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Duality and hypoellipticity: one-dimensional case studies

Laurent Miclo

Institut de Mathématiques de Toulouse, UMR 5219
Université de Toulouse and CNRS, France

Abstract

To visualize how the randomness of a Markov process X is spreading, one can consider subset-
valued dual processes I constructed by intertwining. In the framework of one-dimensional diffu-
sions, we investigate the behavior of such dual processes I in the presence of hypoellipticity for X.
The Pitman type property asserting that the measure of I is a time-changed Bessel 3 process is
preserved, the effect of hypoellipticity is only found at the level of the time change. It enables to
recover the density theorem of Hormander in this simple degenerate setting, as well as to construct
strong stationary times by introducing different dual processes.

Keywords:  One-dimensional diffusions, hypoellipticity, duality by intertwining, Bessel 3
process, Hormander’s density theorem, strong stationary times.
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1 Introduction

The technique of duality by intertwining associates to a Markov process X a dual Markov process,
which here will be taking subsets of the state space of X as values, showing how randomness is
spreading. In particular, this approach offers decompositions of the time-marginal laws of X that
are useful to deduce that they admit a density with respect to a reference measure, at positive
times. In our program to recover Hormander’s theorem by following this probabilistic way, we
investigate here the effects of hypoellipticity on duality, by considering the simple one-dimensional
framework.

We begin by studying a toy model on R. Consider the hypoelliptic stochastic differential
equation (s.d.e.) on X = (X(t))se[o,r), With 7 € (0, +00] the potential explosion time,

Viel0,7), dX(t) = +2X"(t)dB(t)+ dt, (1)

where n € N := {1,2,3, ...} and where (B(t));>0 is a standard Brownian motion.
In the next section, we will check that X is hypoelliptic of order n at 0 and that 7 is a.s. infinite.
Let Z stand for the set of nonempty closed intervals from [—o0, +o0], which are either included
into [—00,0) or into [0, +00] and which are different from {—oo} and {+00}. Denote S the set of
singletons from Z, i.e. S := {{z} : = € R}. Consider 4 an pu_ the speed measures associated to X
on R, and (—0,0) (whose definition will be recalled in Sections 2 and 3, respectively). We define
a Markov kernel A from 7 to R by

dz(A) , when ¢ is the singleton {z},

VieZ VAeBR), A(,A) = HL(,LEZ)A) , when ¢ € 7\S is included into [—o0,0), (2)

%&A) , when ¢ € Z\S is included into [0, +o0],

where B(R) stands for the set of Borel subsets from R and 6, for the Dirac mass at . We will
check later on that the above expression are well-defined, as the denominators are finite.
Our first goal is the following construction of a dual process I with respect to X, a solution of

(1):

Theorem 1 There exists a process I = (I(t))i=0 taking values in T such that

1(0) = {X(0)}, (3)
Vt>0, PlI(t)eS] = 0 (4)
ViE=0,  LXOUI0,4]) = AUI®),), (5)

where the conditional law in the l.h.s. is with respect to the trajectory I10,t] = (I(s))se[o,- In
particular, we have for any t = 0, the decomposition

LX) = f Ae,) £(I()(de),

and the r.h.s. is absolutely continuous with respect to the Lebesgue measure for t > 0.

As implied by (4), I immediately grows into a segment with non-empty interior. But contrary
to the elliptic case, where the dual process never return to S, I collapses into the singleton {0} at
70, the time when X hits 0 (this happens in positive time when X (0) is negative). The process [ is
continuous (for the Hausdorff topology on the compact subsets of [—o0, +0]), except at 7y, when
I may be non left-continuous. Point (4) in Theorem 1 will be deduced from the fact that the law
of 79 has no atom outside 0. Note that without this requirement, the trivial dual process defined
by I(t) := {X(t)}, for all ¢ = 0, would be suitable.



Remark 2 At first view, the discontinuity of I at 79 may be perturbing in the above diffusion
context. But it is just a suggestion that the segment-valued process I is not the appropriate object
to look at. Indeed, it would be better to consider the probability measure-valued Markov process
(A(I(t),-))t=0, which is continuous at 7y, due to the fact that p_ gives an infinite weight to the
left neighborhoods of 0, which implies that

Jim A(—oo,al) = b ()
Concerning probability measure-valued process, note that the deterministic flow (L(X(t)))i>0 of
time-marginal laws can also be seen as a (not very useful) dual, with respect to the kernel A which
to a given probability measure associates a random point sampled according to this distribution.
In some sense, we are looking for dual processes strictly between the opposite (dx(;))i=0 and

(L(X(1)))=0-

]

After 7¢, the behavior of I depends on n:
e For n € N\{1}, in finite time the process I hits [0, +o0] and stays there afterward.
e For n = 1, the process I converges to [0, +o0] in large time, but never reaches it (starting from
a singleton).

This dichotomy is also valid when X (0) is non-negative and will be reformulated in terms of
strong stationary times in the next sections.

But whatever n € N, Theorem 1 recovers, on this example, the density part of Hérmander’s
theorem, stating that for all ¢ > 0, the law of X (¢) is absolutely continuous with respect to the
Lebesgue measure.

This study can be extended to any hypoelliptic diffusion on R (or on an interval of R), but we
found the circle case more instructive.

Let a and b be two smooth functions on T = R/Z, such that a is non-negative, y/a is smooth
and vanishes at most at a finite number of points, write 91 for their set. Assume that for any
x €M, b(xz) + 0. Consider on C*(T) the Markov generator

L = ad®+bo, (7)

and let X = (X(¢))t=0 be a corresponding diffusion process. The generator L is hypoelliptic and
we are looking for the behavior in law of X for large times.
Let us write 9 := {y; : k € Zn}, where the representative points in [0, 1] satisfy 0 < hy < p; <
- < pny—1 < 1 and where N € N (what follows is also trivially true in the classical elliptic case
where N = 0). For k € Zy, let [, be the projection on T of the interval (yx,9g+1) (for I = N —1,
it is the interval (§y—1,90 + 1)), to which is added y, if b(yg) > 0 and g1 if b(hry1) < 0. Remark
that (Ix)gez, forms a partition of T. Denote for k € Zy, py the speed measure associated to the
restriction of L to I. Let Z stand for the set of non-empty closed intervals from T which are
included into one of the Iy, for k € Zy and let S := {{z} : = € T}. Define a Markov kernel A from
7 to T by

0z(A) , when (= {z} €S,

#ae (L0 A) h 7\S with t c T, and k € Z ®)
() o when e \S with « € I and k € Zy.

VieZ, vV Ae B(T), A, A)

In Section 4, it will be checked that the last r.h.s. is well-defined, i.e. 0 < ug(t) < 400 for
L€ Z\S with « ¢ I and k € Zy.
Theorem 1 extends to this context:

Theorem 3 Let X be a diffusion on the circle whose generator is the hypoelliptic elliptic L given
in (7). There exists a dual process I associated to X satisfying all the statements of Theorem 1,
where Z and A are defined as in (8).



The process I collapses into a singleton when X hits 91. But our definition of the dual process
I will not always be optimal, with respect to the construction of strong stationary times. We will
see that sometimes it is better to let the dual process I collapses into a pair of points when X
exits from the segments I which are open, for k € Zy. The description of the evolution of the
corresponding dual process is a little more involved and left to Section 4, as well as the definition
of another Markov kernel (48) replacing (8) and Theorem 24, the extension of Theorem 3 in this
situation. Nevertheless and similarly to the toy model case, we deduce from Theorem 24 the density
part of Hérmander’s theorem for the one-dimensional generator (7).

Another interest of the dual process I, associated to the Markov kernel (8) and constructed in
Theorem 3, is to quantify the convergence to equilibrium of X, but only when b takes different
signs over I, in which case I converges a.s. for large time. When b has a constant sign over 1,
the process I does not converge a.s. for large time. Indeed, writing I =: [Y, Z], one of the two
processes Y or Z ends up being Markovian, with a behavior of the same nature as X, after the first
time X goes through 9. In this situation, X admits an invariant probability measure 7 absolutely
continuous with respect to the Lebesgue measure. The support of 7 is T but its density vanishes
on M. It is then natural to consider Z the set of non-empty closed intervals from T and to define
a Markov kernel A from Z to T by

N N 0z(A) , when = {z} €S,
VeI ¥V AeB(T), AL, A) = ~ 9
™ . 4) W(;a;‘) , when ¢ € 7\S. ©)

Theorem 3 is still valid when A is replaced by A:

Theorem 4 Let X be a diffusion on the circle whose generator is the hypoelliptic elliptic L given
in (7), where b has a constant sign over M. There exists a dual process I:= (I(t))t>0 associated to
X taking values in 7 and satisfying all the statements of Theorem 1, with T and A replaced by 7
and A defined in (9).

The dual process I converges a.s. in finite time to the whole state space T, so we are able to
construct a strong stationary time for X and to deduce the weak convergence of £L(X (t)) toward =
for large times. The dual process I never collapses to a singleton: in this situation the deduction
of the density part of Hormander’s theorem is straightforward, since we have, whatever the initial
condition,

P[Vt>0,1(t)eI\S] = 1.

The plan of the paper is as follows: the next two sections are respectively devoted to the
restriction of the toy model to R, and to R_. In Section 4 we consider the circular hypoelliptic
diffusion and its dual process mentioned in Theorem 3. Section 5 deals with the situation where b
has a constant sign over 91 and in particular Theorem 4. Finally Appendix A recalls and adapts
some computations from [12] and [3] about the segment-valued dual processes.

2 OnR,

The situation treated here is quite similar to that from [12]. This section serves as a reminder of
some notions from the theory of duality by intertwining.

We begin by some general considerations about the diffusion X := (X(t));e[0,7) Wwhose evolution
is described in (1). The generator L associated to X is the operator acting on C*(R) via

VfeC®R),VzeR,  L[f](z) = z?0*f(x)+ of(z).



The It6 term in (1) can be transformed into a Stratanovitch term (see for instance Chapter 4 of
Revuz and Yor [13]):

V2X"(t) dB(t)

V2X"(t) 0 dB(t) — %d<xf2X”(t), B>
= V2X"(t) 0 dB(t) — n X2 (t) dt,

where (-, -) stands for the bracket of semi-martingales. It follows that the generator can be rewritten
under the Hormander’s form L = V12 + Vi, where V) and V; are the vector fields on R, seen as first
order differential operators, whose coefficients are given by

- o 2n—1
VreR, {Vo(x) = 1—nz"

Vi(x) = z™

To see that L satisfies the Hormander’s condition (cf. Hormander [8] or the pedagogical paper of
Hairer [7]), define for all [ € Z,, the set of vector fields V; through the iteration

Vo = {Vi},
VieZi, Vi = VU{[U,V]:UeV and Ve {Vp, Vi}},

where [-, ] stands for the usual Lie bracket. For any = € R, let V;(x) == {V(z) : V € V;}. For any
x € R\{0}, we have Vy(z) + {0}, so that L is elliptic on R\{0}. At 0, the first | € Z; such that
Vo(0) £ {0} is I = n, so that L is hypoelliptic of order n at 0, as announced in the introduction.

Despite the above choice of R as state space, starting from R, the process X lives in R,.
Indeed, to check the status of the point 0 seen from R, let us introduce the scale and speed
functions associated to L:

V>0, o4(z) = exp ( — du) = exp((z'™?" = 1)/(2n — 1)), (10)
p () = m = v (2), (11)
where
Vor>0, vi(z) = o) = P < 5 du> = exp((1—z'72")/(2n - 1)).

The interest of these functions is that on (0, 4+00), we can write

1 1
L= Lo (a) | (12)
K+ 0+
The corresponding scale and speed measures, also written o, and p4, are given by

Vizys0,  ou(pzl) = Jza+<x>dm,

Y

i) = [ m@de = 0no) - o)

Y

By considering their limits as y goes to 0, these expressions can be extended to

vV z>0, o+([0,2]) = +oo,
e [0,2) = vi(e).



We get that

1
L o ([0,0]) s (@)de = +o0,

L1M+([O,x])0+(x)dx = leJr(a:)oJr(x)dx = Jolldx - 1 < +oo.

Thus using Chapter 15 from Karlin and Taylor [10], it appears that 0 is an entrance boundary for
the restriction of L on Ry: when X (0) is distributed on R, the positions of the process X are in
(0, 4+00) for any ¢ € (0, 7).

The status of +00 can be investigated similarly. Since o (y) converges to exp(—1/(2n — 1)) as
y goes to 400, it appears that for any z > 0, o4 ([z, +00)) = +00 and consequently

£w0+([x,+oo))u+(x)da: = 4.

Furthermore, we have as x > 0 goes to +00,

v (00) = v ()
vy ()

+00 1
[
+00 1

= 2'72/(2n - 1).

pt ([, +0))oy (z) =

It follows that

i = +o ,ifn=1,
L o ([, +00)) o () dz { < +oo ,if ne N\{1}.

Thus when X starts from an initial distribution on R, , we deduce again from Chapter 15 of Karlin
and Taylor [10] that +oo is a natural boundary if n = 1 and an entrance boundary if n € N\{1}.
In both cases, +00 cannot be reached, so that 7 = +o0 a.s.

Following the approach developed in [12], we would like to construct an intertwining dual to
X. In this section, we restrict our attention to the case where X starts from R, .

Consider
Ly = {{y2) gz € [0, +00], y < 2Z7\{(+00, +0)},
T, = {(y,2) € (0,40)% : y <z}

(the interior of 7, n R2) and the diagonal S} = {(y,y) : y € Ry} = Z;. As in the introduction,
the element (y, z) € Z, should be interpreted as the compact interval [y, z] in Ry u {+o0} and the
elements of Sy, as singletons. This is illustrated by the following definition of the Markov kernel
Ay from Z, to Ry:

6@/(14) ) if Yy =z
V(y,z)eZy, ¥V Ae B(Ry), A ((y,2), A
(v:2) € T R), Asl(y:2),4) B hervise
Note that the above expression is well-defined, as we have
+00 1
p4 ([0, +0)) = vi(+0) —v4(0) = exp <J xQ”dx> -0 < +oo. (13)
1



Let £4 be the diffusion generator on L given by

Ly = ("0 —y"0y)" + (y® T =19y + (n2*" - 1), (14)
Y e (y) + 2" (2)
4o M0, — "0,
wallnal) V)

Complete this definition on {0} x (0, +o0) by

£y = (2"0.)%+ (n2™ - 1), + 2M6 (15)
+ z z M+([07 Z]) 29
on (0, +00) x {+00} by
£ o= (o)’ + (ny* ' —1)o, — o VW) g (16)

and on (0,+00) € I,
£+ = 0, (17)

namely (0, +o0) (alias [0, +0]) is absorbing for £, .

More precisely, £, is defined on ® 1, the set of continuous and bounded functions on Z, which
are smooth on each of the subsets Z, {0} x (0, 400) and (0, +00) x {+00}. Since D is an algebra,
we define the carré du champs Iy, associated to £, via

VEGeD,, Te[F.G] = %(m [FG] — F£.[G] — G, [F]). (18)

For instance on ir, we compute that
V(y.2)ele,  Te [FGly2) = (2"0:—y"d)[F(z"0. —y"d,)[G].

It is not difficult to check that for any f € C°(R4), the set of bounded smooth functions on
R, the mapping A, [f] is an element of D .
The interest of A, and £ is the intertwining relation £, A, = A, L, in the sense that,

V(y,2) e T,\S4, ¥V f eGP (Ry), Ee[A+ [y, 2) = AL[L[f]](y,2). (19)

This can be checked by direct computation, as in Lemma 20 from [12]. Alternatively, as in
[3], one can resort to an algebra A, of convenient observables, containing the mappings A [ f] for
feCr(Ry), see Appendix A below with (0, 1) replaced by R .

Following the arguments leading to Proposition 4 from [12], we get that the martingale problems
associated to (D4, £ ) are well-posed:

Theorem 5 For any probability distribution mg on Iy, there is a unique (in law) continuous
Markov process I := (Y (t), Z(t))i=0 whose initial distribution is mg and whose generator is £y in
the sense of martingale problems: for any F € ®, the process MY = (M¥ (t))s=o defined by

Vit=0, ME@#) = F(Y(t),Z(t))—F(Y(O),Z(O))—L£+[F](Y(s),Z(s))ds

s a local martingale. Furthermore the diagonal S, is an entrance boundary for I: for anyt > 0,
we have (Y (t), Z(t)) ¢ S4.



Remark 6 On Z,\S;, the process (Y (t),Z(t))i=0 is constructed as a solution to the s.d.e.’s
associated to the generator £, see Appendix A, with ¢ = 0 in (50). For instance on Z,, we have,
up to the corresponding explosion time,

_ _\Jayn" ay -l 1 ok (Y1), Z(1)})

Ay (t) = —2Y (t)dW(t)+( Y2lt) —1 -2 V(0.2 (t)]>> (¢) dt,
_ n n72n-1 (g _ /1+({Y(t),Z(t)})

az(t) = 2z (t)dW(t)—|—< Z ) —1+2 (s (t),Z(t)])) "(t) dt,

where (W(t));>0 is a standard Brownian motion and where

n, = Z 2"y ()0, (20)

2€(0,+00)

For any xo € R, to get the singleton (xg, x¢) as a starting point, an approximation by (zg, ¢ +
€), for small € > 0, is performed.

Stone-Weierstrass theorem enables us to see that the algebra A, of observables presented in
Appendix A is dense in the space of continuous functions on Z;\S;, endowed with the uniform
convergence on compact subsets (but this is not true on Z,, since the elementary observables
vanish on S;, so that the composed observables from A, does not separate the elements of S, ).
We strongly believe the martingale problems associated to (A4, £4) are equally well-posed (cf.
Section 4.4 of Ethier and Kurtz [5] for valuable information in this direction).

As a consequence, we have the following result (this sentence is slightly misleading, since a
preliminary version of Corollary 7 plays an important role in the proof of Theorem 5, to be able to
let the process I start from the singletons from Sy, see [12]), for which we need to introduce some
notations:

Gy = 2L+ch+(51(s))2ds (21)

(where p (01(s)) = (Y ()" 1+ (Y (s)) + (Z(s))"u+(Z(s)), according to (20)), with the conventions
that "y (z) = 0 for x € {0, +00}, a priori ¢4 € (0, +0], but we will see in Corollary 7 below that
¢4 is finite a.s. Let the time change (0, ())sc[o,] be defined by

0+ (t)
Vtel0,6p), 2f w, (0I(s))*ds = t, (22)
0

and 9_1,_ (§+) = hmtg,(<+)7 9+(t)
We are interested in the process Ry = (R4 (t))i>0 given by

Vi=>0, Ri(t) = ps(I(0+(t Ast))). (23)
Proposition 14 from [12] and its proof lead to the following result.

Corollary 7 The process Ry is a Bessel process of dimension 3 starting from p(I(0)) and stopped
when it hits py((0,+00)). In particular, i is finite a.s. and is the hitting time of 4 ((0, +00)) by
R.. More precisely, we have (conditioning by the initial value I(0) for the second point):

e for n € N\{1} or I(0) of the form (yo,+00) for some yo € [0,+00), we have O4(¢;) < 400 and
the process I hits (0, +00) in finite time (a.s.)

e for n =1 and I(0) not of the form (yo, +0) for some yo € [0, +00), we have O, (s;) = +0 and
the process I does not hit (0, +00) in finite time (a.s.).



Proof

More precisely, Proposition 14 from [12] shows that [0,¢+) 3 ¢ — R, (t) is a Bessel process of
dimension 3 (stopped if ¢; < +o0). If ¢; was to be infinite, we would end up with

dim i (10,(1) =+,

in contradiction with the fact that py ([0, +00)) < +00. So ¢4 must be finite a.s. From (21), we
deduce that

liminfu, (0I(t)) = 0,

namely
limsupI(t) = (0,400),
t—+00
and in particular
liminf Y (¢t) = 0,
t——+00
limsup Z(t) = +oo.
t—+00

e For n € N\{1}, since 0 and 400 are entrance boundaries for X, we know from Theorem 1
n [12] that I hits (0, +00) in finite time, say T. So the mapping Ry 3 6 — Sg,g+(al(s))2 ds is
increasing on [0,T) and constant on [T, +o0). It follows that lim,_, ) 0(t) = T.

e For n =1 and Z(0) % +00, since +o0 is not an entrance boundary, we know from Theorem 1
in [12] that Z does not hit 400 in finite time. Thus the mapping Ry 3 6 — Sg wy (0I(s))?ds is
increasing and lim;_, (¢, )_ 04 (t) = +oo.

When Z(0) = +o0, since 0 is an entrance boundary for X, the proof of Theorem 1 in [12] shows
that Y hits O in finite time. At this hitting time, I hits (0, +00) and we are in the situation where
04 (cy) < 400.

|

Corollary 7 can be seen as an illustration of Theorem 1 from [12] for elliptic diffusions X defined
on R (here (0, +00)), stating that the dual process hits the whole state space in finite time for all
initial distributions if and only if both boundaries are of entrance type. But in the present context,
we are not so much concerned with the behavior in large time as with the behavior in small time
and with the influence of hypoellipticity. According to Corollary 7, the latter does not modify
the Pitman-type property that the process of the volumes (u(I(t)))i=0 of the dual process is a
stopped Bessel 3 process, up to a time change. The impact is to be found in the time change itself:

Proposition 8 Fizx (y,z) € Z, and consider the process I defined in Theorem 5 starting from
(y,2). There are several behaviors for the time change 04 ast goes to 0 :
e If (y.2) 4 (0,0), we have

t
O A v ()
e If (y,z) = (0,0), we have
0(t) ~ .

(2n—1) ln(l/t))l/@n—l) :

Thus in the latter case, the volume pi[I] begins by evolving very slowly (since the inverse function
9;1(25) is negligible with respect to t, for t — 04 ) and the order n of hypoellipticity can be recovered

through
1 . In(In(1/t))
"2 (1 e 1n<1/e+<t>>) |



For multidimensional diffusions X, the hypoellipticity should also impact the germ of the shape
of the dual process, see [3] for a first approach to the elliptic case.

Proof of Proposition 8

When (y, z) % (0,0), we have u ({y, z}) = "+ (y)+2"p+(2) > 0, so by continuity of the diffusion
(1(t))=0, we get as 6 — 04,

0
2 fo pe(I(8)?ds ~ 20 e (y) + 2"ps ()%,

and this leads immediately to the first point.
When (y, z) = (0,0), according to (15), the diffusion I is given by

Vi=0, I(t) = (0,Z(t)),

where (Z(t)):>0 is solution to the s.d.e.

n- ([0, Z(1)])

where (W (t))i=0 is a standard Brownian motion. We compute that for all z > 0,

Vit>0, az(t) = ﬁZ”(t)dW(t) + (nZin(t) — 1+ zfmz(t)]})> dt,

p. ({0, 2}) _ Ly (2) _ Z p+(2) _ 1 =1

1+([0, 2]) p+([0, 2]) v4+(2) o+ (2)v+(2) 7

so that the above s.d.e. is

Vi>0, dZ(t) = V22"t dW(t) + (nZ*7L(t) + 1)dt,

from which we deduce that a.s. Z(t) ~ ¢ for small ¢ > 0.
Since for any t > 0, we have p (2) = v4(2), (22) can be rewritten under the form,

J " (22 ()2 — 1)) ds = O ;2” —),
0

Since for any € > 0, we can find (a random) ¢ > 0 sufficiently small so that for any s € (0,t),
(1—¢€)s < Z(s) < (1+¢€)s, we are led to study the behavior for small § > 0 of Sg exp(—as!™?") ds,
where o > 0 is a constant (that will take the values 2(1 —¢€)/(2n — 1) and 2(1 +€)/(2n — 1)). A
usual integration by parts shows that for small 6 > 0,

0
Jexp(—aslzn)ds ~ 0% exp(—af' ™),
0

and by consequence,

o «
In <L exp(—as'™2") ds) ~ gt

These considerations show that for small ¢ > 0,

2
Gn-1en 1 " In(1/t),

and this leads to the announced result when (y, z) = (0,0).
|

Due to (19), the arguments of Section 4 of [12] show that the processes X and I can be coupled
in the following way:

1N



Theorem 9 Let mg be a probability distribution on I, and consider mg = mgA. There exists a
coupling of X with initial distribution mqg and of I with initial distribution mg such that for any
t>=0,

LX@B0,t]) = AL (L(2))-

Furthermore, the construction of I from X is adapted, in the sense that given the trajectory X, for
any t = 0, the conditional law of I[0,t] depends only on X|0,t].

Remark 10 Note that conversely, for any probability distribution mg on R, we can find a law
mg on Z, such that mg = mgA. It is sufficient for instance to take mg := Sd(m) mo(dx), as it was
done in Theorem 1 (at least when £(Xp) is supported by R, ). But in general it is not the unique

possible choice, e.g. when mo = A4 ((y, 2), ), for some (y, 2) € Z;\S;, just consider mg = J(y,.).-

As a classical consequence, going back to Diaconis and Fill [4] in the framework of finite Markov
chains (see also [12] for one-dimensional diffusions), we obtain the existence of strong stationary
times when n = 1. Recall that a strong stationary time 7 for X is a finite stopping time (with
respect to a possibly enlarged filtration for X) such that T and X (t) are independent and such
that X (7) is distributed according to the invariant distribution 7, the probability distribution
whose density is proportional to p4 (7 exists due to (13)).

Corollary 11 As in Corollary 7, there are two situations:

e for n € N\{1}, whatever the initial distribution supported by R, , there exists a strong stationary
time for X.

e for n = 1, for some initial distributions on Ry (in particular for any initial Dirac measure), a
strong stationary time does not exist for X.

Proof

When n € N\{1}, the first time I hits (0, 4+00) is a strong stationary time for X, see for instance
[12] for more details.

When n = 1, since 400 is not an entrance boundary for X, the proof of Theorem 1 in [12] shows
that there is no strong stationary time T for X, if the initial law of X is of the form A([0, z¢],-),
for any z¢ € R4 (because T would be stochastically bounded below by the hitting time of [0, +00]
by I starting from (0, z¢), which is infinite), see also Fill and Lyzinski [6]. In particular, there is no
strong stationary time for X starting with X (0) = 0. Let us extend this result to all initial Dirac
measure. So let g € R, be given and assume, by contradiction, there is a strong stationary time
for X starting from xy. Then one would be able to construct a strong stationary time for X started
from 0, by considering the first time X hits xg (which is a.s. finite) and by adding to it a strong
stationary time for X starting from xg. This is in contradiction with our previous observation, so
there is no strong stationary time for X starting from zg.

As at the end of the proof of Corollary 7, remark that if the initial distribution of X is of the
form A ([zg,+0],-), for some zy € R, then there exists a strong stationary time for X, consider
again the first time I hits (0, +0).

|

Here we are more interested in the following density result, which is the easy part of the
Hoérmander’s theorem and corresponds to the last statement of Theorem 1 when £(X) is supported
by R+.

Corollary 12 Under the assumption of Theorem 9, write for any t > 0, my = L(X(t)) and
my = L(I(t)). Then we have

me = JAW, ) my(de).
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In particular, for any t > 0, my is absolutely continuous with respect to the Lebesgue measure on
R, .

Proof

The above equality is obtained by taking the expectation in Theorem 9. From Theorem 5, for any
t > 0, the set of singletons S, is negligible with respect to m;. Furthermore for any ¢ € Z,\S,
A(t,-) is absolutely continuous with respect to the Lebesgue measure on R;. We can thus conclude

to the validity of the last statement of Corollary 12.
|

3 OnR_

The situation of R_ follows a pattern similar to the investigation of the previous section. Putting
together the results on R_ and R, will lead to Theorem 1.

On R_, it is then more convenient to consider

exp (— Fl u% du) — (@ 1)/2n—1),  (24)

(@) = e = (), (25)

x?no_(x)

V<0, o_(x)

where

Ve<0, v (z) = 195) _ exp (fxlulanu> — exp(—("2 £ 1)/(2n - 1)).

o

These modified scale and speed functions, where the base point 1 has been replaced by —1, lead
to the corresponding scale and speed measures on R_, still denoted o_ and u—. We compute that

0
| ot opi@ar < <o
0
| ntwono-@ae = <o

-1
f o ((~o0,2)) p_(z)dz = +on,

__Of = 4o ,ifn=1,
f p-((=o0,2]) o (z)dz { < 400 L ifneN\{1}.

—00
Thus when X starts from an initial distribution supported by R_, 0 is an exit boundary (i.e. it is
a.s. attained in finite time). Furthermore, depending on n = 1 or n € N\{1}, —o0 is an entrance or
a natural boundary.

As a summary, conditioning by the initial position, we have the following a.s. behavior for
X: starting from X (0) < 0, the diffusion will reach 0 in finite time and instantaneously pass to
(0, +00), where X will next live forever. Of course, when X (0) = 0 or X(0) > 0, the first stage or
the first and second stages of this description has/have to be removed.

We now come to the construction of the dual process I when the initial distribution of X is
supported by (—0o0,0).

Consider
- = {{y.2) g2 [-0,0), y < 2}\{(-00, —o0)},
1 = {(y,z) € (_0070)2 Py < Z}a
S- = {(yy) el : ye(-x,0)}
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Again, the element (y, z) € Z_ should be interpreted as the compact interval [y, z] in [—00,0). Let
A_ be the Markov kernel from Z_ to (—o0,0) given by:

63/(A) ) if y=2z,

p—([y,2]nA)
n—([y,2])

V(y,2)eZ_,V Ae B((—x,0)), A_((y,2),A)

, otherwise.

Note that the above expression is well-defined, as we have for any x € (—o0,0),

pol(=.2)) = v-() —v-(=0) = (e (- l’) ~1) e -

2n —1

2n—1> < +400. (26)

Let £_ be the diffusion generator on 7 given by

£ = ("0 —y"0y)" + (" = )9y + (n2*" ! 1), (27)
y"p—(y) + 2" p—(2)

)

("0, — y"0y),
and complete this definition on {—o0} x (—o0,0) by

27— (z)
— 0. (28)
p-([0,2]) *

More precisely, £_ is defined on D(£_), the set of continuous functions on Z_ which are
smooth on each of the subsets Z_ and {—o0} x (—00,0). It is not difficult to check that for any
feCrP((—,0)), the mapping A_[f] is an element of D(L_).

2n
£ = (2"0)%+ (= 1)0, + 2

As in the previous section, the interest of A_ and £_ is the intertwining relation £_A_ = A_L,
in the sense that,
VieT S,V feCP(—0,0), LA [ = A [LIAIW. (29)

Again, this can be computed directly as in Lemma 20 of [12] or by introducing, as in [3] (see also
Appendix A), an algebra A_ < D(£_) and a measure i = 3, () 22" (x), similarly to what
was done in the previous section, replacing R, and py by (—00,0) and p_.

The martingale problems associated to (D(£_), £_) are also well-posed:

Theorem 13 For any probability distribution mg on Z_, there is a unique (in law) continuous
Markov process I := (Y (t), Z(t))e[o,r,) whose initial distribution is mg and whose generator is £_
in the sense of martingale problems: for any F € D(L£_), the process MT = (M¥(t))i=0 defined by

vie[or), MP@) = F(Y(t),Z(t))—F(Y(O),Z(O))—J2_[F](Y(s),Z(s))ds

is a local martingale. The diagonal S_ is an entrance boundary for I: for any t € (0,77), we have
(Y(t),Z(t)) ¢ S—. Furthermore, the explosion time Ty corresponds to the “hitting” time of 0 by Z,
in the sense that

lim Z(t) = O. (30)

t—71r_

Proof

The arguments are similar to those of Proposition 4 in [12], except that in this previous paper, the
situation of an exit boundary was not considered. So let us sketch the necessary modifications.
First consider the case where my = ¢,,, for some ¢y € Z_. Consider € > 0 such that (o < [—00, —2¢).
Let L be the generator acting like L on (—o0, —e) and such that —e is an reflecting boundary
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(i.e. a Neumann condition is imposed at —e on the functions entering in the domain of L.). Use
Proposition 4 in [12] to construct the corresponding generator £. and an associated Z_ -valued
diffusion I, := (Y, Z.), where Z_ . stands for the elements of Z_ included into [—o0, —€]. The
process Z. is stopped at the time 77, it hits —e. Up to this stopping time 77, I is the unique (in
law) solution of the martingale problem associated to £, starting from ¢y. Due to the Dirichlet
condition on Z,, some functions from D(£) are missing to conclude that (I.(t A 77.) )i=0 is a stopped
solution of the martingale problem associated to £ and starting from ¢g. To go around this little
difficulty, rather stop I when Z. hits —2¢. When e > 0 varies, all these processes are consistent,
so we can apply Kolmogorov’s extension theorem to get a process I as in the above theorem. Its
uniqueness is shown similarly by stopping. For more general initial distribution mg, just condition
by I(0), see for instance the book of Ethier and Kurtz [5].

|

Lemma 14 The hitting time 771 is a.s. finite.

Proof

This result would be obvious, if we already had Theorem 17 below at our disposal, since it provides
a coupling such that Z(t) > X (¢) for all ¢ € [0,77) and we already know that X hits 0 in finite
time.

But the finiteness of 77 can also be proven directly. According to Appendix A, Z satisfies

Vtel0,77), dZ(t) = V22w (t) +~(Y (t), Z(t))dt, (31)
where
R y'u-(y) + 2"u-(2) n
V (y,2) e Z_\S—, v(y,z) = 1+2 (2] )
Define
V z € (—x,0), F(z) = y(-w0,2) = n22" -1+ QM

p—((=00,2])
Since y"2" > 0, 22" > 0 and p_([y, 2]) < p_((—00, 2]) for any y < z € (-, 0), we get
V(y,2)eZN\S-,  7(y,2) = Al2). (32)

Consider the diffusion Z = (Z (t))tefo,7) on (—0,0), where T is the explosion time, starting with
Z(0) = Z(0) and solution of the s.d.e.

Vie[0,7), dZ({t) = V2Z"W(t)+F(Z(t))dt.
Due to (32), we have
Vie[o,71 A7), Z(1t) < Z(t), (33)

so that 77 < 7. To prove rigorously (33), one must come back to the situation of constant diffusion
coefficient, namely to consider, when n € N\{1},

dZ'"t) = V21 —n)dW(t) + (1 —n)Z ")V (1), Z(t) + n(n — 1)Z"1 (1)) dt,
A2 () = V2(1 = n)dW(t) + ((1 W) ZTOAZ@) + nln — 1)2"—1(t)) dt,
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and when n = 1,
din(—Z(t)) = V2dW(t) + (—Z7 () (Y (), Z(t)) — 1) dt,
din(~Z(t) = V2dW(t) + <—Z‘1(t)7(§(t)) - 1) dt.

Classical comparison arguments (see for instance Chapter 6 of Ikeda and Watanabe [9]) are applied
on these s.d.e. (be careful of the signs) to get (33).

To prove that 77 is a.s. finite, it remains to show that 7 is a.s. finite. Since Z is a diffusion
process, it is enough to check that 0 is an exit boundary and that —oo is not an exit boundary.

We compute that for any z € (—0,0),

2hu_(z) 1
P (o) T o G ()~ o ()
1

1 —exp(21=27/(2n — 1))

The last term converges to 1 as z goes to 0_ and is equivalent to —(2n —1)z2"~!

Thus we get

as z goes to —oo.
lim 5(z) = -1,
z—0_
and for z going to —oo
F(z) ~ (=3n+2)2""1 (= 40).

Via the introduction of the corresponding scale and speed functions, Chapter 15 of Karlin and
Taylor [10] implies that 0 is an exit boundary and that —oo is an entrance boundary.

[ |
Transform the definitions given in (21), (22) and (23) into
I
¢ = 2 f (1(s))2 ds, (34)
0

with the convention that (—00)"u_(—o0) = 0, a priori ¢_ € (0, +0], but we will see in Corollary 15
below that ¢_ is infinite a.s. Let the time change (0 (t));c[o_] be defined by

Vtel[0,c ), QJG(t),@_(&I(s))st _— (35)

and 0_(¢-) = limy_,(._)_0_(t).
We are interested in the process R = (R_(t))t=0 given by

Vit=0, R_(t) = p_(I(O_(t ~ns))). (36)
Corollary 15 We have s = +00, 0_(+00) = 77 and the process R_ is a Bessel process of dimen-

sion 3 starting from p_(1(0)).

Proof

Proposition 14 from [12] shows that [0,5_) 3¢ — R_(t) is a Bessel process of dimension 3 (stopped
if ¢ < +00). So to get that R_ is a Bessel process of dimension 3, we must show that the event
€ = {s_ < +} has probability 0.

Define

7 o= imf{t =0 Z(t) = Z(0)/2),
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which is a.s. finite according to Lemma 14. Let us begin by checking that on £, the trajectory
(Z(t))tefz,,) is Holder of any order a € (0,1/2). Indeed, taking (31) into account, we have for any
s<te|r,1),

Z(t)—Z(s) = M(t)—M(s)+ ft nZ* Yu) =1+ QMZH(U) du, (37)

s

where

T AT
Vi=0, M@l = \/QJ Z"(u) dW (u).
0
Since M = (M (t))¢>0 is a continuous martingale, up to enlarging the underlying probability space,
we can find a standard Brownian motion W := (W (t))=0 so that

.y T At
Vt=0, M@l = W <2J 7" (u) du> .
0

The trajectories of W are a.s. of order o (see e.g. Chapter 1 of Revuz and Yor [13]), so the same is
true for M, since the mapping R, 3¢ — g’At Z?"(u) du is Lipschitzian (these statements hold a.s.,

i.e. the corresponding “constants” are random). The mapping R, 3¢ — ST’ Nz Yu) — 1du is

also Lipschitzian, so according to (37), it remains to bound the term S u(f %;Z”( ) du. This is

done via Cauchy-Schwartz’ inequality, for s,t € [T, 77]:

w (I(u) J ft Z2n(y)
d )2 d 7d
pu_(I(u)) " w))* du 2 (I(u) B
|Z"
< maX w))2 duv/t — s.
ue[T, 7] U—

The quantity max,efz 12" (u)| is finite by continuity of Z and max,e(z ;1 1/p—(I(u)) is finite due
to the fact that the Bessel process of dimension 3 R_ does not hit zero once it has left 0 (this
o i (I(u))? du is also finite, we deduce the

trajectory (Z(t))se[z,r, is Holder of order . In particular, there exists a (random) constant C' > 0
such that for all

the reason for the introduction of 7). Since on &,

Vse 7l \Z| = |Zs—Zr,| < Clrp—s|"*.

We deduce that on &,

TI

_ 2J exp(—2(2"2"(s) + 1)/(2n — 1)) ds
TI

> 9 J exp(—2212(s)/(2n — 1)) ds
TI—T

= 2 exp(2Cl_2”s(1_2n)/4/(2n —1))ds
0

= 4o,

in contradiction with the definition of £. Since all the above assertions are a.s., we get that & is
negligible.
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Finally, the equality 6_(+00) = 77 is a consequence of the (strict) monotonicity of the mapping
0
[0,77) 360 — §y_(01(s))? ds.
|

Remark 16 As a consequence of Corollary 15, we have

lim p_(I(t)) = +oo. (38)
t—11—
It suggests the following behavior for approximations: for € > 0, consider the elliptic generator
Lc = (22" + €)0% + 0 (not to be mistaken with the reflecting generator introduced in the proof of
Theorem 13). The associated speed function p. is defined by

1 * 1
Ve R, ,ue(x) = W exXp <— J_l u2n T e du> .

It is also possible to define dual processes (I (t)):=o with values in the set of closed intervals in
the extended line [—o0, +00] (except the singletons {—o0} and {+o0}). Assume that I.(0) is a fixed
element of Z_. Then we guess that

lm pe(le(e)) = oo,

€4>0+
where 7. == inf{t > 0 : 0 € I.(t)} (or at least with 7. :=inf{t > 0 : n e I(¢)}, for all fixed n > 0).
O
Due to (29), the processes X and I can be coupled in the following way:

Theorem 17 Let mg be a probability distribution on Z_ and consider mg := mgA_. There exists
a coupling of X with initial distribution mg and of I with initial distribution mq such that for any
t >0, we have on {11 > t},

LX@)I[0,2]) = A_(I(t),). (39)
Furthermore, the construction of I from X is adapted.
With the above coupling, we get that 7; = 79, the hitting time of 0 by X seen in the introduction:

Proposition 18 In addition to (30), we have

lim X(¢) = 0.
t—’T],
Proof

Since a.s., for all ¢ € [0,77), we have X (t) < Z(¢), it follows that 77 < 79. To see the converse
inequality, define for any € > 0,

Te = inf{t >0: Z(t) = —¢}.
We have
li [ b
e—1>%1+ T T0

thus by continuity of the the trajectories of X, a.s.

lim X(r) = X(m).

€—>0+
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To get X (77) = 0, it is sufficient to check that X (7.) converges in probability toward 0 as e goes
to 04. The relation (39) is also true when ¢ is replaced by a stopping time for I (see Diaconis and
Fill [4]), so we have

LX ([0, 7]) = A-(I(7e),")-
It follows that for any given n > 0,
PIX(7c) € [=n,011[0,7]) = A_(I(7e), [=n,0]).

Taking expectation, we deduce that

PIX(7) € [-n,0]] = E[A_(I(7e), [=n,0])].

Note that we have A_(I(7¢),[—n,0]) < A_([—0, Z(7)],[—n,0]), so by dominated convergence, (6)
implies that

lim P[X(7) € [-n,0]] = E[A-(I(7e),[-n,0D)] = O,

6*>0+

as desired.
[ |

In general, we cannot conclude that lim;_,()_ Y (t) = 0 (convergence which should be suffi-
ciently slow to be compatible with (38)), e.g. if we started with Y (0) = —oo, then Y (¢) = —o0 for
all t € [0,79). Anyway, Proposition 18 enables to set (Y (79), Z(79)) = (0,0) while preserving the
validity of (39). See also Remark 2, where A is just A_ in (6).

Next we extend the process I after time 7y as in Theorem 5, starting from (0,0). Note that
the Markov kernel A from Z_ 1 Z; to R defined in (2), is obtained by imposing that A = A_
on Z_ x B(R) and A = Ay on Z, x B(R). Taking into account this observation, we can merge
Theorems 9 and 17 and Corollary 12 into Theorem 1.

Remark 19 Corollary 11 is still valid, replacing R4 by R. Indeed, the unique invariant measure
remains 7, the probability measure defined before Corollary 11. The first time I hits (0, +o0) is a
strong stationary time, as soon as it is finite.

m]

To deduce the density part of Hormander’s theorem, stating that for any ¢t > 0, £(X(t)) is
absolutely continuous with respect to the Lebesgue measure on R, it remains to show the next
result:

Lemma 20 For anyt > 0, we have P[I(t) = (0,0)] = 0.

Proof

According to the previous considerations, we have for t > 0, a.s.

(1) = (0,0} = {X(®) =0} = {ro =1t}

To prove that P[7y = t] = 0, up to conditioning with respect to X (0), we can assume that X (0) = xg
for some xy € R. When zy = 0, the previous section shows that P[X (¢) = 0] = 0 for all ¢t > 0. So
assume that xg < 0 and decompose 79 = 7 + 7, with

: X(t) = x0/2},
: X(T+1t) =0}

I
—_
=
=

~—

i P 14

= inf{

Due to the strong Markov property of X, 7 and T are independent. Thus to get that the law of 7
has no atom, it is sufficient to see that £(7) has no atom. By contradiction, assume there exists
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s > 0 such that P[T = s] > 0. We would have P[X(s) = z¢/2] > 0. Couple X with I = (Y, 2)
starting from (zg, o) as in Theorem 17. Taking into account the equality 70 = 77 and (39), we
have

P[X(s) = x0/2] = P[X(s)=x0/2, 70> 5]
= P[X(s) =xo/2, 71 > 5]

|
=

]E[]IX(S)=LL’()/2 ‘I[Ov s]]]lT1>S]

[
= E[A_(I(s),20/2)1s,=5]

I
o

)

because for s € (0,77), A_(I(s),) is absolutely continuous with respect to the Lebesgue measure.

This is the wanted contradiction.
[ |

4 On the circle

In the circle framework presented in the introduction, we begin by studying X and its dual I on
each of the segments I, with k € Zy. The global behavior of (X, I) is deduced by putting together
the obtained informations, similarly to what was done in the previous section.

Let T be one of the segments I, for k € Zx. To simplify the notation, we see I as a subset of R
and up to an affine transformation, we assume that the interior of I is (0,1) (where the boundaries
0 and 1, may or not be the same in T). There are four possibilities for the status of the boundaries
of I, that we investigate below. First we recall some classical definitions, valid in the four cases.
To the restriction on I of the generator L defined in (7), we associate its scale and speed functions:

b

exp( L/Q a(u) I ) 7 40)
_ 1
o) = ety

vV ze(0,1), o(x)

(41)

The interest of these functions is that on (0, 1), we can write

L - Lo <1a>. (42)

©wo\o

The corresponding scale and speed measures, also written ¢ and pu, are given by

Vesye 1), oy — Jza(x)dx,

Yy
u(ly.2]) = f u(z) da.
Yy
With the notation of Chapter 15 from Karlin and Taylor [10], define
1/2 1/2
$(0) = L o((0,u)) p(w)du,  N(0) = fo u((0,)) o (w)du,

(0,u)) o

1 1

S(1) = f o((w 1) p(w)du,  N(1) = f u((u, 1)) o (w)du.
1/2 1/2

The finiteness or not of ¥(0) and N(0) determine the status of the boundary 0 with respect to
the diffusion X associated to L, seen from I, and similarly for 1. To get these status of the
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boundaries, as well as their orders of ellipticity, we only need the asymptotic behavior of a and b
near the boundaries. That is why we assumed 1/a to be smooth, so that by considering expansions
of y/a near the boundaries, we can come back to the computations made in Sections 2 and 3.
Probably these computations can be extended to more general positive exponents n, in particular
with n = 1/2 we would only need to assume that a is smooth. We refrained from this generality,
just to avoid the emergence of singularities in the formulation of Hérmander’s condition.

Define 7 the set of compact subsegments included in I and S the set of singletons from 7.
Consider the Markov kernel A from 7 to [0, 1]:

dy ,ify = z,
v [y7 Z] € Ia A([ya Z]a ) w([y,z]n-) otherwise
wlly,z) 7 :

e Case (C1): I = [0,1], namely b(0) > 0 and b(1) < 0, by considering the behavior of 1 and o
near 0 and 1, we compute that ¥(0) = +o0, N(0) < 400, (1) = +00 and N(1) < +0o0, so that 0
and 1 are entrance boundaries for X. It follows that under the initial condition X (0) = x¢, where
xq is fixed in [0, 1], the process X stays forever in [0, 1] and, more precisely, in (0, 1) for positive
times. Since lim,_,o, p(z) = 0 = lim,,1_ pu(x), the measure p has a finite weight over I. It is also
clear that p is positive on (0,1). It justifies the above definition of A and enables to define 7 as
the normalization of y into a probability measure, which is just A([0, 1],-).

As in Section 2 and in [12], it is possible to construct a Z-valued dual process I = (I(t))=o0,
so that Theorem 1 is valid. It follows that for any ¢ > 0, £(X(¢)) is absolutely continuous with
respect to p (or equivalently to the Lebesgue measure restricted to [0,1]), because S is an entrance
boundary for I. More precisely, note that p satisfies (50) with ¢ = 0, so according to Appendix A,
I can be described in the following way. Writing I = (Y, Z) = ((Y(t), Z(t))t>0, the processes Y
and Z are solutions, up to the time (finite a.s.) when either Y hits 0 or Z hits 1, of the s.d.e.

av() = (@) - o) - 2 OO oty ey )

) —/2a(Y (t)) dW (t), (43)
az(t) = (@(20) - 02(0)) + 23O 7 ) at

\ ++/2a(Z(t)) AW (t).

where (W (t))i=0 is a standard Brownian motion. Assume for instance that Y hits 0 before Z hits
1, after the corresponding hitting time and up to the time Z hits 1, Z is solution of the s.d.e.

dZ(t) = (a’(Z(t))—b(Z(t))~|—2M(/E(§’Zz(t<)t))])a(Z(t))>dt+«/2a(Z(t))dW(t). (44)

Once Z hits 1, I remains at [0,1]. Furthermore, the covering time

T = inf{t>0: I(t) =[0,1]}

is finite a.s. and is a strong stationary time for X. Recall that the separation discrepancy between
two probability measures m and 7 is defined in general via

dm

= inf (1 - —
s(m, ) ess in < dw)

where dm/dm is the Radon-Nikodym derivative of the absolutely continuous part of m with respect
to m. We have the following bound, due to Diaconis and Fill [4] (in the case of finite Markov chains,
but valid in general):

Vi=0, LX) -7, < s(CX@®),7) < P>t (45)
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where the norm in the L.h.s. is the total variation. In particular, X (¢) converges in law toward =
for large t = 0.

e Case (C2): I =[0,1), namely b(0) > 0 and b(1) > 0, we get that £(0) = +00, N(0) < 400,
¥(1) < +o and N(1) = 400, so that 0 is an entrance boundary and 1 an exit boundary for
X. It follows that under the initial condition X (0) = xo, where z¢ is fixed in [0, 1), the process
X ends up exiting [0,1) by hitting 1 in finite time, say at 7 = inf{t > 0 : X(¢) = 1}. We
have lim, o, p(xz) = 0 (but lim,—1_ pu(x) = 400), so any compact segment included into I has a
finite weight, which is positive if it is not reduced to a singleton. Thus the Markov kernel A is
well-defined.

As in Section 3, it is possible to construct a Z-valued dual process I = ([Y(t), Z(t)])ie[0,r)> SO
that Theorem 17 is valid, see also Appendix A with ¢ = 0. Up to the time 7, the processes Y and
Z are solutions to (43) (or (44), after Y has hit 0, this may happen or not before Z hits 1). We
have a.s.

lim Z(t) = 1,

t—7_
and the natural way to extend I after time 7 is to define I(7) = {1} and to let I start from there
into the corresponding segment. Note that for any time ¢ > 0, we can write

LIX(tnrT)) = Plr<t]C(X(t)|r <t)+P[r=t]d,
with

LXW)r<t) — JA@, VP{I(t) € difr < 1],

so that the conditional law in the lLh.s. is absolutely continuous with respect to the Lebesgue
measure for ¢ > 0. As in Lemma 20, we show that for any given ¢ > 0, P[7 = t] = 0.

e Case (C3): I = (0,1], namely 5(0) < 0 and b(1) < 0, we get that ¥(0) < +o0, N(0) = 400,
¥(1) = +o0 and N(1) < 40, so that 0 is an exit boundary and 1 an entrance boundary for X.
This situation can be described as in the above case I = [1,0), by symmetry.

e Case (C4): I = (0,1), namely b(0) < 0 and b(1) > 0, we get that X(0) < +o00, N(0) = +00,
¥(1) < 400 and N(1) = +0, so that 0 and 1 are exit boundaries for X. It follows that under
the initial condition X (0) = xg, where zg is fixed in (0, 1), the process X ends up exiting (0, 1) by
hitting 0 or 1 in finite time, say 7x = inf{t > 0 : X(¢) € {0,1}}. Since p as function is continuous
and positive, any compact segment included into I has a finite weight, which is positive if it is not
reduced to a singleton. Again the Markov kernel A is well-defined.

As in Section 3, it is possible to construct a Z-valued dual process I = ([Y(t), Z(t)])e[0,r)s
where 77 > 0 is the explosion time, so that Theorem 17 is valid, see also Appendix A with ¢ = 0.
Up to the time 77, the processes Y and Z are still solutions to (43). A priori the explosion time 77
is such that 77 < 7x, but the arguments of Proposition 18 show that

lim Y() = 0 or lim Z(t) = 1,
tTr— T
and 771 = Tx.

When lim;_,,,— Y (t) = 0 and lim;—,,,— Z(t) < 1, it is safe to set I(77) = {0}. In this situation we
have X (77) = 0, according to the proof of Proposition 18. We can thus let (X, I) start from (0, {0})
into the segment containing 0. Symmetrically when lim;,,, _ Y (¢) > 0 and lim;_,,,— Z(t) = 1, we
set I(77) = {1} and we have X (77) = 1, so we can let (X, I) start from (1,{1}) into the segment
containing 1.
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Consider now the case where lim;_,-,— Y'(¢) = 0 and limy;_,,,— Z(t) = 1. When furthermore we
have

lim A((t),) = 6 or lim A(I(¢),") = 4, (46)
t—11— t—11—
again we can respectively define I(77) = {0} and I(77) = {1}.
But what should we do when the limit of A(I(t),-), as ¢t goes to 77—, charges both 0 and 1, or
worse, if this limit does not exist? In fact, we believe the former alternative is always true (killing
even the possibility of (46)):

Conjecture 21 In the Case (C4), we have a.s.

lim A(I(t),") = L(X(r)).

t—717—

Whether this assertion is true or wrong, it is always possible to look at X (77), which is either 0 or
1, and to set I(77) = {X (77)}. This idea was also used in Copros [2], in the context of denumerable
Markov processes. Immediately after 77, X and I will evolve in the segment containing {X (77)}.
This choice leads to a dual process I satisfying Theorem 1.

Remark 22 One does not need to wait that X pass through 0 or 1 for making an observation
of X and subsequently concentrate I to a singleton: at any stopping time ( for X, one can decide
to change the value of I and impose that I(¢) = {X¢}. This quantum physics sounding property
does not impact condition (5), but of course it may destroy condition (4), for instance if ¢ is
the minimum of a positive deterministic time with 7x. Note that the observation may also be
imperfect: assume that (0,1) is decomposed into a measurable partition LisgAs, where S is a
denumerable index set, and that we observe that X ({) € A, then we can replace I(¢) by I(¢) n As.
In general we are looking for the largest dual processes, so the above observation/concentration
procedure should be avoided, see Example 23 below.

More precisely, let us come back to the circle setting described before Theorem 3. Consider the
segments I, for k € Zy, as the vertices of an oriented graph whose edges are as follows: there is
an edge from Iy to Iy, 1, if g1 € Ix11 and an edge from I 1 to I, if i1 € Ix. Except when
the segments are all of type (C2), or all of type (C3), following the oriented edges, one goes from
segments of type (C4) or springs to segments of type (C1) or sinks, after possibly visiting a
successive sequence of segments of type (C2), turning anti-clockwise, or a successive sequence of
segments of type (C3), turning clockwise. In particular, it appears that the number of springs is
the number of sinks. Inside each segment, the dual process is constructed according to its type.
From the above considerations, we get all the requirements on the dual process I presented in
Theorem 1.

Note that the segments are all of type (C2) (respectively (C3)) if and only if b is positive (resp.
negative) on M. Thus assuming the drift b does not take a fixed sign on M, whatever the starting
point, X ends up into a sink in finite time, since the exit times from segments of type (C2), (C3)
and (C4) are all a.s. finite. In this situation, for large times, the process X converges in law, the
process I converges a.s. and the limit law of X is E[A(I(+00),-)], where I(400) = limy_, 4o (%)
(convergence taking place in finite time). Except when there is only one sink (in which case it is
possible to construct a strong stationary time, since there is a unique invariant probability measure,
namely the normalizations of the speed measure on the sink), the limit law of X depends on its
initial condition. E.g. starting from a spring, the process X have positive probabilities (depending
on the exact initial position in the spring) to exit it from the right or from the left and with the
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same probabilities, I collapse on the right or on the left boundary. After that, I will converge
toward the closest sink following the above edges. The limit law of X is then a convex combinaison
(with the previous probabilities) of the normalizations of the corresponding speed measures.

When b has a fixed sign on 91, the process I does not converge a.s. since it appears that
I(t,) = {X(tn)} for all n € N, where (t,)nen is the unbounded increasing sequence of times t = 0
such that X (t) € M. More precisely, assume for instance that b is positive on 0N, after the first time
X hits N, according to (44), we have, according to Appendix A with ¢ = 0,

(e pro(Z(0) -
az(t) = < (Z(t)) b(Z(t))+2,UK(t)([yK(t)7Z<t)]) (Z(t))) dt ++/2a(Z(t)) dW (1),

where K (t) is the unique index k € Zy such that Z(t) € I (furthermore, we have Y'(t) = yg))-
Thus it appears that Z becomes a Markov processes, whose behavior is quite similar to that of X
(they even coincide at each time X pass through 91). The dual process I is not very helpful to
understand the convergence in law of X. Indeed, as announced in the introduction, another dual
process T should be considered to go in this direction. It will be done in the following section.

Let us now present an example showing the above dual is not optimal with respect to the
construction of a strong stationary time.

Example 23 Consider on T := R/(277Z), the operator L := ad? + bo, with

2

a(z) = cos*(x),
veel, {b(a:) = sin(x).

We have N = 2, ng = /2 and y; = 37/2, so that Iy = (—n/2,7/2) is of type (C4) and I} =
[7/2,37/2] is of type (C1). Consider the initial condition X (0) = 0. Due to the symmetry of I
and of the coefficients a and b (anti-symmetric) with respect to 0, we deduce from (43) that we
have Z = —Y until X hits {—7/2,7/2}, say at time 7. In this situation, it appears that

lim A([—Z(t), Z(t)],") =

t—7_

(5_71-/2 + (571-/2) .

N | —

Thus the natural extension seems to be I(7) = {—n/2,7/2}, instead of I(7) := {X(7)}. Indeed, in
the former case, for ¢ > 7, we can construct a dual process of the form

I(t) = [-2(t), —7/2] v lr/2,Z(t)],

where Z takes values in [7/2, 7] and solves the s.d.e.

m([=Z(t), —n/2] v [x/2,Z(1)])
+4/2a(Z (1)) dW (¢)

(a’(Z(t)) —b(Z(1)) + 2 V;((Z[ (t/)Q)Nzlii](?)«/a(Z(t)O dt + \/2a(Z (D) dW (), (47)
1\|7/ 4,

where p; is the speed measure associated to I; and (W (t))¢>0 is a standard Brownian motion. For
the second equality, we used the symmetry of I} and of L (with respect to the real axis, when T is
seen as the unit circle in C). When Z hits «, I hits [7/2,37/2] and the corresponding hitting time
is a strong stationary time for X.

Consider now the case where we set I(7) = {X(7)} and assume for instance that X (7) = 7/2.
For ¢t > 7, our construction for Theorem 3 leads to a dual of the form I(t) = [7/2, Z(t)], where Z
takes values in [7/2,37/2] and solves the s.d.e. (47). The dual process will be absorbed at I; when
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Z hits 37/2 and this provides a strong stationary larger than the previous one, since Z must go
through 7 before hitting 37 /2.

As just seen, starting from 0, this example can be brought back to the case of a diffusion on a
segment starting from its boundary. This situation is well-understood (see Fill and Lyzinski [6])
and the strong stationary time constructed in the former case is in fact sharp, namely stochastically
smaller than any other strong stationary time.

For the remaining part of this section, let us assume that Conjecture 21 is true. To construct
a dual process J = (J(t))t=0 able to collapse on pairs of points, we modify the definitions given
in the introduction in the following way. Let Z; stand for the set of non-empty closed intervals
from T which are included into one of the Iy, for k € Zy and Zy the set of pairs (¢1,t2), where
t1,t2 € I; are disjoints. Now set Z =77 uZy and § = 81 u Sy, with & = {{z} : = € T} and
Sy = {(vg, ) : k+1e€Zy}. For any a € [0, 1], define a Markov kernel A, from Z to T by

[ 0.(+) , when ¢ = {z} € Sy,
ady, (1) + (1 — a)dy, () , when ¢ = (g, 1) € S,
Viel, Aa(L7 ) = pg(en:) (48)

ImAO) 3 when ¢ € Il\Sl and ¢ I[ka

o (t10)+(1—a)p(12n)
LU apg()+(1—a)p(e2)

, when ¢ = (11, 12) € Zo\S2, t1 < [ and 1o  I;.

Then Theorem 3 can be extended into:

Theorem 24 There exists a process J = (J(t))i=0 taking values in I, whose construction is
adapted with respect to X, such that

<

0) = {X(0)},
Vit>0, PJ(t)eS] = 0,
V=0,  LXWOMIO0L]) = Auaop((E),),

where «(1(0)) € [0,1] only depends on I(0) (or equivalently on X(0)). In particular, when
L(X(0)) = 6z, for some xg € T, we have for any t = 0, the decomposition

LX(1) = j Aa(gap () LI (1)(de).

Proof

When X (0) does not belong to a spring, the dual process J is the same as I in Theorem 3 and the
introduction of Zy and Sz are not necessary. When X (0) = z belongs to a spring, say I, let 7 its
exit time from I and a({zo}) = Py [X(7) € I[x—1]. Before 7, J is constructed as I in Theorem 3,
but at 7, we impose J(7) := ({vx}, {pk+1}). Conjecture 21 enables us to see that

LXOI0,7]) = Aoy (7)),

from which we can keep up constructing J after the time 7, by setting

(11(2), 12(1)),
inf{t >0 : (t) n L(t) + &},

Vtel0,7), J(T+1)

%

where I; and I» are the same as in Theorem 3, starting with 1;(0) = {yx} and [2(0) = {hr+1},
and directed by the same Brownian motion (W (¢))i>o in (43) and (44). When 7 < +o0 (as in
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Example 23, where it corresponds to the time Z hits ), we set J(7 + t) = I1(T) u I3(7) for all
t>=0.
|

As in Remark 2, the probability measure-valued Markov process (Aq({z})(J/ (%), ) is continuous
and seems the right object to consider as a dual.

The main advantage of Theorem 24 over Theorem 3, i.e. of the Markov kernel given in (48) over
the Markov kernel (8), is that it enables to extend the construction of strong time stationary times
T, in the sense that the position X is distributed according to an invariant probability measure
(maybe non longer the unique invariant probability measure as before). This is possible when X (0)
starts from a fixed position xg € T and when b does not take a fixed sign on 91. Indeed, in this case
the dual process ends up being absorbed in a state J(o0) depending only on xg, which is either a
closed segment from {I; : k € Zy} or a disjoint union of two such segments. Since Aq({z})(J/(0),-)
is an invariant probability measure for X depending only on zq, classical arguments from Diaconis
and Fill [4] then show that the absorbing time for .J is a strong stationary time.

5 The turning diffusion

Here we consider more precisely the circle situation where b has a fixed sign on N, to show
Theorem 4 and to deduce the convergence of X in law for large time.

Up to conjugacy with respect to T 3 x — —x € T, it is sufficient to study the case where
b > 0 on N. We begin by investigating the invariant measure for the generator L given in (7).
For k € Zy, recall that uy is the speed measure of the restriction of L on . It is defined up to a
positive factor by

Vxel, pr(x) = a(lx) exp (J‘B | Z((Zzg du) ,

where 3 is a chosen point belonging to I, and where a segment [u, v] c T will always be understood
as the path going from u to v anti-clockwise. For any family of non-negative numbers (pg)rezy
the measure p := 3, 7 = prpu satisfies u[L[f]] = 0 for any smooth f with compact support in T\D.
But this is not sufficient for p to be a invariant measure. Furthermore we are here looking for an
invariant probability measure and it can be easily check that pu(T) = +00, except in the trivial case
where all the pg, for k € Zy, are equal to zero. In fact, for fixed k € Zy, the restriction of L to
smooth functions with compact support in I, is symmetric in L?(x;) but the problem at hand is
really non reversible since the diffusion X has a strong tendency to turn anti-clockwise around T.
Lemma 25 in Appendix A suggests to rather look for the solutions 7 of the equation given on the
interior of I, by

(ang) = bng — ek,

where ¢, is a constant. When a did not vanish on {9, vx41}, it is not difficult to check that the
general solution of this equation is

Vzveﬁk, ne(x) = b pkf exp J é(v)dv du+qkf exp —J é(v)clv ,
a(x) [e.2] [ua] @ (2,01 1] [z,0] @

where p; and g are two constants such that pr + g = cx. If we want this expression to converge
when a does vanish on {yi, i1} and b is positive on {9, hr11}, we must take pp = 0. It leads us

to consider
. b
Veely, n(x) = f exp <—j (v)dv> .
[z,9%+1] [z,v] a
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We compute that
m ng(z) = 0 = lim m(x),

T4 TV 41—

so define ng (9g) = 0 = Nk (9r+1). Since we have (ang)’ = by, — 1, we deduce from the decomposition
(61) with ¢ = 1 that for any f € C*([vk, 9x+1]), we have

mlLU = [amef Tor™ = [Fle
= —(f(rg1) — f(or))-

Define the function 7 on T by imposing that n coincide with ng on I for all & € Zy. Also denote
1 the measure admitting 1 as density with respect to the Lebesgue measure and remark that
this density is continuous (and vanish on N), so that n(T) < +oo. Furthermore we have for any

fec™(T),
LI = = D) flwen) = flow) = 0,
kEZN
namely 7 is invariant for L. The probability 7w appearing in (9) is just the normalization of 7 into

a probability measure.

Let us now describe the evolution of the dual process I := (Y, Z). Assume that X (0) = xo €
T = [Dk, Dps1), for some k € Zy. Following (51) and (55), we begin by defining (V' (¢ )s Z(t))te[0,m)
as the solution of the s.d.e.

( hthO+ Y/(t) = X,
limtﬂo_*_ Z(t) = X,

(Y (1))
Ti([f/(t) Z(t)])

v (1) = <a’(}~’(t))—b(l~/(t))+n( 2 _ 9¥alV @)

2a(Y (t)) W (t), ) )
dZt) = <a'(2(t>)—b(2(t))+ 7 + oYVt +yalZ(H)n(Z() a(Z(t))> dt

t
n(Z(1)) ([17() Z())
+/2a(Z(t)) dW (1),

for t € (0, 71), where 7_is the first time either Y hits 9 or Z hits 9y,1.
First, assume that Y (1) = nk._We extend the process (Y, Z) after time 71 by letting Y (t) = vy,
for all t > 7, and by solving for Z the s.d.e., for t € [11,72),

>, )
n(Z@) oo Z(t

where 73 is the first time after 71 that Z hits k+1. This time is a.s. finite, because i1 is an exit
boundary for Z (as well as for X) on [9x, 9ps1)- Next for t € [m2,73), we ask that Z solves again
the s.d.e. (49), where 3 is the first time after 7 that 7 hits Dg+2. This time is a.s. finite, because
Di1o 1S an exit boundary for Z on [Dk+1,9%+2). We keep solving this equation until 7 ends up
hitting b, say at time T, which is also a.s. finite. After T, we take T to be equal to T.

Since the generator of I= (XN/, Z ) is intertwined with L through K, we construct a coupling of
T with the diffusion X , associated with the generator L, so that

I(0) = {Xx(0)},

Vi=0,  LX@OI0,¢]) = A(I@®),).
Then we get that T is a strong stationary time for X.

It follows that X converges toward 7 in separation and in total variation in large time, due to
the general bounds (45). As pointed out by the referee, since by compactness the above hitting
times can be bounded uniformly with respect to the starting point, these convergences are uniform
with respect to the starting point, implying an exponential convergence.

dZ(t) = <a'(2(t))—b(2(t))+ )Da(Z(t))> dt + A/ 2a(Z(t)) dW (t), (49)
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A About segment-valued dual processes

Putting together considerations from [12] and [3], we present here some computations that were
used throughout the paper.

On (0, 1), consider a generator L := ad? + bd, where a > 0 and b are smooth functions on (0, 1).
Let n > 0 be a smooth function on (0, 1) satisfying

(an) = bnp—ec, (50)

where c is a constant. Then the measure (still denoted 7) admitting 7 with respect to the Lebesgue
measure A on (0,1) is invariant for L in the following sense:

Lemma 25 For any f € CF(0,1), the space of smooth functions with compact support inside
(0,1), we have n[L[f]] = 0. Furthermore, 1 is reversible with respect to L, in the sense that for all

f,9€CX(0,1), nlgL[f1] = nlfLlgll, if and only if c = 0.

Proof

These results are immediate consequences of the following integration by parts: for all f,g €

cr(0,1),
nlgLlf]] = Ll angf” + bngf' dx
= Ll —(ang)'f" + bngf'dX
= Ll —(an)'gf" — ang' f" + bng f’ dX

1
= —f ag’fdn%—cfgf/d)\.

0

When g = 1 (the mapping always taking the value 1, here on (0, 1)), the r.h.s. is equal to

1
cf flax = 0,
0

showing the first assertion of the above lemma. Concerning the second one, the reversibility is
equivalent to

VIgec2O0),  cfofdn = ¢ fdar

By another integration by parts, the r.h.s. is equal to —c {gf’ d\, so we must have ¢ {gf’ d\ = 0,
fo all f,g e C¥(0,1) and this is true if and only if ¢ = 0.
|

Let be given yy < zp € (0,1) and 8 a smooth function on (0,1) that will be specified later, in
(55). Consider a solution (Y, Z) = (Y'(t), Z(t))se[o,r) of the s.d.e.

Y(O) = Yo,
Z(0) = =,
dY(t) _ (CL’(Y(t)) _ ﬁ(Y(t)) _ 2\/a(Y(t))W;i(/[(}f)()t‘)f‘z(z)(ﬁ(t))W(Z(t)) a(Y(t))> dt
) —/2a(Y () dW (1), | (51)
iz(t) = (o(20) - 520 + 2D EEOINEO fatz ey )
+/2a(Z (D) dW (1),
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where the explosion time 7 is such that either lim;,, Z(¢) — Y (¢) = 0, or limy_,, Y (¢f) = 0 or
limy,, Z(t) = 1. Denote A = {(y,2) : 0 <y < z < 1}. For any f € CL(0,1), define the
elementary observable

Vwaes B = | f@)ld) (52)
y
It will be also convenient to consider for (y,z) € A,

Grly,2) = f)Valz)n(z)+ fy)valy)n(y),
) = g

We compute that for any f e CX(0,1) and (y, z) € A,

oyFr(y,2) = —fy)n(y),
0:Fr(y,z) = f(2)n(z2),
02Ff(y,2) = —(fn)(y),
CFi(y,z) = (fn)(2),
0:0,F¢(y,z) = 0.

It follows from It6’s formula that
dFy(Y (1), Z(t)) = 0.Fy(Y (1), Z(1)dZ(t) + 0y Fy(Y(t), Z(t))dY (t) + %@Ff(Y(t), Z(t))d{Z) (t)

+%5§Ff(Y(t)7 Z()d{Y ) (t) + 0:0,Fy (Y (1), Z())d Y, Z) (t)
(

= Q. Fp(Y(), Z(t))dZ(t) + 0, F; (Y (1), Z(£))dY (t) + OZFy(Y (t), Z(t))a(Z(t))dt
+OIFp(Y (), Z(t))a(Y (t))dt
(

= (fm)(Z(t)d (fm (Y (£)dY (t) + (fn) (Z(t))a(Z(t)dt — (fn) (Y (t)a(Y (t))dt
= dMT(t) + A(Y (t), Z(t))dt, (53)

where M/ = (Mtf )te[o,r) is the local martingale defined by

vielor), M) = L(fn)(Z(S)) 2a(Z(s)) + (fm)(Y (s))v/2a(Y (s)) dW (s)  (54)

and where

Aly.2) = () () = B) + 2H (g 2)Va(2)) = (f)(y) (¢ () = Bly) — 2H(y, 2)/aly))

Bfn)(z) + (Bfn)(y) +2H (y, 2)Gy(y, 2)
f((an)" = Bn)(2) = (f((an)" = Bn))(y) + 2H (y, 2)G ¢ (y, 2).
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The first term of the r.h.s. can be transformed into

(f'an)(z) — (f'an)(y)
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J (an) (@) f" () + (bn)(2) f'(x) dz — f cf'(z)dx
[v,2]

[y,2]

J[ | L[ fl(x)n(dz) — e(f(2) — f(y))
= Frp(y,2) — c(f(2) = f(y)),

where we took into account (50). We deduce that

Ay,2) = Frp(y,2) + (f((an) = Bn—)(2) = (f((an)" = Bn = c))(y) + 2H (y, 2)G¢(y, 2)
= Iy, 2) + (f((b—B)n—2¢)(2) — (f((b—B)n—2¢))(y) + 2H(y, 2)G(y, 2).

It leads us to consider

= p—2%, 55
B p (55)

so that
A(ya Z) = FL[f]<y7 Z) +2H(y,Z)Gf(y,Z) (56)

Remark 26 Let us make the link with the formulation adopted in [3] in the context of Riemannian
geometry in dimension strictly larger than 1. Endow (0,1) with the Riemannian metric given by
1/a (so that the norm of the usual unit vector 1 above z € (0,1) is 1/4/a(x), or equivalently,
++/a(x) are the unit vectors above z in the new Riemannian metric). Let d be the corresponding
distance and for any A < (0,1) and € > 0, let A, :={z € (0,1) : d(x, A) < €}, the e-enlargement of
A. Then we have for any f e CZ(0,1) and (y, z) € A,

agf fdn = Gy(y,2)
[y,2]e

e=0

- [ s (57)
y,z]
where 7) is the (non-o-finite) measure given by
n o= ) Aal@)n(z)d, (58)
2€(0,+00)

(n will only serve to measure the boundaries d[y, z] = {y, z} of segments [y, z], with (y,2) € A,
we used the symbol § in (57) instead of a sum over the two elements of J[y, z] to adopt the same
notation as in higher dimensional Riemannian geometry). It appears that

02 f fdn
[y,2]e

where (-, -) and V are relative to the considered Riemannian metric and where v is the “unit exterior
normal vector” on d[y, z]. The function U := In(dn/dv) is the logarithm of the Radon-Nikodym
density of n with respect to the Riemannian measure v, which admits itself the density 1/4/a with

— J (Vf,v)y+{(VU,v) dn, (59)
=0 oy
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respect to the usual Lebesgue measure. Thus we have dn/dvy = 1, where by a traditional abuse of
notation, we also interpret 7 as the function y/an. In the usual definitions in higher dimensional
Riemannian geometry (see e.g. Proposition 1.2.1 of Mantegazza [11]), the r.h.s. of (59) should
contain a supplementary term § fpdn where p would be the “mean” curvature on the boundary
dly, z] with respect to the unit exterior normal vectors. Thus we recover that in dimension 1, the
mean curvature of a boundary of dimension 0 vanishes: p = 0. To see the coherence of (51) with
the formulation of [3] in the context of diffusions in Riemannian manifolds of dimension larger or
equal to 2, we should check that

a—pB = —(VU—=bg,vyv—pv, (60)

where by is such that the Helmoltz-Hodge decomposition b = VU + by holds (note the change of
sign with respect to (60)), i.e.

by = b—VU
b—al’
(v/an)'
Ja

/ /

a

= b—a

3

It follows that the r.h.s. of (60) is equal to

—(VU = bg,vyv = bg—VU

= 2bg—>
/
= b—2aL o
n
S ()
n
= a/_ﬁ7

as wanted, where we used (50) and (55).
Remark that in general the Helmoltz-Hodge decomposition b = VU + by is different from the
decomposition b = (an)’/n + ¢/n, which enables to write

1 c
L = —0(and)+ —0, 61
7 (an) ; (61)
where %8(an8) is symmetric in L2(u) and 50 is skew-symmetric in L2 ().

Let (9D, £) be the generator £ of (Y, Z) in the sense of (local) martingale problems. It follows
from (53) and (56) that £ acts on the elementary observable Fy, with f € CX(0,1), by

LlFl(y,z) = Frn(y,2) +2H(y,2)Gs(y, 2).

Furthermore, the carré du champs I'e associated to £ is such that the bracket of the martingale
M7 defined in (54) satisfies

t
viefor), (M) = 2| DLl A () Z)ds
0
It follows by polarization that all f, g e C(0,1),

V(y,z) e,  TelFr Fyl(y,2) = Grly,2)Gy(y,2).
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Since (Y, Z) is a diffusion (namely a Markov process with continuous trajectories), the generator
£ and the carré du champs I'¢ extend in the following way (see e.g. the book of Bakry, Gentil
and Ledoux [1]). Consider the algebra A consisting of the composed observables of the form
S =§(Fp,.... Fy,), where ne€ Zy, fi,..., fn € CF(0,1) and f : R — R is a C* mapping, with R an
open subset of R” containing the image of A by (F¥,, ..., Fy, ). Then A is included into ® and since
£ is a differential operator of order 2 without terms of order 0, we have for any § = f(Fy,, ..., F,)
and & := g(Fy,, ..., F,,,) belonging to A,

'2[3] = Z ajf(FfM'"?an)'g[Ffj]"‘ Z ak,lf(FfU"‘7an)F2[ka7Ffz]a
jelln]] k,lElI’nﬂ
Pg[%,@] = Z alf(Fflv"'Jan)akg(Fglv"'7Fgm)F2[Ffzﬂng]
le[n], ke[m]

(where [n] :={1,2,...,n}).
Define a Markov kernel A from A to (0, 1) by

n(ly,z] n A)
n(ly, z])

Note that for any f € CX(0,1), we have A[f] = Fy/Fy, so A[f] € A and the above formulas lead
without difficulty to the intertwining relation

Furthermore, by considering observables of the form f(Fy), where f € C*(R), it appears that
(n([Y (t), Z(t)]))tefo,r) is a (possibly stopped) time-changed Bessel process of dimension 3. This
property enables us to let the process (Y, Z) start from the singleton (yo,yo), by passing to the
limit as zp goes to yp+ and to see that the set of the singletons is an entering boundary for (Y, Z),
see Section 2 from [12]. Under the assumption that £(Yp, Zo)A = L£(Xo), proceeding as in Section 4
from [12], we construct a coupling of the diffusion X associated to the generator L with the process
(Y, Z), so that

V(y,z)e A,V Ae B(0,1), Ay, z], A)

VT =0, L(X|(Yes Zt)iepor) = MY, Zr),-). (63)

Alternatively, conditioning furthermore by the initial condition Xy, we can also couple X and
(Y, Z) so that Yy = Xy = Yp, in addition to (63).

When 7n([0,z]) < +o0o for (one or all) z € (0,1), in the above considerations Y can be fixed
equal to 0 (and symmetrically, Z can be fixed equal to 1, when n([z,1]) < +o for z € (0,1)). In
particular, we can impose this restriction once Y has hit 0 (or Z has hit 1). Then the natural
extensions of the previous results hold.
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