp rZptqqdt.

Due to (32), we have

@ t P r0, τI ^ rτq, rZptq ď Zptq, (33)

so that τI ď rτ . To prove rigorously (33), one must come back to the situation of constant diffusion
coefficient, namely to consider, when n P Nzt1u,

dZ1´nptq “
?

2p1´ nqdW ptq `
`

p1´ nqZ´nptqγpY ptq, Zptqq ` npn´ 1qZn´1ptq
˘

dt,

d rZ1´nptq “
?

2p1´ nqdW ptq `
´

p1´ nq rZ´nptqrγp rZptqq ` npn´ 1q rZn´1ptq
¯

dt,
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and when n “ 1,

d lnp´Zptqq “
?

2dW ptq `
`

´Z´1ptqγpY ptq, Zptqq ´ 1
˘

dt,

d lnp´ rZptqq “
?

2dW ptq `
´

´ rZ´1ptqrγp rZptqq ´ 1
¯

dt.

Classical comparison arguments (see for instance Chapter 6 of Ikeda and Watanabe [9]) are applied
on these s.d.e. (be careful of the signs) to get (33).

To prove that τI is a.s. finite, it remains to show that rτ is a.s. finite. Since rZ is a diffusion
process, it is enough to check that 0 is an exit boundary and that ´8 is not an exit boundary.

We compute that for any z P p´8, 0q,

z2nµ´pzq

µ´pp´8, zsq
“

1

σ´pzqpv´pzq ´ v´p0qq

“
1

1´ exppz1´2n{p2n´ 1qq
.

The last term converges to 1 as z goes to 0´ and is equivalent to ´p2n´ 1qz2n´1 as z goes to ´8.
Thus we get

lim
zÑ0´

rγpzq “ ´1,

and for z going to ´8

rγpzq „ p´3n` 2qz2n´1 pÑ `8q.

Via the introduction of the corresponding scale and speed functions, Chapter 15 of Karlin and
Taylor [10] implies that 0 is an exit boundary and that ´8 is an entrance boundary.

�

Transform the definitions given in (21), (22) and (23) into

ς´ B 2

ż τI

0
µ´pBIpsqq

2 ds, (34)

with the convention that p´8qnµ´p´8q “ 0, a priori ς´ P p0,`8s, but we will see in Corollary 15
below that ς´ is infinite a.s. Let the time change pθ´ptqqtPr0,ς´s be defined by

@ t P r0, ς´q, 2

ż θ´ptq

0
µ´pBIpsqq

2 ds “ t, (35)

and θ´pς´q B limtÑpς´q´ θ´ptq.
We are interested in the process R´ B pR´ptqqtě0 given by

@ t ě 0, R´ptq B µ´pIpθ´pt^ ς´qqq. (36)

Corollary 15 We have ς´ “ `8, θ´p`8q “ τI and the process R´ is a Bessel process of dimen-
sion 3 starting from µ´pIp0qq.

Proof

Proposition 14 from [12] shows that r0, ς´q Q t ÞÑ R´ptq is a Bessel process of dimension 3 (stopped
if ς´ ă `8). So to get that R´ is a Bessel process of dimension 3, we must show that the event
E B tς´ ă `8u has probability 0.

Define

pτ B inftt ě 0 : Zptq ě Zp0q{2u,
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which is a.s. finite according to Lemma 14. Let us begin by checking that on E , the trajectory
pZptqqtPrpτ ,τI s is Hölder of any order α P p0, 1{2q. Indeed, taking (31) into account, we have for any
s ă t P rpτ , τIq,

Zptq ´ Zpsq “ Mptq ´Mpsq `

ż t

s
nZ2n´1puq ´ 1` 2

µ´pIpuqq

µ´pIpuqq
Znpuq du, (37)

where

@ t ě 0, Mptq “
?

2

ż τI^t

0
Znpuq dW puq.

Since M B pMptqqtě0 is a continuous martingale, up to enlarging the underlying probability space,

we can find a standard Brownian motion ĂW B pĂW ptqqtě0 so that

@ t ě 0, Mptq “ ĂW

ˆ

2

ż τI^t

0
Z2npuq du

˙

.

The trajectories of ĂW are a.s. of order α (see e.g. Chapter 1 of Revuz and Yor [13]), so the same is
true for M , since the mapping R` Q t ÞÑ

şτI^t
0 Z2npuq du is Lipschitzian (these statements hold a.s.,

i.e. the corresponding “constants” are random). The mapping R` Q t ÞÑ
şτI^t
0 nZ2n´1puq ´ 1 du is

also Lipschitzian, so according to (37), it remains to bound the term
şt
s

µ´pIpuqq

µ´pIpuqq
Znpuq du. This is

done via Cauchy-Schwartz’ inequality, for s, t P rpτ , τIs:

ˇ

ˇ

ˇ

ˇ

ż t

s

µ´pIpuqq

µ´pIpuqq
du

ˇ

ˇ

ˇ

ˇ

ď

d

ż t

s
µ´pIpuqq

2 du

d

ż t

s

Z2npuq

µ2´pIpuqq
du

ď max
uPrpτ ,τI s

|Znpuq|

µ´pIpuqq

d

ż τI

0
µ´pIpuqq

2 du
?
t´ s.

The quantity maxuPrpτ ,τI s |Z
npuq| is finite by continuity of Z and maxuPrpτ ,τI s 1{µ´pIpuqq is finite due

to the fact that the Bessel process of dimension 3 R´ does not hit zero once it has left 0 (this

the reason for the introduction of pτ). Since on E ,
b

şτI
0 µ´pIpuqq

2 du is also finite, we deduce the

trajectory pZptqqtPrpτ ,τI s is Hölder of order α. In particular, there exists a (random) constant C ą 0
such that for all

@ s P rpτ , τIs, |Zs| “ |Zs ´ ZτI | ď C |τI ´ s|
1{4 .

We deduce that on E ,

ς´ ě 2

ż τI

pτ
µ´pZpsqq

2 ds

“ 2

ż τI

pτ
v´pZpsqq

2 ds

“ 2

ż τI

pτ
expp´2pZ1´2npsq ` 1q{p2n´ 1qq ds

ě 2

ż τI

pτ
expp´2Z1´2npsq{p2n´ 1qq ds

ě 2

ż τI´pτ

0
expp2C1´2nsp1´2nq{4{p2n´ 1qq ds

“ `8,

in contradiction with the definition of E . Since all the above assertions are a.s., we get that E is
negligible.
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Finally, the equality θ´p`8q “ τI is a consequence of the (strict) monotonicity of the mapping

r0, τIq Q θ ÞÑ
şθ
0 µ´pBIpsqq

2 ds.
�

Remark 16 As a consequence of Corollary 15, we have

lim
tÑτI´

µ´pIptqq “ `8. (38)

It suggests the following behavior for approximations: for ε ą 0, consider the elliptic generator
Lε B px

2n ` εqB2 ` B (not to be mistaken with the reflecting generator introduced in the proof of
Theorem 13). The associated speed function µε is defined by

@ x P R, µεpxq B
1

x2n ` ε
exp

ˆ

´

ż x

´1

1

u2n ` ε
du

˙

.

It is also possible to define dual processes pIεptqqtě0 with values in the set of closed intervals in
the extended line r´8,`8s (except the singletons t´8u and t`8u). Assume that Iεp0q is a fixed
element of I´. Then we guess that

lim
εÑ0`

µεpIεpτεqq “ `8,

where τε B inftt ą 0 : 0 P Iεptqu (or at least with τε B inftt ą 0 : η P Iεptqu, for all fixed η ą 0).
˝

Due to (29), the processes X and I can be coupled in the following way:

Theorem 17 Let m0 be a probability distribution on I´ and consider m0 B m0Λ´. There exists
a coupling of X with initial distribution m0 and of I with initial distribution m0 such that for any
t ě 0, we have on tτI ą tu,

LpXptq|Ir0, tsq “ Λ´pIptq, ¨q. (39)

Furthermore, the construction of I from X is adapted.

With the above coupling, we get that τI “ τ0, the hitting time of 0 byX seen in the introduction:

Proposition 18 In addition to (30), we have

lim
tÑτI´

Xptq “ 0.

Proof

Since a.s., for all t P r0, τIq, we have Xptq ď Zptq, it follows that τI ď τ0. To see the converse
inequality, define for any ε ą 0,

τε B inftt ě 0 : Zptq ě ´εu.

We have

lim
εÑ0`

τε “ τ0,

thus by continuity of the the trajectories of X, a.s.

lim
εÑ0`

Xpτεq “ XpτIq.
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To get XpτIq “ 0, it is sufficient to check that Xpτεq converges in probability toward 0 as ε goes
to 0`. The relation (39) is also true when t is replaced by a stopping time for I (see Diaconis and
Fill [4]), so we have

LpXpτεq|Ir0, τεsq “ Λ´pIpτεq, ¨q.

It follows that for any given η ą 0,

PrXpτεq P r´η, 0s|Ir0, τεsq “ Λ´pIpτεq, r´η, 0sq.

Taking expectation, we deduce that

PrXpτεq P r´η, 0ss “ ErΛ´pIpτεq, r´η, 0sqs.

Note that we have Λ´pIpτεq, r´η, 0sq ď Λ´pr´8, Zpτεqs, r´η, 0sq, so by dominated convergence, (6)
implies that

lim
εÑ0`

PrXpτεq P r´η, 0ss “ ErΛ´pIpτεq, r´η, 0sqs “ 0,

as desired.
�

In general, we cannot conclude that limtÑpτ0q´ Y ptq “ 0 (convergence which should be suffi-
ciently slow to be compatible with (38)), e.g. if we started with Y p0q “ ´8, then Y ptq “ ´8 for
all t P r0, τ0q. Anyway, Proposition 18 enables to set pY pτ0q, Zpτ0qq B p0, 0q while preserving the
validity of (39). See also Remark 2, where Λ is just Λ´ in (6).

Next we extend the process I after time τ0 as in Theorem 5, starting from p0, 0q. Note that
the Markov kernel Λ from I´ \ I` to R defined in (2), is obtained by imposing that Λ “ Λ´
on I´ ˆ BpRq and Λ “ Λ` on I` ˆ BpRq. Taking into account this observation, we can merge
Theorems 9 and 17 and Corollary 12 into Theorem 1.

Remark 19 Corollary 11 is still valid, replacing R` by R. Indeed, the unique invariant measure
remains π, the probability measure defined before Corollary 11. The first time I hits p0,`8q is a
strong stationary time, as soon as it is finite.

˝

To deduce the density part of Hörmander’s theorem, stating that for any t ą 0, LpXptqq is
absolutely continuous with respect to the Lebesgue measure on R, it remains to show the next
result:

Lemma 20 For any t ą 0, we have PrIptq “ p0, 0qs “ 0.

Proof

According to the previous considerations, we have for t ą 0, a.s.

tIptq “ p0, 0qu “ tXptq “ 0u “ tτ0 “ tu.

To prove that Prτ0 “ ts “ 0, up to conditioning with respect toXp0q, we can assume thatXp0q “ x0
for some x0 P R. When x0 ě 0, the previous section shows that PrXptq “ 0s “ 0 for all t ą 0. So
assume that x0 ă 0 and decompose τ0 “ rτ ` pτ , with

rτ B inftt ě 0 : Xptq “ x0{2u,

pτ B inftt ě 0 : Xprτ ` tq “ 0u.

Due to the strong Markov property of X, rτ and pτ are independent. Thus to get that the law of τ0
has no atom, it is sufficient to see that Lprτq has no atom. By contradiction, assume there exists
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s ą 0 such that Prrτ “ ss ą 0. We would have PrXpsq “ x0{2s ą 0. Couple X with I “ pY, Zq
starting from px0, x0q as in Theorem 17. Taking into account the equality τ0 “ τI and (39), we
have

PrXpsq “ x0{2s “ PrXpsq “ x0{2, τ0 ą ss

“ PrXpsq “ x0{2, τI ą ss

“ ErEr1Xpsq“x0{2|Ir0, sss1τIąss
“ ErΛ´pIpsq, x0{2q1τIąss
“ 0,

because for s P p0, τIq, Λ´pIpsq, ¨q is absolutely continuous with respect to the Lebesgue measure.
This is the wanted contradiction.

�

4 On the circle

In the circle framework presented in the introduction, we begin by studying X and its dual I on
each of the segments Ik, with k P ZN . The global behavior of pX, Iq is deduced by putting together
the obtained informations, similarly to what was done in the previous section.

Let I be one of the segments Ik, for k P ZN . To simplify the notation, we see I as a subset of R
and up to an affine transformation, we assume that the interior of I is p0, 1q (where the boundaries
0 and 1, may or not be the same in T). There are four possibilities for the status of the boundaries
of I, that we investigate below. First we recall some classical definitions, valid in the four cases.
To the restriction on I of the generator L defined in (7), we associate its scale and speed functions:

@ x P p0, 1q, σpxq B exp

˜

´

ż x

1{2

bpuq

apuq
du

¸

, (40)

µpxq B
1

apxqσpxq
. (41)

The interest of these functions is that on p0, 1q, we can write

L “
1

µ
B

ˆ

1

σ
B

˙

. (42)

The corresponding scale and speed measures, also written σ and µ, are given by

@ z ě y P p0, 1q, σpry, zsq “

ż z

y
σpxq dx,

µpry, zsq “

ż z

y
µpxq dx.

With the notation of Chapter 15 from Karlin and Taylor [10], define

Σp0q B

ż 1{2

0
σpp0, uqqµpuqdu, Np0q B

ż 1{2

0
µpp0, uqqσpuqdu,

Σp1q B

ż 1

1{2
σppu, 1qqµpuqdu, Np1q B

ż 1

1{2
µppu, 1qqσpuqdu.

The finiteness or not of Σp0q and Np0q determine the status of the boundary 0 with respect to
the diffusion X associated to L, seen from I, and similarly for 1. To get these status of the
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boundaries, as well as their orders of ellipticity, we only need the asymptotic behavior of a and b
near the boundaries. That is why we assumed

?
a to be smooth, so that by considering expansions

of
?
a near the boundaries, we can come back to the computations made in Sections 2 and 3.

Probably these computations can be extended to more general positive exponents n, in particular
with n “ 1{2 we would only need to assume that a is smooth. We refrained from this generality,
just to avoid the emergence of singularities in the formulation of Hörmander’s condition.

Define I the set of compact subsegments included in I and S the set of singletons from I.
Consider the Markov kernel Λ from I to r0, 1s:

@ ry, zs P I, Λpry, zs, ¨q B

$

&

%

δy , if y “ z,

µpry,zsX¨q
µpry,zsq , otherwise.

‚ Case (C1): I “ r0, 1s, namely bp0q ą 0 and bp1q ă 0, by considering the behavior of µ and σ
near 0 and 1, we compute that Σp0q “ `8, Np0q ă `8, Σp1q “ `8 and Np1q ă `8, so that 0
and 1 are entrance boundaries for X. It follows that under the initial condition Xp0q “ x0, where
x0 is fixed in r0, 1s, the process X stays forever in r0, 1s and, more precisely, in p0, 1q for positive
times. Since limxÑ0`

µpxq “ 0 “ limxÑ1´
µpxq, the measure µ has a finite weight over I. It is also

clear that µ is positive on p0, 1q. It justifies the above definition of Λ and enables to define π as
the normalization of µ into a probability measure, which is just Λpr0, 1s, ¨q.

As in Section 2 and in [12], it is possible to construct a I-valued dual process I B pIptqqtě0,
so that Theorem 1 is valid. It follows that for any t ą 0, LpXptqq is absolutely continuous with
respect to µ (or equivalently to the Lebesgue measure restricted to r0, 1s), because S is an entrance
boundary for I. More precisely, note that µ satisfies (50) with c “ 0, so according to Appendix A,
I can be described in the following way. Writing I B pY,Zq B ppY ptq, Zptqqtě0, the processes Y
and Z are solutions, up to the time (finite a.s.) when either Y hits 0 or Z hits 1, of the s.d.e.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dY ptq “

ˆ

a1pY ptqq ´ bpY ptqq ´ 2

?
apY ptqqµpY ptqq`

?
apZptqqµpZptqq

µprY ptq,Zptqsq

a

apY ptqq

˙

dt

´
a

2apY ptqq dW ptq,

dZptq “

ˆ

a1pZptqq ´ bpZptqq ` 2

?
apY ptqqµpY ptqq`

?
apZptqqµpZptqq

µprY ptq,Zptqsq

a

apZptqq

˙

dt

`
a

2apZptqq dW ptq.

(43)

where pW ptqqtě0 is a standard Brownian motion. Assume for instance that Y hits 0 before Z hits
1, after the corresponding hitting time and up to the time Z hits 1, Z is solution of the s.d.e.

dZptq “

ˆ

a1pZptqq ´ bpZptqq ` 2
µpZptqq

µpr0, Zptqsq
apZptqq

˙

dt`
a

2apZptqq dW ptq. (44)

Once Z hits 1, I remains at r0, 1s. Furthermore, the covering time

τ B inftt ě 0 : Iptq “ r0, 1su

is finite a.s. and is a strong stationary time for X. Recall that the separation discrepancy between
two probability measures m and π is defined in general via

spm,πq B ess inf
π

ˆ

1´
dm

dπ

˙

,

where dm{dπ is the Radon-Nikodym derivative of the absolutely continuous part of m with respect
to π. We have the following bound, due to Diaconis and Fill [4] (in the case of finite Markov chains,
but valid in general):

@ t ě 0, }LpXptqq ´ π}tv ď spLpXptqq, πq ď Prτ ě ts, (45)
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where the norm in the l.h.s. is the total variation. In particular, Xptq converges in law toward π
for large t ě 0.

‚ Case (C2): I “ r0, 1q, namely bp0q ą 0 and bp1q ą 0, we get that Σp0q “ `8, Np0q ă `8,
Σp1q ă `8 and Np1q “ `8, so that 0 is an entrance boundary and 1 an exit boundary for
X. It follows that under the initial condition Xp0q “ x0, where x0 is fixed in r0, 1q, the process
X ends up exiting r0, 1q by hitting 1 in finite time, say at τ B inftt ě 0 : Xptq “ 1u. We
have limxÑ0`

µpxq “ 0 (but limxÑ1´
µpxq “ `8), so any compact segment included into I has a

finite weight, which is positive if it is not reduced to a singleton. Thus the Markov kernel Λ is
well-defined.

As in Section 3, it is possible to construct a I-valued dual process I B prY ptq, ZptqsqtPr0,τq, so
that Theorem 17 is valid, see also Appendix A with c “ 0. Up to the time τ , the processes Y and
Z are solutions to (43) (or (44), after Y has hit 0, this may happen or not before Z hits 1). We
have a.s.

lim
tÑτ´

Zptq “ 1,

and the natural way to extend I after time τ is to define Ipτq “ t1u and to let I start from there
into the corresponding segment. Note that for any time t ě 0, we can write

LpXpt^ τqq “ Prτ ă tsLpXptq|τ ă tq ` Prτ ě tsδ1,

with

LpXptq|τ ă tq “

ż

Λpι, ¨qPrIptq P dι|τ ă ts,

so that the conditional law in the l.h.s. is absolutely continuous with respect to the Lebesgue
measure for t ą 0. As in Lemma 20, we show that for any given t ě 0, Prτ “ ts “ 0.

‚ Case (C3): I “ p0, 1s, namely bp0q ă 0 and bp1q ă 0, we get that Σp0q ă `8, Np0q “ `8,
Σp1q “ `8 and Np1q ă `8, so that 0 is an exit boundary and 1 an entrance boundary for X.
This situation can be described as in the above case I “ r1, 0q, by symmetry.

‚ Case (C4): I “ p0, 1q, namely bp0q ă 0 and bp1q ą 0, we get that Σp0q ă `8, Np0q “ `8,
Σp1q ă `8 and Np1q “ `8, so that 0 and 1 are exit boundaries for X. It follows that under
the initial condition Xp0q “ x0, where x0 is fixed in p0, 1q, the process X ends up exiting p0, 1q by
hitting 0 or 1 in finite time, say τX B inftt ě 0 : Xptq P t0, 1uu. Since µ as function is continuous
and positive, any compact segment included into I has a finite weight, which is positive if it is not
reduced to a singleton. Again the Markov kernel Λ is well-defined.

As in Section 3, it is possible to construct a I-valued dual process I B prY ptq, ZptqsqtPr0,τIq,
where τI ą 0 is the explosion time, so that Theorem 17 is valid, see also Appendix A with c “ 0.
Up to the time τI , the processes Y and Z are still solutions to (43). A priori the explosion time τI
is such that τI ď τX , but the arguments of Proposition 18 show that

lim
tÑτI´

Y ptq “ 0 or lim
tÑτI´

Zptq “ 1,

and τI “ τX .
When limtÑτI´ Y ptq “ 0 and limtÑτI´ Zptq ă 1, it is safe to set IpτIq “ t0u. In this situation we

have XpτIq “ 0, according to the proof of Proposition 18. We can thus let pX, Iq start from p0, t0uq
into the segment containing 0. Symmetrically when limtÑτI´ Y ptq ą 0 and limtÑτI´ Zptq “ 1, we
set IpτIq “ t1u and we have XpτIq “ 1, so we can let pX, Iq start from p1, t1uq into the segment
containing 1.
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Consider now the case where limtÑτI´ Y ptq “ 0 and limtÑτI´ Zptq “ 1. When furthermore we
have

lim
tÑτI´

ΛpIptq, ¨q “ δ0 or lim
tÑτI´

ΛpIptq, ¨q “ δ1, (46)

again we can respectively define IpτIq “ t0u and IpτIq “ t1u.
But what should we do when the limit of ΛpIptq, ¨q, as t goes to τI´, charges both 0 and 1, or

worse, if this limit does not exist? In fact, we believe the former alternative is always true (killing
even the possibility of (46)):

Conjecture 21 In the Case (C4), we have a.s.

lim
tÑτI´

ΛpIptq, ¨q “ LpXpτIqq.

˝

Whether this assertion is true or wrong, it is always possible to look at XpτIq, which is either 0 or
1, and to set IpτIq “ tXpτIqu. This idea was also used in Copros [2], in the context of denumerable
Markov processes. Immediately after τI , X and I will evolve in the segment containing tXpτIqu.
This choice leads to a dual process I satisfying Theorem 1.

Remark 22 One does not need to wait that X pass through 0 or 1 for making an observation
of X and subsequently concentrate I to a singleton: at any stopping time ζ for X, one can decide
to change the value of I and impose that Ipζq “ tXζu. This quantum physics sounding property
does not impact condition (5), but of course it may destroy condition (4), for instance if ζ is
the minimum of a positive deterministic time with τX . Note that the observation may also be
imperfect: assume that p0, 1q is decomposed into a measurable partition \sPSAs, where S is a
denumerable index set, and that we observe that Xpζq P As, then we can replace Ipζq by IpζqXAs.
In general we are looking for the largest dual processes, so the above observation/concentration
procedure should be avoided, see Example 23 below.

˝

More precisely, let us come back to the circle setting described before Theorem 3. Consider the
segments Ik, for k P ZN , as the vertices of an oriented graph whose edges are as follows: there is
an edge from Ik to Ik`1, if yk`1 P Ik`1 and an edge from Ik`1 to Ik, if yk`1 P Ik. Except when
the segments are all of type (C2), or all of type (C3), following the oriented edges, one goes from
segments of type (C4) or springs to segments of type (C1) or sinks, after possibly visiting a
successive sequence of segments of type (C2), turning anti-clockwise, or a successive sequence of
segments of type (C3), turning clockwise. In particular, it appears that the number of springs is
the number of sinks. Inside each segment, the dual process is constructed according to its type.
From the above considerations, we get all the requirements on the dual process I presented in
Theorem 1.

Note that the segments are all of type (C2) (respectively (C3)) if and only if b is positive (resp.
negative) on N. Thus assuming the drift b does not take a fixed sign on N, whatever the starting
point, X ends up into a sink in finite time, since the exit times from segments of type (C2), (C3)
and (C4) are all a.s. finite. In this situation, for large times, the process X converges in law, the
process I converges a.s. and the limit law of X is ErΛpIp`8q, ¨qs, where Ip`8q B limtÑ`8 Iptq
(convergence taking place in finite time). Except when there is only one sink (in which case it is
possible to construct a strong stationary time, since there is a unique invariant probability measure,
namely the normalizations of the speed measure on the sink), the limit law of X depends on its
initial condition. E.g. starting from a spring, the process X have positive probabilities (depending
on the exact initial position in the spring) to exit it from the right or from the left and with the

22



same probabilities, I collapse on the right or on the left boundary. After that, I will converge
toward the closest sink following the above edges. The limit law of X is then a convex combinaison
(with the previous probabilities) of the normalizations of the corresponding speed measures.

When b has a fixed sign on N, the process I does not converge a.s. since it appears that
Iptnq “ tXptnqu for all n P N, where ptnqnPN is the unbounded increasing sequence of times t ě 0
such that Xptq P N. More precisely, assume for instance that b is positive on N, after the first time
X hits N, according to (44), we have, according to Appendix A with c “ 0,

dZptq “

ˆ

a1pZptqq ´ bpZptqq ` 2
µKptqpZptqq

µKptqpryKptq, Zptqsq
apZptqq

˙

dt`
a

2apZptqq dW ptq,

where Kptq is the unique index k P ZN such that Zptq P Ik (furthermore, we have Y ptq “ yKptq).
Thus it appears that Z becomes a Markov processes, whose behavior is quite similar to that of X
(they even coincide at each time X pass through N). The dual process I is not very helpful to
understand the convergence in law of X. Indeed, as announced in the introduction, another dual
process rI should be considered to go in this direction. It will be done in the following section.

Let us now present an example showing the above dual is not optimal with respect to the
construction of a strong stationary time.

Example 23 Consider on T B R{p2πZq, the operator L B aB2 ` bB, with

@ x P T,
"

apxq B cos2pxq,
bpxq “ sinpxq.

We have N “ 2, y0 “ π{2 and y1 “ 3π{2, so that I0 “ p´π{2, π{2q is of type (C4) and I1 “
rπ{2, 3π{2s is of type (C1). Consider the initial condition Xp0q “ 0. Due to the symmetry of I0
and of the coefficients a and b (anti-symmetric) with respect to 0, we deduce from (43) that we
have Z “ ´Y until X hits t´π{2, π{2u, say at time τ . In this situation, it appears that

lim
tÑτ´

Λpr´Zptq, Zptqs, ¨q “
1

2

`

δ´π{2 ` δπ{2
˘

.

Thus the natural extension seems to be Ipτq B t´π{2, π{2u, instead of Ipτq B tXpτqu. Indeed, in
the former case, for t ě τ , we can construct a dual process of the form

Iptq “ r´Zptq,´π{2s \ rπ{2, Zptqs,

where Z takes values in rπ{2, πs and solves the s.d.e.

dZptq “

˜

a1pZptqq ´ bpZptqq ` 2

a

apZptqqµ1pZptqq `
a

ap´Zptqqµ1p´Zptqq

µ1pr´Zptq,´π{2s \ rπ{2, Zptqsq

a

apZptqq

¸

dt

`
a

2apZptqq dW ptq

“

˜

a1pZptqq ´ bpZptqq ` 2

a

apZptqqµ1pZptqq

µ1prπ{2, Zptqsq

a

apZptqq

¸

dt`
a

2apZptqq dW ptq, (47)

where µ1 is the speed measure associated to I1 and pW ptqqtě0 is a standard Brownian motion. For
the second equality, we used the symmetry of I1 and of L (with respect to the real axis, when T is
seen as the unit circle in C). When Z hits π, I hits rπ{2, 3π{2s and the corresponding hitting time
is a strong stationary time for X.

Consider now the case where we set Ipτq “ tXpτqu and assume for instance that Xpτq “ π{2.
For t ě τ , our construction for Theorem 3 leads to a dual of the form Iptq “ rπ{2, Zptqs, where Z
takes values in rπ{2, 3π{2s and solves the s.d.e. (47). The dual process will be absorbed at I1 when
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Z hits 3π{2 and this provides a strong stationary larger than the previous one, since Z must go
through π before hitting 3π{2.

As just seen, starting from 0, this example can be brought back to the case of a diffusion on a
segment starting from its boundary. This situation is well-understood (see Fill and Lyzinski [6])
and the strong stationary time constructed in the former case is in fact sharp, namely stochastically
smaller than any other strong stationary time.

˝

For the remaining part of this section, let us assume that Conjecture 21 is true. To construct
a dual process J B pJptqqtě0 able to collapse on pairs of points, we modify the definitions given
in the introduction in the following way. Let I1 stand for the set of non-empty closed intervals
from T which are included into one of the Ik, for k P ZN and I2 the set of pairs pι1, ι2q, where
ι1, ι2 P I1 are disjoints. Now set I B I1 \ I2 and S “ S1 \ S2, with S1 B ttxu : x P Tu and
S2 B tpyk, ylq : k ­“ l P ZNu. For any α P r0, 1s, define a Markov kernel Λα from I to T by

@ ι P I, Λαpι, ¨q B

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

δxp¨q , when ι “ txu P S1,

αδykp¨q ` p1´ αqδylp¨q , when ι “ pyk, ylq P S2,

µkpιX¨q
µkpιq

, when ι P I1zS1 and ι Ă Ik,
αµkpι1X¨q`p1´αqµlpι2X¨q
αµkpι1q`p1´αqµlpι2q

, when ι “ pι1, ι2q P I2zS2, ι1 Ă Ik and ι2 Ă Il.

(48)

Then Theorem 3 can be extended into:

Theorem 24 There exists a process J B pJptqqtě0 taking values in I, whose construction is
adapted with respect to X, such that

Jp0q “ tXp0qu,

@ t ą 0, PrJptq P Ss “ 0,

@ t ě 0, LpXptq|Jr0, tsq “ ΛαpIp0qqpJptq, ¨q,

where αpIp0qq P r0, 1s only depends on Ip0q (or equivalently on Xp0q). In particular, when
LpXp0qq “ δx0 for some x0 P T, we have for any t ě 0, the decomposition

LpXptqq “

ż

Λαptx0uqpι, ¨qLpJptqqpdιq.

Proof

When Xp0q does not belong to a spring, the dual process J is the same as I in Theorem 3 and the
introduction of I2 and S2 are not necessary. When Xp0q “ x0 belongs to a spring, say Ik, let τ its
exit time from Ik and αptx0uq B Px0rXpτq P Ik´1s. Before τ , J is constructed as I in Theorem 3,
but at τ , we impose Jpτq B ptyku, tyk`1uq. Conjecture 21 enables us to see that

LpXpτq|Jr0, τ sq “ ΛαpIp0qqpJpτq, ¨q,

from which we can keep up constructing J after the time τ , by setting

@ t P r0, rτq, Jpτ ` tq B pI1ptq, I2ptqq,

rτ B inftt ě 0 : I1ptq X I2ptq ­“ Hu,

where I1 and I2 are the same as in Theorem 3, starting with I1p0q “ tyku and I2p0q “ tyk`1u,
and directed by the same Brownian motion pW ptqqtě0 in (43) and (44). When rτ ă `8 (as in
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Example 23, where it corresponds to the time Z hits π), we set Jprτ ` tq B I1prτq Y I2prτq for all
t ě 0.

�

As in Remark 2, the probability measure-valued Markov process pΛαptx0uqpJptq, ¨q is continuous
and seems the right object to consider as a dual.

The main advantage of Theorem 24 over Theorem 3, i.e. of the Markov kernel given in (48) over
the Markov kernel (8), is that it enables to extend the construction of strong time stationary times
τ, in the sense that the position Xτ is distributed according to an invariant probability measure
(maybe non longer the unique invariant probability measure as before). This is possible when Xp0q
starts from a fixed position x0 P T and when b does not take a fixed sign on N. Indeed, in this case
the dual process ends up being absorbed in a state Jp8q depending only on x0, which is either a
closed segment from tIk : k P ZNu or a disjoint union of two such segments. Since Λαptx0uqpJp8q, ¨q
is an invariant probability measure for X depending only on x0, classical arguments from Diaconis
and Fill [4] then show that the absorbing time for J is a strong stationary time.

5 The turning diffusion

Here we consider more precisely the circle situation where b has a fixed sign on N , to show
Theorem 4 and to deduce the convergence of X in law for large time.

Up to conjugacy with respect to T Q x ÞÑ ´x P T, it is sufficient to study the case where
b ą 0 on N . We begin by investigating the invariant measure for the generator L given in (7).
For k P ZN , recall that µk is the speed measure of the restriction of L on Ik. It is defined up to a
positive factor by

@ x P Ik, µkpxq B
1

apxq
exp

˜

ż

rzk,xs

bpuq

apuq
du

¸

,

where zk is a chosen point belonging to Ik and where a segment ru, vs Ă T will always be understood
as the path going from u to v anti-clockwise. For any family of non-negative numbers ppkqkPZN ,
the measure µ B

ř

kPZN pkµk satisfies µrLrf ss “ 0 for any smooth f with compact support in TzN.
But this is not sufficient for µ to be a invariant measure. Furthermore we are here looking for an
invariant probability measure and it can be easily check that µpTq “ `8, except in the trivial case
where all the pk, for k P ZN , are equal to zero. In fact, for fixed k P ZN , the restriction of L to
smooth functions with compact support in Ik is symmetric in L2pµkq but the problem at hand is
really non reversible since the diffusion X has a strong tendency to turn anti-clockwise around T.
Lemma 25 in Appendix A suggests to rather look for the solutions ηk of the equation given on the
interior of Ik by

paηkq
1 “ bηk ´ ck,

where ck is a constant. When a did not vanish on tyk, yk`1u, it is not difficult to check that the
general solution of this equation is

@ x P I̊k, ηkpxq “
1

apxq

˜

pk

ż

ryk,xs
exp

˜

ż

ru,xs

b

a
pvq dv

¸

du` qk

ż

rx,yk`1s

exp

˜

´

ż

rx,vs

b

a
pvq dv

¸¸

,

where pk and qk are two constants such that pk ` qk “ ck. If we want this expression to converge
when a does vanish on tyk, yk`1u and b is positive on tyk, yk`1u, we must take pk “ 0. It leads us
to consider

@ x P I̊k, ηkpxq “

ż

rx,yk`1s

exp

˜

´

ż

rx,vs

b

a
pvq dv

¸

.
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We compute that

lim
xÑyk`

ηkpxq “ 0 “ lim
xÑyk`1´

ηkpxq,

so define ηkpykq B 0 C ηkpyk`1q. Since we have paηkq
1 “ bηk´1, we deduce from the decomposition

(61) with c “ 1 that for any f P C8pryk, yk`1sq, we have

ηkrLrf ss “ raηkf
1s
yk`1
yk ´ rf s

yk`1
yk

“ ´pfpyk`1q ´ fpykqq.

Define the function η on T by imposing that η coincide with ηk on Ik for all k P ZN . Also denote
η the measure admitting η as density with respect to the Lebesgue measure and remark that
this density is continuous (and vanish on N ), so that ηpTq ă `8. Furthermore we have for any
f P C8pTq,

ηrLrf ss “ ´
ÿ

kPZN

fpyk`1q ´ fpykq “ 0,

namely η is invariant for L. The probability π appearing in (9) is just the normalization of η into
a probability measure.

Let us now describe the evolution of the dual process rI B prY , rZq. Assume that Xp0q “ x0 P
Ik “ ryk, yk`1q, for some k P ZN . Following (51) and (55), we begin by defining prY ptq, rZptqqtPr0,τ1q
as the solution of the s.d.e.
$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

limtÑ0`
rY ptq “ x0,

limtÑ0`
rZptq “ x0,

drY ptq “

ˆ

a1prY ptqq ´ bprY ptqq ` 2

ηprY ptqq
´ 2

?
aprY ptqqηprY ptqq`

?
ap rZptqqηp rZptqq

ηprrY ptq, rZptqsq

b

aprY ptqq

˙

dt

´

b

2aprY ptqq dW ptq,

d rZptq “

ˆ

a1p rZptqq ´ bp rZptqq ` 2

ηp rZptqq
` 2

?
aprY ptqqηprY ptqq`

?
ap rZptqqηp rZptqq

ηprrY ptq, rZptqsq

b

ap rZptqq

˙

dt

`

b

2ap rZptqq dW ptq,

for t P p0, τ1q, where τ1 is the first time either rY hits yk or rZ hits yk`1.
First, assume that rY pτ1q “ yk. We extend the process prY , rZq after time τ1 by letting rY ptq “ yk,

for all t ě τ1, and by solving for rZ the s.d.e., for t P rτ1, τ2q,

d rZptq “

˜

a1p rZptqq ´ bp rZptqq `
2

ηp rZptqq
` 2

ηp rZptqq

ηpryk, rZptqsq
ap rZptqq

¸

dt`

b

2ap rZptqq dW ptq, (49)

where τ2 is the first time after τ1 that rZ hits yk`1. This time is a.s. finite, because yk`1 is an exit
boundary for rZ (as well as for X) on ryk, yk`1q. Next for t P rτ2, τ3q, we ask that rZ solves again
the s.d.e. (49), where τ3 is the first time after τ2 that rZ hits yk`2. This time is a.s. finite, because
yk`2 is an exit boundary for rZ on ryk`1, yk`2q. We keep solving this equation until rZ ends up
hitting yk, say at time τ, which is also a.s. finite. After τ, we take rI to be equal to T.

Since the generator of rI B prY , rZq is intertwined with L through rΛ, we construct a coupling of
rI with the diffusion X, associated with the generator L, so that

rIp0q “ tXp0qu,

@ t ě 0, LpXptq|rIr0, tsq “ rΛprIptq, ¨q.

Then we get that τ is a strong stationary time for X.
It follows that X converges toward π in separation and in total variation in large time, due to

the general bounds (45). As pointed out by the referee, since by compactness the above hitting
times can be bounded uniformly with respect to the starting point, these convergences are uniform
with respect to the starting point, implying an exponential convergence.
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A About segment-valued dual processes

Putting together considerations from [12] and [3], we present here some computations that were
used throughout the paper.

On p0, 1q, consider a generator L B aB2` bB, where a ą 0 and b are smooth functions on p0, 1q.
Let η ą 0 be a smooth function on p0, 1q satisfying

paηq1 “ bη ´ c, (50)

where c is a constant. Then the measure (still denoted η) admitting η with respect to the Lebesgue
measure λ on p0, 1q is invariant for L in the following sense:

Lemma 25 For any f P C8c p0, 1q, the space of smooth functions with compact support inside
p0, 1q, we have ηrLrf ss “ 0. Furthermore, η is reversible with respect to L, in the sense that for all
f, g P C8c p0, 1q, ηrgLrf ss “ ηrfLrgss, if and only if c “ 0.

Proof

These results are immediate consequences of the following integration by parts: for all f, g P
C8c p0, 1q,

ηrgLrf ss “

ż 1

0
aηgf2 ` bηgf 1 dλ

“

ż 1

0
´paηgq1f 1 ` bηgf 1 dλ

“

ż 1

0
´paηq1gf 1 ´ aηg1f 1 ` bηgf 1 dλ

“ ´

ż 1

0
ag1f 1 dη ` c

ż

gf 1 dλ.

When g “ 1 (the mapping always taking the value 1, here on p0, 1q), the r.h.s. is equal to

c

ż 1

0
f 1 dλ “ 0,

showing the first assertion of the above lemma. Concerning the second one, the reversibility is
equivalent to

@ f, g P C8c p0, 1q, c

ż

gf 1 dλ “ c

ż

fg1 dλ.

By another integration by parts, the r.h.s. is equal to ´c
ş

gf 1 dλ, so we must have c
ş

gf 1 dλ “ 0,
fo all f, g P C8c p0, 1q and this is true if and only if c “ 0.

�

Let be given y0 ă z0 P p0, 1q and β a smooth function on p0, 1q that will be specified later, in
(55). Consider a solution pY, Zq B pY ptq, ZptqqtPr0,τq of the s.d.e.

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Y p0q “ y0,
Zp0q “ z0,

dY ptq “

ˆ

a1pY ptqq ´ βpY ptqq ´ 2

?
apY ptqqηpY ptqq`

?
apZptqqηpZptqq

ηprY ptq,Zptqsq

a

apY ptqq

˙

dt

´
a

2apY ptqq dW ptq,

dZptq “

ˆ

a1pZptqq ´ βpZptqq ` 2

?
apY ptqqηpY ptqq`

?
apZptqqηpZptqq

ηprY ptq,Zptqsq

a

apZptqq

˙

dt

`
a

2apZptqq dW ptq,

(51)
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where the explosion time τ is such that either limtÑτ´
Zptq ´ Y ptq “ 0, or limtÑτ´

Y ptq “ 0 or
limtÑτ´

Zptq “ 1. Denote 4 B tpy, zq : 0 ă y ă z ă 1u. For any f P C8c p0, 1q, define the
elementary observable

@ py, zq P 4, Ff py, zq B

ż z

y
fpxq ηpdxq. (52)

It will be also convenient to consider for py, zq P 4,

Gf py, zq B fpzq
a

apzqηpzq ` fpyq
a

apyqηpyq,

Hpy, zq B
G1py, zq

F1py, zq
.

We compute that for any f P C8c p0, 1q and py, zq P 4,

ByFf py, zq “ ´fpyqηpyq,

BzFf py, zq “ fpzqηpzq,

B2yFf py, zq “ ´pfηq1pyq,

B2zFf py, zq “ pfηq1pzq,

BzByFf py, zq “ 0.

It follows from Itô’s formula that

dFf pY ptq, Zptqq “ BzFf pY ptq, ZptqqdZptq ` ByFf pY ptq, ZptqqdY ptq `
1

2
B2zFf pY ptq, Zptqqd xZy ptq

`
1

2
B2yFf pY ptq, Zptqqd xY y ptq ` BzByFf pY ptq, Zptqqd xY, Zy ptq

“ BzFf pY ptq, ZptqqdZptq ` ByFf pY ptq, ZptqqdY ptq ` B
2
zFf pY ptq, ZptqqapZptqqdt

`B2yFf pY ptq, ZptqqapY ptqqdt

“ pfηqpZptqqdZptq ´ pfηqpY ptqqdY ptq ` pfηq1pZptqqapZptqqdt´ pfηq1pY ptqqapY ptqqdt

“ dMf ptq `ApY ptq, Zptqqdt, (53)

where Mf B pMf
t qtPr0,τq is the local martingale defined by

@ t P r0, τq, Mf ptq B

ż t

0
pfηqpZpsqq

a

2apZpsqq ` pfηqpY psqq
a

2apY psqq dW psq (54)

“
?

2

ż t

0
Gf pY psq, Zpsqq dW psq,

and where

Apy, zq B pfηqpzq
´

a1pzq ´ βpzq ` 2Hpy, zq
a

apzq
¯

´ pfηqpyq
´

a1pyq ´ βpyq ´ 2Hpy, zq
a

apyq
¯

`pfηq1pzqapzq ´ pfηq1pyqapyq

“ pfaηq1pzq ´ pfaηq1pyq ´ pβfηqpzq ` pβfηqpyq ` 2Hpy, zqGf py, zq

“ pf 1aηqpzq ´ pf 1aηqpyq ` pfppaηq1 ´ βηqqpzq ´ pfppaηq1 ´ βηqqpyq ` 2Hpy, zqGf py, zq.
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The first term of the r.h.s. can be transformed into

pf 1aηqpzq ´ pf 1aηqpyq “

ż

ry,zs
pf 1aηq1pxq dx

“

ż

ry,zs
paηqpxqf2pxq ` paηq1f 1pxq dx

“

ż

ry,zs
paηqpxqf2pxq ` pbηqpxqf 1pxq dx´

ż

ry,zs
cf 1pxq dx

“

ż

ry,zs
Lrf spxq ηpdxq ´ cpfpzq ´ fpyqq

“ FLrf spy, zq ´ cpfpzq ´ fpyqq,

where we took into account (50). We deduce that

Apy, zq “ FLrf spy, zq ` pfppaηq
1 ´ βη ´ cqqpzq ´ pfppaηq1 ´ βη ´ cqqpyq ` 2Hpy, zqGf py, zq

“ FLrf spy, zq ` pfppb´ βqη ´ 2cqqpzq ´ pfppb´ βqη ´ 2cqqpyq ` 2Hpy, zqGf py, zq.

It leads us to consider

β B b´ 2
c

η
, (55)

so that

Apy, zq “ FLrf spy, zq ` 2Hpy, zqGf py, zq. (56)

Remark 26 Let us make the link with the formulation adopted in [3] in the context of Riemannian
geometry in dimension strictly larger than 1. Endow p0, 1q with the Riemannian metric given by
1{a (so that the norm of the usual unit vector 1 above x P p0, 1q is 1{

a

apxq, or equivalently,
˘
a

apxq are the unit vectors above x in the new Riemannian metric). Let d be the corresponding
distance and for any A Ă p0, 1q and ε ą 0, let Aε B tx P p0, 1q : dpx,Aq ď εu, the ε-enlargement of
A. Then we have for any f P C8c p0, 1q and py, zq P 4,

Bε

ż

ry,zsε

f dη

ˇ

ˇ

ˇ

ˇ

ˇ

ε“0

“ Gf py, zq

“

ż

Bry,zs
f dη, (57)

where η is the (non-σ-finite) measure given by

η B
ÿ

xPp0,`8q

a

apxqηpxqδx (58)

(η will only serve to measure the boundaries Bry, zs “ ty, zu of segments ry, zs, with py, zq P 4,
we used the symbol

ş

in (57) instead of a sum over the two elements of Bry, zs to adopt the same
notation as in higher dimensional Riemannian geometry). It appears that

B2ε

ż

ry,zsε

f dη

ˇ

ˇ

ˇ

ˇ

ˇ

ε“0

“

ż

Bry,zs
x∇f, νy ` x∇U, νy dη, (59)

where x¨, ¨y and ∇ are relative to the considered Riemannian metric and where ν is the “unit exterior
normal vector” on Bry, zs. The function U B lnpdη{dγq is the logarithm of the Radon-Nikodym
density of η with respect to the Riemannian measure γ, which admits itself the density 1{

?
a with
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respect to the usual Lebesgue measure. Thus we have dη{dγ “ η, where by a traditional abuse of
notation, we also interpret η as the function

?
aη. In the usual definitions in higher dimensional

Riemannian geometry (see e.g. Proposition 1.2.1 of Mantegazza [11]), the r.h.s. of (59) should
contain a supplementary term

ş

fρ dη where ρ would be the “mean” curvature on the boundary
Bry, zs with respect to the unit exterior normal vectors. Thus we recover that in dimension 1, the
mean curvature of a boundary of dimension 0 vanishes: ρ ” 0. To see the coherence of (51) with
the formulation of [3] in the context of diffusions in Riemannian manifolds of dimension larger or
equal to 2, we should check that

a1 ´ β “ ´x∇U ´ bH, νy ν ´ ρν, (60)

where bH is such that the Helmoltz-Hodge decomposition b “ ∇U ` bH holds (note the change of
sign with respect to (60)), i.e.

bH “ b´∇U
“ b´ aU 1

“ b´ a
p
?
aηq1
?
aη

“ b´ a
η1

η
´
a1

2
.

It follows that the r.h.s. of (60) is equal to

´x∇U ´ bH, νy ν “ bH ´∇U
“ 2bH ´ b

“ b´ 2a
η1

η
´ a1

“ b´ 2

ˆ

paηq1

η
´ a1

˙

´ a1

“ a1 ´ β,

as wanted, where we used (50) and (55).
Remark that in general the Helmoltz-Hodge decomposition b “ ∇U ` bH is different from the

decomposition b “ paηq1{η ` c{η, which enables to write

L “
1

η
BpaηBq `

c

η
B, (61)

where 1
ηBpaηBq is symmetric in L2pµq and c

ηB is skew-symmetric in L2pµq.
˝

Let pD,Lq be the generator L of pY,Zq in the sense of (local) martingale problems. It follows
from (53) and (56) that L acts on the elementary observable Ff , with f P C8c p0, 1q, by

LrFf spy, zq “ FLrf spy, zq ` 2Hpy, zqGf py, zq.

Furthermore, the carré du champs ΓL associated to L is such that the bracket of the martingale
Mf defined in (54) satisfies

@ t P r0, τq,
A

Mf
E

t
“ 2

ż t

0
ΓLrf, f spY psq, Zpsqq ds.

It follows by polarization that all f, g P C8c p0, 1q,

@ py, zq P 4, ΓLrFf , Fgspy, zq “ Gf py, zqGgpy, zq.
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Since pY,Zq is a diffusion (namely a Markov process with continuous trajectories), the generator
L and the carré du champs ΓL extend in the following way (see e.g. the book of Bakry, Gentil
and Ledoux [1]). Consider the algebra A consisting of the composed observables of the form
F B fpFf1 , ..., Ffnq, where n P Z`, f1, ..., fn P C8c p0, 1q and f : RÑ R is a C8 mapping, with R an
open subset of Rn containing the image of 4 by pFf1 , ..., Ffnq. Then A is included into D and since
L is a differential operator of order 2 without terms of order 0, we have for any F B fpFf1 , ..., Ffnq
and G B gpFg1 , ..., Fgmq belonging to A,

LrFs “
ÿ

jPJnK

BjfpFf1 , ..., FfnqLrFfj s `
ÿ

k,lPJnK

Bk, lfpFf1 , ..., FfnqΓLrFfk , Ffls,

ΓLrF,Gs “
ÿ

lPJnK, kPJmK

BlfpFf1 , ..., FfnqBkgpFg1 , ..., FgmqΓLrFfl , Fgks

(where JnK B t1, 2, ..., nu).
Define a Markov kernel Λ from 4 to p0, 1q by

@ py, zq P 4, @ A P Bp0, 1q, Λpry, zs, Aq B
ηpry, zs XAq

ηpry, zsq
.

Note that for any f P C8c p0, 1q, we have Λrf s “ Ff{F1, so Λrf s P A and the above formulas lead
without difficulty to the intertwining relation

@ py, zq P 4, @ f P C8b p0, 1q, LrΛrf sspy, zq “ ΛrLrf sspy, zq. (62)

Furthermore, by considering observables of the form fpF1q, where f P C8pRq, it appears that
pηprY ptq, ZptqsqqtPr0,τq is a (possibly stopped) time-changed Bessel process of dimension 3. This
property enables us to let the process pY,Zq start from the singleton py0, y0q, by passing to the
limit as z0 goes to y0` and to see that the set of the singletons is an entering boundary for pY,Zq,
see Section 2 from [12]. Under the assumption that LpY0, Z0qΛ “ LpX0q, proceeding as in Section 4
from [12], we construct a coupling of the diffusion X associated to the generator L with the process
pY, Zq, so that

@ T ě 0, LpXt|pYt, ZtqtPr0,T sq “ ΛppYT , ZT q, ¨q. (63)

Alternatively, conditioning furthermore by the initial condition X0, we can also couple X and
pY,Zq so that Y0 “ X0 “ Y0, in addition to (63).

When ηpr0, xsq ă `8 for (one or all) x P p0, 1q, in the above considerations Y can be fixed
equal to 0 (and symmetrically, Z can be fixed equal to 1, when ηprx, 1sq ă `8 for x P p0, 1q). In
particular, we can impose this restriction once Y has hit 0 (or Z has hit 1). Then the natural
extensions of the previous results hold.
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