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A discrete framework to find the optimal matching between
manifold-valued curves

Alice Le Brigant

Abstract The aim of this paper is to find an optimal
matching between manifold-valued curves, and thereby
adequately compare their shapes, seen as equivalent
classes with respect to the action of reparameterization.
Using a canonical decomposition of a path in a princi-
pal bundle, we introduce a simple algorithm that finds
an optimal matching between two curves by comput-
ing the geodesic of the infinite-dimensional manifold of
curves that is at all time horizontal to the fibers of the
shape bundle. We focus on the elastic metric studied
in [10] using the so-called square root velocity frame-
work. The quotient structure of the shape bundle is
examined, and in particular horizontality with respect
to the fibers. These results are more generally given for
any elastic metric. We then introduce a comprehensive
discrete framework which correctly approximates the
smooth setting when the base manifold has constant
sectional curvature. It is itself a Riemannian structure
on the product manifold Mn of "discrete curves" given
by n points, and we show its convergence to the contin-
uous model as the size n of the discretization goes to
∞. Illustrations of optimal matching between discrete
curves are given in the hyperbolic plane, the plane and
the sphere, for synthetic and real data, and comparison
with dynamic programming [16] is established.

Keywords Shape analysis · optimal matching ·
manifold-valued curves · discretization
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1 Introduction

1.1 Context

The study of curves and their shapes is a research area
with numerous and varied applications, which is why it
has known a great deal of activity over the past years.
These curves can be closed or open, and take their val-
ues in a Euclidean space or more generally in a Rieman-
nian manifold. To name a few examples, closed plane
curves are central in shape analysis of objects [22]; the
study of trajectories on the Earth requires to deal with
open curves on the sphere [24]; and in signal process-
ing, locally stationary Gaussian processes can be repre-
sented by open curves in the hyperbolic plane, seen as
the statistical manifold of Gaussian densities [9], [10].
Here we are concerned with the study of open curves in
a manifold M of constant sectional curvature.

There are naturally many ways to go about compar-
ing curves in a manifold. One way is to see the space
of manifold-valued curves as an (infinite-dimensional)
manifoldM itself, and equip it with a Riemannian met-
ric G. Then the geodesic between two curves inM de-
scribes how one optimally deforms into the other, while
its length gives a measure of dissimilarity : the geodesic
distance. The advantage of this strategy is that it pro-
vides all the convenient tools of the Riemannian frame-
work. An interesting property for the metric G, from
the point of view of the applications, is invariance with
respect to re-parameterization: for closed curves, this
amounts to considering only the shape of an object; for
an open curve representing the evolution in time of a
given process, this allows us to analyze it regardless of
speed or pace. A popular strategy is to consider the
quotient space S of curves modulo reparameterization,
where two curves are considered identical if they pass
through the same points of M but at different speeds,
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Fig. 1 Examples of (suboptimal) matchings between shapes in R3. Correspondence between points is shown with dashed lines.

or equivalently when one can be obtained by reparam-
eterizing the other. This quotient space is often called
the shape space. If the Riemannian metric G defines the
same scalar product at all points of M which project
on the same "shape", then G induces a Riemannian
structure on the quotient space. Computing geodesics
between two shapes for that metric can be done in two
steps : (1) establishing an "optimal matching" through
the choice of two parameterizations, one for each shape,
that will put in correspondence the points on the first
shape with points on the second shape, as in Figure 1,
and (2) computing the geodesic between the two pa-
rameterized curves obtained. Both steps depend on the
choice of the metric.

1.2 Previous work

Since the simplest metric one can think of, the L2-
metric (slightly modified to stay constant along the
fibers), induces a vanishing distance on the quotient
space [11], different classes of metrics have been stud-
ied to perform shape analysis. The large class of Sobolev
metrics involves higher order derivatives to overcome
the vanishing problem of the L2-metric [12]. A first-
order Sobolev metric for plane curves was introduced
in [20] and used in [21], which can be mapped to the
L2-metric by a change of coordinates, namely by con-
sidering the complex square root of the speed of the
curve. This metric was modified by the authors of [15]
to define the family of elastic metrics Ga,b, parameter-
ized by two constants a and b which control the degree
of bending and stretching of the curve. In [17], the au-
thors show that for a certain choice of parameters, the
elastic metric can again be mapped to the L2-metric us-
ing the so-called square root velocity (SRV) coordinates,
where a curve is represented by its speed renormalized
by the square root of its norm. The SRV framework was
generalized in [2] for any elastic metric with weights a
and b satisfying a certain relation. A quotient struc-
ture for the metric used in [17] is carefully developed in

[8], where the authors prove that if at least one of two
curves is piecewise-linear, then there exists a minimiz-
ing geodesic between the two, and give a precise algo-
rithm to solve the matching problem. In [3], it is proven
that in the same framework, there always exists an op-
timal reparameterization realizing the minimal distance
between two C1 plane curves. Another approach is pro-
posed in [19], where the authors restrict to arc-length
parameterized curves and characterize the horizontal
space of the quotient structure for these curves in the
elastic framework.

Concerning manifold-valued curves, the geodesic
equations for Sobolev metrics in the space of curves
and in the shape space were given in [1] in terms of
the gradient of the metric with respect to itself. A gen-
eralization of the SRV framework to manifold-valued
curves was introduced in [23] and used in [24], while an-
other one was proposed in [10]. Extension to curves in
a Lie group or a homogeneous space can also be found
in [4], [5], [18]. Both metrics in [23] and [10] coincide
with the metric of [17] in the flat case, however they
define different Riemannian structures when the base
space has curvature. The difference lies in the way com-
putations are made – in [23] and [24] they are moved
to the tangent spaces at the origins of the curves, re-
sulting in simpler computations, whereas in [10] they
are done directly in the base manifold M , transporting
data pointwise across M from one curve to the other,
thus making the comparison more sensitive to the local
"geography" of M . When comparing the geodesic dis-
tances, this difference is measured by a curvature term
(see [10], Prop. 3). In addition, unlike the metric of [23],
the one in [10] can be written as an elastic metric (with
a = 2b = 1). The work of [23] is applied to curves in
the space of symmetric positive definite matrices, while
the case of spherical trajectories is investigated in [24],
where the authors exhibit simplifications. In both cases,
optimal matching between curves is achieved through
dynamic programming. On the other hand, the Rie-
mannian structure in [10] is applied to curves in the
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hyperbolic plane, but the question of optimal matching
is not studied. This is remedied here.

1.3 Contributions of this paper

The aim of this paper is three-fold : (1) study the quo-
tient structure associated to the Riemannian metric G
of [10], and more generally to any elastic metric on
manifold-valued curves, (2) exploit this knowledge of
horizontality in an algorithm that computes an opti-
mal matching between shapes – and whose range of
application goes beyond elastic metrics – and (3) give a
comprehensive discrete Riemannian framework on the
finite-dimensional manifold of "discrete curves" that
correctly approximates these procedures for the partic-
ular case of the SRV framework and constant sectional
curvature. More specifically,

• we characterize the horizontal subspace associated
to the quotient shape space, for any elastic metric
and in particular for the SRV metric G. Namely,
we decompose any infinitesimal deformation of a
smooth curve into a vertical part, which reparam-
eterizes the curve without changing its shape, and
a G-orthogonal horizontal part. This is done in a
similar way as in [19] but without restriction to arc-
length parameterized curves.

• We write any path in the space of smooth curves as
a horizontal path composed with a path of reparam-
eterizations. We use this decomposition to define an
algorithm that, for a fixed parameterization of one
of two curves, approximates the horizontal geodesic
linking it to the fiber of the other curve, thereby
yielding the "closest parameterization" of the latter
with respect to the fixed parameterization of the
former. We refer to this correspondence as an opti-
mal matching. This algorithm can be used for any
metric structure as long as one knows how to com-
pute geodesics and characterize horizontality. Com-
parison with the popular dynamic programming ap-
proach [16] is established in the simulations section.

• We define a discrete version of G that is a Rie-
mannian metric on the finite-dimensional manifold
Mn+1 of "discrete curves" given by n + 1 points,
when M has constant sectional curvature K ∈
{−1, 0, 1}. We show that the energy of a path of
discrete curves converges to the energy of the limit
path as the size n of the discretization goes to∞. We
give the geodesic equations for this metric, charac-
terize the Jacobi fields, describe geodesic shooting,
and show simulations on synthetic and real data in
R2,R3, the hyperbolic plane and the sphere.

1.4 Outline

After reminding the continuous model previously intro-
duced in [10], Section 2 describes the horizontal space
of the quotient structure and a way to compute hor-
izontal geodesics. In Section 3, we introduce the dis-
cretization, and give the convergence result toward the
continuous model, which is later proved in Section 5.
Section 4 shows results of simulations in the three set-
tings of positive, zero and negative curvature.

2 The continuous model

2.1 Notations

Let (M, 〈·, ·〉) be a Riemannian manifold. We first in-
troduce a few notations. The norm associated to the
Riemannian metric 〈·, ·〉 is denoted by | · |, the Levi-
Civita connection by ∇ and the curvature tensor by R.
If t 7→ c(t) is a curve in M and t 7→ w(t) ∈ Tc(t)M a
vector field along c, we denote by ct := dc/dt = c′ the
derivative of c with respect to t and by ∇tw := ∇ctw,
∇2
tw := ∇ct∇ctw the first and second order covariant

derivatives of w along c. Parallel transport of a tangent
vector u ∈ Tc(t1)M from c(t1) to c(t2) along c is de-
noted by P t1,t2c (u), or when there is no ambiguity on
the choice of the curve c, ut1,t2 , or even u‖ to lighten
notations in some cases. We associate to each curve c
its renormalized speed vector field v := c′/|c′|, and to
each vector field t 7→ w(t) along c, its tangential and
normal components wT := 〈w, v〉v and wN := w − wT .
Finally, for all x ∈ M we denote by expx : TxM → M

the exponential map on M and by logx : M → TxM its
inverse map.

2.2 The space of smooth parameterized curves

2.2.1 The Riemannian structure

We represent open oriented curves inM by smooth im-
mersions, i.e. smooth curves with velocity that doesn’t
vanish. The set M of smooth immersions in M is an
open submanifold of the Fréchet manifold C∞([0, 1],M)

[14] and its tangent space at a point c is the set of
infinitesimal deformations of c, which can be seen as
vector fields along the curve c in M

M={c ∈ C∞([0, 1],M)|c′(t) 6= 0,∀t ∈ [0, 1]},
TcM={w ∈ C∞([0, 1], TM)|w(t) ∈ Tc(t)M, ∀t ∈ [0, 1]}.

Reparametrizations are represented by increasing dif-
feomorphisms ϕ : [0, 1] → [0, 1] (so that they preserve
the end points of the curves), and their set is denoted by
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Diff+([0, 1]). We adopt the so-called square root veloc-
ity (SRV) representation, i.e. we represent each curve
c ∈ M by the pair formed by its starting point x and
its speed vector field renormalized by the square root
of its norm, via the bijectionM→M × TM

c 7→

(
x := c(0), q :=

c′√
|c′|

)
.

The inverse of this function is simply given by M ×
TM 3 (x, q) 7→ πM(q) ∈ M, if πM is the canonical
projection TM→M. The renormalization of the speed
vector field in q allows us to define a reparameterization
invariant metric, as we will see shortly. For any tangent
vector w ∈ TcM, consider a path of curves s 7→ cw(s) ∈
M such that cw(0) = c and cws (0) := ∂cw/∂s(0) = w.
We denote by qw := cwt /|cwt |1/2 the square root velocity
representation of cw. With these notations, we equipM
with a Riemannian metric G, defined by

Gc(w,w) = |w(0)|2 +

∫ 1

0

|∇sqw(0, t)|2 dt. (1)

This definition does not depend on the choice
of cw and we can reformulate this scalar prod-
uct in terms of (covariant) derivatives of w. In-
deed, note that ∇sqw(0, t) = ∇cws (0,t)(c

w
t /|cwt |

1
2 ) =

|cwt (0, t)|− 1
2 (∇cws (0,t)c

w
t −1/2(∇cws (0,t)c

w
t )T ), which gives

after inverting the derivatives according to s and t,

∇sqw(0, t) = |c′|−1(∇twN + 1
2∇tw

T ).

The scalar product can then be rewritten

Gc(w,w) = |w(0)|2 +

∫ 1

0

(
|∇twN |2 + 1

4 |∇tw
T |2
) dt

|c′|
,

Gc(w,w) = |w(0)|2 +

∫ (
|∇`wN |2 + 1

4 |∇`w
T |2
)

d`,

(2)

where d` = |c′(t)|dt and ∇` = 1
|c′(t)|∇t respectively

denote integration and covariant derivation according
to arc length. This metric belongs to the class of so-
called elastic metrics parameterized by any a, b ∈ R,
which can be defined for manifold-valued curves as

Ga,bc (w,w) = |w(0)|2+

∫
a2
(
|∇`wN |2 + b2|∇`wT |2

)
d`.

With formulation (2) it is clear that G = G1, 12 is invari-
ant under the action of reparameterizing the curve and
its tangent vectors by any increasing diffeomorphism
ϕ ∈ Diff+([0, 1]),

Gc◦ϕ(w ◦ ϕ, z ◦ ϕ) = Gc(w, z), ∀w, z ∈ TcM. (3)

This reparameterization invariance property will allow
us to induce a Riemmannian structure on the quotient
space as we will see in Section 2.3.

2.2.2 Geodesics between parameterized curves

Two curves c0, c1 ∈ M can be compared using the
geodesic distance induced by G, i.e. by computing the
length of the shortest path of curves [0, 1] 3 s 7→ c(s) ∈
M from c0 to c1

dG(c0, c1) = inf {L(c) : c(0) = c0, c(1) = c1} , (4)

where the length of a path c can be written in terms of
its SRV representation (x, q) : [0, 1]→M × TM

s 7→
(
x(s) := c(s, 0), q(s, ·) :=

ct(s, ·)
|ct(s, ·)|1/2

)
, (5)

as

L(c) =

∫ 1

0

√
|xs(s)|2 +

∫ 1

0

|∇sq(s, t)|2dt ds.

Note that here - and in all that follows - we indifferently
use the notations c(s, t) = c(s)(t), q(s, t) = q(s)(t) for
all s, t ∈ [0, 1]. Now we recall a result shown in [10],
which characterizes the geodesic paths ofM, i.e. those
which achieve the infimum in (4), by searching for the
critical points of the energy functional E :M→ R+,

E(c) =

∫ 1

0

(
|x′(s)|2 +

∫ 1

0

|∇sq(s, t)|2dt

)
ds. (6)

Proposition 1 (Geodesic equations) A geodesic
path [0, 1] 3 s 7→ c(s) ∈ M for G, or more specifically
its SRV representative s 7→ (x(s), q(s)) (5), verifies the
equations

∇sxs(s) + r(s, 0) =0,

∇2
sq(s, t) + |q(s, t)|

(
r(s, t) + r(s, t)T

)
=0,

(7)

for all s, t ∈ [0, 1], where the curvature term r(s, t) in-
tegrates the vector field R(q,∇sq)cs parallel transported
back to t along c(s, ·),

r(s, t) =

∫ 1

t

R(q,∇sq)cs(s, τ)τ,tdτ, t ∈ [0, 1].

Remark 1 In the flat case M = Rd, the curvature term
r vanishes and we obtain ∇sxs(s) = 0, ∇2

sq(s, t) = 0 for
all s and t. This means that the geodesic between two
curves (x0, q0) and (x1, q1) in the SRV coordinates is
composed of a straight line s 7→ x(s) and an L2-geodesic
s 7→ q(s, ·). In other words, the geodesic links the start-
ing points with a straight line and linearly interpolates
between the renormalized speeds. Notice that if this lin-
ear interpolation goes through zero, the geodesic does
not exist in Imm([0, 1],M). This can be avoided by con-
sidering a larger space of curves, such as the set of ab-
solutely continuous curves [8].
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Fig. 2 Schematic illustration of geodesic shooting.

A possibility to construct the geodesics ofM is to use
geodesic shooting. By solving the geodesic equations
(7) we can construct the geodesic path starting from
a given curve c0 at a given speed w ∈ Tc0M - this is
the exponential map on M. Given two curves c0, c1,
geodesic shooting allows us to iteratively find the ap-
propriate initial speed w which will make the geodesic
land on c1. The idea is to "shoot" from c0 in a certain
direction using the exponential map, estimate the gap
between the end point of the obtained geodesic and the
target point c1, "bring back" this information at c0 us-
ing a Jacobi field and finally use this information to
correct the shooting direction.

Jacobi fields are vector fields that describe the way
that geodesics spread out in the Riemannian manifold:
for any geodesic s 7→ c(s) in M and Jacobi field s 7→
J(s) along c, there exists a family of geodesics (−δ, δ) 3
a 7→ c(a, ·) such that for all s, c(0, s) = c(s) and

J(s) =
∂

∂a

∣∣∣∣
a=0

c(a, s).

At a given step of the geodesic shooting algorithm, we
consider the Jacobi field that measures the difference
between the geodesic obtained by shooting and the de-
sired geodesic between c0 and c1 : it has initial value
J(0) = 0 since both have same starting point c0, and its
end value can be estimated by J(1) = logL2c0 c1, where
logL2c denotes the inverse of the exponential map for
the L2-metric on M, simply given by logL2c0 (c1)(t) =

logc0(t)(c1(t)) for t ∈ [0, 1]. The shooting direction can
then be corrected by the derivative ∇sJ(0) of the Ja-
cobi field at the origin, as shown in Figure 2. For more
details, we refer the reader to [10].

Algorithm 1 (Geodesic shooting)
Input: c0, c1 ∈M.
Initialization: w = logL2c0 (c1).
Repeat until convergence :

1. compute the geodesic s 7→ c(s) starting from c0 at
speed w by solving the geodesic equations (7),

2. evaluate the difference j := logL
2

c(1)(c1) between the
target curve c1 and the extremity c(1) of the obtained
geodesic,

3. compute the initial derivative ∇sJ(0) of the Jacobi
field s 7→ J(s) along the path of curves c verifying
J(0) = 0 and J(1) = j,

4. correct the shooting direction w = w +∇sJ(0).
Output: geodesic c.
This algorithm requires the characterization of the Ja-
cobi fields for G onM, and a way to deduce the initial
derivative ∇sJ(0) of a Jacobi field from its initial and
final values J(0), J(1). Concerning these two points,
we refer the reader to [10] : the Jacobi fields of M
are shown to be solutions of a linear PDE, which can
be solved to obtain the final value J(1) of a Jacobi
field J along a path of curves c knowing its initial con-
ditions J(0) and ∇sJ(0). If we consider only Jacobi
fields with initial value J(0) = 0, then the function
ϕ : Tc(0)M → Tc(1)M, ∇sJ(0) 7→ J(1) is a linear bi-
jection between two vector spaces and its inverse map
can be computed by considering the image of a basis of
Tc(0)M. The equations characterizing the Jacobi fields
in the discrete setting will be given in Section 3.

2.3 The space of unparameterized curves

2.3.1 The quotient structure

In order to compare curves regardless of parameteri-
zation, we consider the quotient S = M/Diff+([0, 1])

of the space of curves by the diffeomorphisms group.
This quotient is not a manifold, as it has singularities,
i.e. points with non trivial isotropy group [14]. That is
why from now on we assume that M denotes the set
of free immersions, i.e. immersions on which the dif-
feomorphism group acts freely. That way, the space of
curves M and the quotient shape space S are respec-
tively the total and base spaces of a principal bundle,
the fibers of which are the sets of all the curves that are
identical modulo reparameterization, i.e. that project
on the same "shape". We denote by π : M → S the
projection of the fiber bundle and by c̄ := π(c) ∈ S the
shape of a curve c ∈ M. The tangent bundle can then
be decomposed

TM = Ver⊕Hor

into a vertical subspace consisting of all vectors tangent
to the fibers ofM over S, that is, those which have an
action of reparameterizing the curve without changing
its shape

Verc = kerTcπ = {mv, m ∈ C},
C = {m ∈ C∞([0, 1],R), m(0) = m(1) = 0},
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Fig. 3 Schematic representation of the shape bundle.

and a horizontal subspace defined as the orthogonal of
the vertical subspace according to G

Horc = (Verc)
⊥G ={h ∈ TcMf : Gc(h,mv)= 0∀m ∈ C}.

If G is constant along the fibers, i.e. verifies property
(3), then there exists a Riemannian metric Ḡ on the
shape space S such that π is a Riemannian submersion
from (M, G) to (S, Ḡ),

Gc(w
hor, zhor) = Ḡπ(c) (Tcπ(w), Tcπ(z)) ,

where whor and zhor are the horizontal parts of tan-
gent vectors w and z, as well as the horizontal lifts of
Tcπ(w) and Tcπ(z), respectively. This expression de-
fines Ḡ in the sense that it does not depend on the
choice of the representatives c, w and z ([13], §29.21).
If a geodesic for G has a horizontal initial speed, then
its speed vector stays horizontal at all times - we say
it is a horizontal geodesic - and projects on a geodesic
of the shape space for Ḡ ([13], §26.12). To compute the
distance between two shapes c0 and c1 in the quotient
space we choose a representative c0 of c0 and compute
the distance (inM) to the closest representative of c1,
as shown schematically in Figure 3,

d̄ (c0, c1) = inf
{
d (c0, c1 ◦ ϕ) | ϕ ∈ Diff+([0, 1])

}
.

By definition, the distance in the quotient space allows
us to compare curves regardless of parameterization

d̄
(
c0 ◦ ϕ, c1 ◦ ψ

)
= d̄ (c0, c1) , ∀ϕ,ψ ∈ Diff+([0, 1]).

We now characterize the horizontal subspace for any
elastic metricGa,b and in particular for our metricG1, 12 ,
and give the decomposition of a tangent vector.

Proposition 2 (Horizontal part of a vector) Let
c ∈ M be a smooth immersion. Then h ∈ TcM is hor-
izontal for the elastic metric Ga,b if and only if(

(a/b)2 − 1
)
〈∇th,∇tv〉 − 〈∇2

th, v〉
+ |c′|−1〈∇tc′, v〉〈∇th, v〉 = 0.

In particular, for a = 2b = 1 we obtain

Horc = {h ∈ TcM : ∀t ∈ [0, 1], 3〈∇th,∇tv〉
− 〈∇2

th, v〉+ |c′|−1〈∇tc′, v〉〈∇th, v〉 = 0}.

Any tangent vector w ∈ TcM can be decomposed in hor-
izontal and vertical components w = whor +wver given
by wver = mv, whor = w−mv, where the real function
m ∈ C verifies the ordinary differential equation

m′′ − 〈∇tc′/|c′|, v〉m′ − 4|∇tv|2m
= 〈∇2

tw, v〉 − 3〈∇tw,∇tv〉 − 〈∇tc′/|c′|, v〉〈∇tw, v〉.
(8)

Proof Let h ∈ TcM be a tangent vector. It is horizontal
if and only if it is orthogonal to any vertical vector, that
is any vector of the form mv with m ∈ C∞([0, 1],R)

such that m(0) = m(1) = 0. We have ∇t(mv) = m′v +

m∇tv and since 〈∇tv, v〉 = 0 we get ∇t(mv)N = m∇tv
and ∇t(mv)T = m′v. The scalar product can then be
written

Ga,bc (h,mv) = 〈h(0),m(0)v(0)〉

+

∫ 1

0

(a2〈∇thN ,∇t(mv)N 〉+ b2〈∇thT ,∇t(mv)T 〉) dt

|c′|

=

∫ 1

0

(a2m〈∇th,∇tv〉+ b2m′〈∇th, v〉)
dt

|c′|

=

∫ 1

0

a2m〈∇th,∇tv〉
dt

|c′|
−
∫ 1

0

b2m
d

dt

(
〈∇th, v〉|c′|−1

)
dt

=

∫ 1

0

m/|c′|
(

(a2 − b2)〈∇th,∇tv〉 − b2〈∇2
th, v〉

+ b2〈∇tc′, v〉〈∇th, v〉|c′|−1
)

dt,

by integration by parts. The vector h is horizontal if and
only if Gc(h,mv) = 0 for all such m, and so multiplying
by |c′|/b2 gives the desired equation. Now consider a
tangent vector w and a real function m : [0, 1] → R
such that m(0) = m(1) = 0. Then according to the
above, w −mv is horizontal if and only if it verifies

3〈∇t(w −mv),∇tv〉 − 〈∇2
t (w −mv), v〉

+ |c′|−1〈∇tc′, v〉〈∇t(w −mv), v〉 = 0,

i.e., since 〈∇tv, v〉 = 0, 〈∇2
t v, v〉 = −|∇tv|2 and

∇2
t (mv) = m′′v + 2m′∇tv +m∇2

t v, if

3〈∇tw,∇tv〉 − 3|∇tv|2m− 〈∇2
tw, v〉+m′′

−m|∇tv|2 + |c′|−1〈∇tc′, v〉(〈∇tw, v〉 −m′) = 0,

which is what we wanted.
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2.3.2 Computing geodesics in the shape space

Recall that the geodesic path s 7→ c̄(s) between the
shapes of two curves c0 and c1 is the projection of the
horizontal geodesic - if it exists - s 7→ ch(s) linking
c0 to the fiber of c1 in M, i.e. such that ch(0) = c0,
ch(1) ∈ π−1(c1) and ∂sch(s) ∈ Horch(s) for all s ∈ [0, 1],

c̄ = π(ch).

The end point of ch then gives the optimal reparame-
terization c1 ◦ ϕ of the target curve c1 with respect to
the initial curve c0, i.e. such that

d̄(c0, c1) = d(c0, c1 ◦ ϕ).

The parameterized curves (c0, c1 ◦ ϕ) define what we
call an optimal matching between the shapes c0 and c1,
in the sense that each point c0(t) on c0 is matched with
the point c1(ϕ(t)) on c1. Here we propose a method
to approach the horizontal geodesic ch, and thereby
the corresponding optimal matching. To that end we
decompose any path of curves s 7→ c(s) in M into a
horizontal path composed with a path of reparameter-
izations, c(s) = chor(s) ◦ ϕ(s), or equivalently

c(s, t) = chor(s, ϕ(s, t)) ∀s, t ∈ [0, 1], (9)

where the path [0, 1] 3 s 7→ chor(s) ∈ M is such that
chors (s) ∈ Horchor(s) for all s ∈ [0, 1], and [0, 1] 3 s 7→
ϕ(s) ∈ Diff+([0, 1]) is a path of increasing diffeomor-
phisms. The horizontal and vertical parts of the speed
vector of c can be expressed in terms of this decom-
position. Indeed, by taking the derivative of (9) with
respect to s and t we obtain

cs(s) = chors (s) ◦ ϕ(s) + ϕs(s) · chort (s) ◦ ϕ(s), (10a)

ct(s) = ϕt(s) · chort (s) ◦ ϕ(s), (10b)

and so with vhor(s, t) := chort (s, t)/|chort (s, t)|, since
ϕt > 0, (10b) gives

v(s) = vhor(s) ◦ ϕ(s).

We can see that the first term on the right-hand side
of Equation (10a) is horizontal. Indeed, for any path of
real functions m : [0, 1] → C∞([0, 1],R), s 7→ m(s, ·)
such that m(s, 0) = m(s, 1) = 0 for all s, since G is
reparameterization invariant we have

G
(
chors (s) ◦ ϕ(s), m(s) · v(s)

)
= G

(
chors (s) ◦ ϕ(s), m(s) · vhor(s) ◦ ϕ(s)

)
= G

(
chors (s), m(s) ◦ ϕ(s)−1 · vhor(s)

)
= G

(
chors (s), m̃(s) · vhor(s)

)

with m̃(s) = m(s)◦ϕ(s)−1. Since m̃(s, 0) = m̃(s, 1) = 0

for all s, the vector m̃(s)·vhor(s) is vertical and its scalar
product with the horizontal vector chors (s) vanishes. On
the other hand, the second term on the right hand-side
of Equation (10a) is vertical, since it can be written

ϕs(s) · chort ◦ ϕ(s) = m(s) · v(s),

with m(s) = |ct(s)|ϕs(s)/ϕt(s) verifying m(s, 0) =

m(s, 1) = 0 for all s. Finally, the vertical and horizontal
parts of the speed vector cs(s) are given by

cs(s)
ver = m(s) · v(s) = |ct(s)|ϕs(s)/ϕt(s) · v(s),

(11a)

cs(s)
hor = cs(s)−m(s) · v(s) = chors (s) ◦ ϕ(s). (11b)

Definition 1 We call chor the horizontal part of the
path c with respect to G.

Proposition 3 The horizontal part of a path of curves
c is at most the same length as c

LG(chor) ≤ LG(c).

Proof Since the metric G is reparameterization invari-
ant, the squared norm of the speed vector of the path
c at time s ∈ [0, 1] is given by

‖cs(s, ·)‖2G
= ‖chors (s, ϕ(s, ·))‖2G + |ϕs(s, ·)|2‖chort (s, ϕ(s, ·)‖2G
= ‖chors (s, ·)‖2G + |ϕs(s, ·)|2‖chort (s, ·)‖2G,

where ‖ · ‖2G := G(·, ·). This gives ‖chors (s)‖G ≤ ‖cs(s)‖
for all s and so LG(chor) ≤ LG(c).

Now we will see how the horizontal part of a path of
curves can be computed.

Proposition 4 (Horizontal part of a path) Let
s 7→ c(s) be a path in M. Then its horizontal part is
given by chor(s, t) = c(s, ϕ(s)−1(t)), where the path of
diffeomorphisms s 7→ ϕ(s) is solution of the partial dif-
ferential equation

ϕs(s, t) = m(s, t)/|ct(s, t)| · ϕt(s, t), (12)

and where m(s) : [0, 1]→ R, t 7→ m(s, t) is solution for
all s of the ordinary differential equation

mtt − 〈∇tct/|ct|, v〉mt − 4|∇tv|2m
= 〈∇2

t cs, v〉 − 3〈∇tcs,∇tv〉 − 〈∇tct/|ct|, v〉〈∇tcs, v〉.

Proof We have seen in Equation (11a) that the vertical
part of cs(s) can be written as m(s) ·v(s) where m(s) =

|ct(s)|ϕs(s)/ϕt(s), and as the norm of the vertical part
of cs(s), m(s) is solution of the ODE (8) for all s.
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Fig. 4 Schematic illustration of the nth step of the optimal
matching algorithm.

If we take the horizontal part of the geodesic linking
two curves c0 and c1, we will obtain a horizontal path
linking c0 to the fiber of c1 which will no longer be a
geodesic path. However this path reduces the distance
between c0 and the fiber of c1, and gives a "better" rep-
resentative c1 ◦ϕ(1) of the target curve. By computing
the geodesic between c0 and this new representative, we
are guaranteed to reduce once more the distance to the
fiber. The algorithm that we propose simply iterates
these two steps, as illustrated in Figure 4.

Algorithm 2 (Optimal matching)
Input: c0, c1∈M.
Initialization: n = 0, cn1 = c1.
Repeat until convergence:

1. construct the geodesic s 7→ cn(s) between c0 and cn1 ,
2. compute the horizontal part s 7→ [cn]hor(s) of cn,
3. set cn+1

1 = [cn]hor(1),
4. set n = n+ 1.

Output: horizontal geodesic cn.

Let us specify why the obtained geodesic is horizon-
tal at the limit. The series of lengths (L(cn))n≥0 and(
L([cn]hor)

)
n≥0 are non negative decreasing and verify

at each step n

L(cn) ≥ L([cn]hor) ≥ L(cn+1),

which means that they converge to the same limit. The
same is true for the energies E(cn) and E([cn]hor), and
since the s-derivative of [cn]hor is equal to the horizontal
part of the s-derivative of cn, we get∫
‖cns (s)ver‖2G ds = E(cn)− E([cn]hor) −→

n→∞
0,

and so ‖cns (s)ver‖G converges to zero for almost all s.
Since it is enough that a geodesic be horizontal at one
given time for it to be horizontal for all time s ([13],
§26.12), we have the following result.

Proposition 5 (Horizontality of the solution) At
the limit, the geodesic between the fibers computed in
Algorithm 2 is horizontal

∀s ‖cns (s)ver‖ −→
n→∞

0.

Remark 2 In this work, we will carry out step 1 us-
ing geodesic shooting. However it is important to stress
that Algorithm 2 is a general method that can be ap-
plied to any metric structure (not only elastic metrics)
for which one knows how to compute geodesics and
characterize the horizontal subspace of the shape bun-
dle. It can be seen as an alternative method to the pop-
ular dynamic programming approach [16], with which
we establish comparisons in Section 4. But before that,
let us first introduce a formal discretization of the con-
tinuous model presented so far.

3 The discrete model

Applications usually give access to a finite number of
observations of a continuous process and provide series
of points instead of continuous curves. It is therefore
important to discretize the framework presented above
and to consider the finite-dimensional space of "discrete
curves". From now on we restrict to base manifolds M
of constant sectional curvature K. This allows us to get
an explicit formula for the Jacobi fields ofM (Lemma 1)
and thus derive a precise approximation of the smooth
Riemannian structure of Section 2. Generalization to
any Riemannian manifold for which the Jacobi fields are
computable should not be problematic. For more com-
plex manifolds, a faster and more approximate solution
would be to directly discretize the smooth equations, at
the cost of the precision of the discrete approximation.

3.1 The Riemannian structure

We consider the product manifold Mn+1 of "discrete
curves" given by n + 1 points, for a fixed n ∈ N∗. Its
tangent space at a given point α = (x0, . . . , xn) is

TαM
n+1 ={w = (w0, . . . , wn) : wk ∈ Txk

M, ∀k}.

Assuming that there exists a connecting geodesic be-
tween xk and xk+1 for all k – which seems reasonable
considering that the points xk should be "close" since
they correspond to the discretization of a continuous
curve – and that two consecutive points are always dis-
tinct (xk 6= xk+1), we use the following notations

τk = logxk
xk+1, qk =

√
n τk/

√
|τk|, vk = τk/|τk|, (13)
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Fig. 5 Schematic representation of a path of piecewise
geodesic curve associated to a pair (α,w).

as well as wkT = 〈wk, vk〉vk and wNk = wk − wk
T

to refer to the tangential and normal components of
a tangent vector wk ∈ Txk

M . Given a tangent vec-
tor w ∈ TαM

n+1, we consider a path of piecewise
geodesic curves [0, 1]2 3 (s, t) 7→ cw(s, t) ∈M such that
cw(0, kn ) = xk for k = 0, . . . , n, cw(s, ·) is a geodesic
of M on the interval [ kn ,

k+1
n ] for all s ∈ [0, 1] and k

– and in particular cwt (0, kn ) = nτk – and such that
cws (0, kn ) = wk, as illustrated in Figure 5. Then we de-
fine the squared norm of w by

Gnα(w,w) = |w0|2 +
1

n

n−1∑
k=0

|∇sqw(0, kn )|2. (14)

This definition is a discrete analog of (1), and just as in
the continuous case, it does not depend on the choice
of cw. Indeed, we can also obtain a discrete analog of
(2).

Proposition 6 The metric Gn can also be written

Gnα(w,w) = |w0|2+
n−1∑
k=0

(∣∣(Dτw)Nk
∣∣2+ 1

4

∣∣(Dτw)Tk
∣∣2) 1

|τk|
,

where the map Dτ : TαM
n+1 → TαM

n+1, w 7→ Dτw =(
(Dτw)0, . . . , (Dτw)n

)
is defined by

(Dτw)k := 1
n∇tc

w
s (0, kn )

= (wk+1
‖ − wk)T + b−1k (wk+1

‖ − akwk)N ,

if w‖k+1 denotes the parallel transport of wk+1 from xk+1

to xk along the geodesic, and the coefficients ak and
bk take the following values depending on the sectional
curvature K of the base manifold M
ak = cosh |τk|, bk = sinh |τk|/|τk|, if K = −1,

ak = 1, bk = 1, if K = 0,

ak = cos |τk|, bk = sin |τk|/|τk|, if K = +1.

(15)

Remark 3 Notice that in the flat case our definition
gives (Dτw)k = wk+1 − wk. In the non-flat case, when
the discretization gets "thinner", i.e. n → ∞ and

|τk| → 0 while n|τk| stays bounded for all 0 ≤ k ≤ n,
we get (Dτw)k =

n→∞
wk+1

‖ − wk + o(1).

Before we prove this proposition, let us recall a well-
known result about Jacobi fields that will prove useful
to derive the equations in the discrete case.

Lemma 1 Let γ : [0, 1]→M be a geodesic of a mani-
fold M of constant sectional curvature K, and J a Ja-
cobi field along γ. Then the parallel transport of J(t)

along γ from γ(t) to γ(0) is given by

J(t)t,0 = JT (0) + ãk(t)JN (0)

+ t∇tJT (0) + b̃k(t)∇tJN (0),

for all t ∈ [0, 1], where
ãk(t) = cosh (|γ′(0)|t) , b̃k(t) = sinh(|γ′(0)|t)

|γ′(0)| , K = −1,

ãk(t) = 1, b̃k(t) = t, K = 0,

ãk(t) = cos (|γ′(0)|t) , b̃k(t) = sin(|γ′(0)|t)
|γ′(0)| , K = +1.

Proof (Proof of Lemma 1) For the sake of completeness,
the proof is reminded in the appendix.

Proof (Proof of Proposition 6) Let α ∈ Mn+1 be a
"discrete curve" and w ∈ TαM

n+1 a tangent vector
at α. Consider a path of piecewise geodesic curves
s 7→ cw(s) that verifies all the conditions given above
to define Gn(w,w), and set (Dτw)k := 1

n∇tc
w
s (0, kn ).

Then by definition, the vector field Jk(u) = cws (s, k+un ),
u ∈ [0, 1] is a Jacobi field along the geodesic linking
xk to xk+1, verifying Jk(0) = wk, Jk(1) = wk+1 and
∇uJk(0) = (Dτw)k. Applying Lemma 1 gives

wk+1
‖ = wk

T + akwk
N + (Dτw)k

T
+ bk(Dτw)k

N
.

This gives (wk+1
‖)T = wk

T+(Dτw)k
T and (wk+1

‖)N =

akwk
N + bk(Dτw)k

N and so

(Dτw)k = (Dτw)k
T

+ (Dτw)k
N

= (wk+1
‖ − wk)T + b−1k (wk+1

‖ − akwk)N .

Finally, we observe that the covariant derivative in-
volved in the definition of Gn can be written

∇sqw(0, kn ) = |cwt (0, kn )|− 1
2 (∇scwt (0, kn )− 1

2∇sc
w
t (0, kn )T )

= |nτk|−
1
2

(
n(Dτw)k − 1

2n(Dτw)k
T

),

i.e.

∇sqw(0, kn ) = (n/|τk|)1/2
(
(Dτw)k

N
+ 1

2 (Dτw)k
T )
.

Injecting this into (14) gives the desired formula.

Now we present the main result of this section, that
is, the convergence of the discrete model toward the
continuous model.



10 Alice Le Brigant

Definition 2 Let α = (x0, . . . , xn) ∈ Mn+1 be a dis-
crete curve, and t 7→ c(t) ∈M a smooth curve. We say
that α is the discretization of size n of c when c( kn ) = xk
for all k = 0, . . . , n. If s 7→ α(s) = (x0(s), . . . , xn(s)) ∈
Mn+1 is a path of discrete curves and s 7→ c(s) ∈ M
a path of smooth curves, then α is the discretization of
size n of c when α(s) is the discretization of c(s) for all
s ∈ [0, 1], i.e. when xk(s) = c(s, kn ) for all s and k. We
will still use this term if c is not smooth, and speak of
the only path of piecewise-geodesic curves of which α

is the discretization.

Let [0, 1] 3 s 7→ α(s) = (x0(s), . . . , xn(s)) ∈Mn+1 be a
path of discrete curves. Defining τk(s) and qk(s) as in
(13) for all s ∈ [0, 1], the path α can be represented by
its SRV representation [0, 1]→M × TαMn+1,

s 7→
(
x0(s), (qk(s))0≤k≤n−1

)
. (16)

To compute the squared norm of its speed vector α′(s),
consider the path of piecewise geodesic curves [0, 1]2 3
(s, t) 7→ c(s, t) ∈ M such that c(s, kn ) = xk(s) and
ct(s,

k
n ) = nτk(s) for all s and k. Then, notice that we

have

∇sq(s, kn ) = ∇sqk(s),

(Dτα
′(s))k = 1

n∇tcs(s,
k
n ) = ∇sτk(s),

(17)

and so the squared norm of the speed vector of α can
be expressed in terms of the SRV representation

Gn(α′(s), α′(s)) = |x0′(s)|2 +
1

n

n−1∑
k=0

|∇sqk(s)|2.

In the following result, we show that if s 7→ α(s) is the
discretization of a path s 7→ c(s) ∈ M of continuous
curves, then its energy with respect to Gn,

En(α) =
1

2

∫ 1

0

(
|x′0(s)|2 +

1

n

n−1∑
k=0

|∇sqk(s)|2
)

ds, (18)

gets closer to the energy (6) of c with respect to G as
the size of the discretization grows.

Theorem 1 (Convergence of the discrete model
to the continuous model) Let s 7→ c(s) be a C1-
path of C2-curves with non vanishing derivative with
respect to t. This path can be identified with an ele-
ment (s, t) 7→ c(s, t) of C1,2([0, 1]× [0, 1],M) such that
ct 6= 0. Consider the C1-path in Mn+1, s 7→ α(s) =

(x0(s), . . . , xn(s)), that is the discretization of size n of
c. Then there exists a constant λ > 0 such that for n
large enough, the difference between the energies of c
and α is bounded by

|E(c)− En(α)| ≤ λ

n
(inf |ct|)−1|cs|22,∞ (1 + |ct|1,∞)

3
,

where E and En are the energies with respect to metrics
G and Gn respectively and where

|ct|1,∞ := |ct|∞ + |∇tct|∞,
|cs|2,∞ := |cs|∞ + |∇tcs|∞ + |∇2

t cs|∞,

if |w|∞ := sup
s,t∈[0,1]

|w(s, t)| denotes the supremum over

both s and t of a vector field w along c.

Remark 4 Note that since we assume that c is a C1-
path of C2-curves, the following norms are bounded for
i = 1, 2,

|ct|∞, |cs|∞, |∇itct|∞, |∇itcs|∞ <∞.

Proof (Proof of Theorem 1) The proof is put off to Sec-
tion 5.

Now that we have established a formal Riemannian
setting to study discrete curves defined by a series of
points, and that we have studied its link to the con-
tinuous model, we need to derive the equations of the
corresponding geodesics and Jacobi fields to apply the
methods described in Section 2. For the sake of read-
ability, we first introduce some notations.

3.2 Computing geodesics in the discrete setting

3.2.1 Notations

The purpose of the notations that we introduce here
is to lighten the equations derived in the rest of the
paper. For any discrete curve α = (x0, . . . , xn) ∈Mn+1

we define for all 0 ≤ k ≤ n, using the coefficients ak
and bk defined by (15) and (13), the functions fk, gk :

Txk
M → Txk

M ,

fk : w 7→ wT + akw
N ,

gk : w 7→ |qk|(2wT + bkw
N ).

and for k = 0, . . . , n − 1, the functions f (−)k , g
(−)
k :

Txk+1
M → Txk

M by

f
(−)
k = fk ◦ P xk+1,xk

γk
, g

(−)
k = gk ◦ P xk+1,xk

γk
,

where γk denotes the geodesic between xk and xk+1,
which we previously assumed existed. Notice that when
the discretization gets "thinner", that is n → ∞,
|τk| → 0 while n|τk| stays bounded for all 0 ≤ k ≤ n, we
get in the non flat setting, for any fixed w ∈ Txk+1

M ,
fk(w) = w+o(1/n) and gk(w) = |qk|(w+wT ) +o(1/n)

- in the flat setting, these are always equalities. Now
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if we consider a path s 7→ α(s) = (x0(s), . . . , xn(s)) of
discrete curves, we can define for each s the functions

fk(s), gk(s) : Txk(s)M → Txk(s)M,

fk(s)(−), gk(s)(−) : Txk+1(s)M → Txk(s)M,

for 0 ≤ k ≤ n and 0 ≤ k ≤ n − 1 respectively, corre-
sponding to the discrete curve α(s). It is of interest for
the rest of this paper to compute the covariant deriva-
tives of these maps with respect to s.

Lemma 2 The first and second order covariant deriva-
tives of fk and gk with respect to s are functions
Txk(s)M → Txk(s)M defined by

∇sfk(w) = ∂sakw
N

+ (1− ak)
(
〈w,∇svk〉vk + 〈w, vk〉∇svk

)
,

∇sgk(w) = ∂s|qk|/|qk|gk(w) + |qk|∂sbkwN

+ |qk|(2− bk)
(
〈w,∇svk〉vk + 〈w, vk〉∇svk

)
,

∇2
sfk(w) = ∂2sakw

N − 2∂sak
(
〈w,∇svk〉vk

+ 〈w, vk〉∇svk
)

+ (1− ak)
(
〈w,∇2

svk〉vk
+ 2〈w,∇svk〉∇svk + 〈w, vk〉∇2

svk
)
,

∇2
sgk(w) = ∂s

(
∂s|qk|/|qk|

)
gk(w) + ∂s|qk|/|qk|∇sgk(w)

+ (∂s|qk|∂sbk + |qk|∂2sbk)wN

+ |qk|(2− bk)
(
〈w,∇2

svk〉vk + 2〈w,∇svk〉∇svk
+ 〈w, vk〉∇2

svk
)

+
(
∂s|qk|(2− bk)

− 2|qk|∂sbk
)(
〈w,∇svk〉vk + 〈w, vk〉∇svk

)
.

Proof For any vector field s 7→ w(s) ∈ Txk(s)M along
s 7→ xk(s) we have by definition

∇s
(
fk(w)

)
= ∇sfk(w) + fk(∇sw),

∇s
(
gk(w)

)
= ∇sgk(w) + gk(∇sw),

∇2
s

(
fk(w)

)
= ∇2

sfk(w) + 2∇sfk(∇sw) + fk(∇2
sw),

∇2
s

(
gk(w)

)
= ∇2

sgk(w) + 2∇sgk(∇sw) + gk(∇2
sw).

Noticing that ∇s(wT ) = (∇sw)T + 〈w,∇svk〉vk +

〈w, vk〉∇svk and ∇s(wN ) = ∇sw − ∇s(wT ), the for-
mulas given in Lemma 2 result from simple calculation.

Using these functions, we can deduce the covariant
derivatives of f (−)k and g

(−)
k . Denoting by γk(s) the

geodesic of M linking xk(s) to xk+1(s) for all s ∈ [0, 1]

and 0 ≤ k ≤ n− 1, we have the following result.

Lemma 3 The covariant derivatives of the func-
tions f

(−)
k and g

(−)
k with respect to s are functions

Txk+1(s)M → Txk(s)M given by

∇s
(
f
(−)
k

)
: w 7→ (∇sfk)(−)(w) + fk

(
R (Yk, τk) (wk+1

‖)
)
,

∇s
(
g
(−)
k

)
: w 7→ (∇sgk)(−)(w) + gk

(
R (Yk, τk) (wk+1

‖)
)
,

where

(∇sfk)(s)(−) = ∇sfk(s) ◦ P xk+1(s),xk(s)
γk(s)

,

(∇sgk)(s)(−) = ∇sgk(s) ◦ P xk+1(s),xk(s)
γk(s)

,

Yk = (xk
′)T + bk(xk

′)N + 1
2∇sτk

T +K
1− ak
|τk|2

∇sτkN ,

(19)

if K is the sectional curvature of the base manifold.

Proof The proof is given in Appendix A.

3.2.2 Geodesic equations and exponential map

With these notations, we can characterize the geodesics
for metric Gn. The geodesic equations can be derived
in a similar way as in the continuous case, that is by
searching for the critical points of the energy (18). We
obtain the following characterization in terms of the
SRV representation (16).

Proposition 7 (Discrete geodesic equations) A
path s 7→ α(s) = (x0(s), . . . , xn(s)) in Mn+1 is a
geodesic for metric Gn if and only if its SRV repre-
sentation s 7→

(
x0(s), (qk(s))k

)
verifies the following

differential equations

∇sx0′ +
1

n

(
R0 + f

(−)
0 (R1)

+ . . .+ f
(−)
0 ◦ · · · ◦ f (−)n−2(Rn−1)

)
= 0,

∇2
sqk +

1

n
g
(−)
k

(
Rk+1 + f

(−)
k+1(Rk+2)

+ . . .+ f
(−)
k+1 ◦ · · · ◦ f

(−)
n−2(Rn−1)

)
= 0,

(20)

for all k = 0, . . . , n − 1, with the notations (13) and
Rk := R(qk,∇sqk)xk

′.

Proof The proof is given in Appendix B.

Remark 5 (Link with the continuous setting) Let
[0, 1] 3 s 7→ c(s, ·) ∈M be a C1 path of smooth curves
and [0, 1] 3 s 7→ α(s) ∈Mn+1 the discretization of size
n of c. We denote as usual by q := ct/|ct|1/2 and (qk)k
their respective SRV representations. When n→∞ and
|τk| → 0 while n|τk| stays bounded for all 0 ≤ k ≤ n,
the coefficients of the discrete geodesic equation (20) for
α converge to the coefficients of the continuous geodesic
equation (7) for c, i.e.

∇sx0′(s) = −r0(s) + o(1),

∇2
sqk(s) = −|qk(s)|(rk(s) + rk(s)T ) + o(1),
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for all s ∈ [0, 1] and k = 0, . . . , n − 1, where rn−1 = 0

and for k = 1, . . . , n− 2,

rk(s) :=
1

n

n−1∑
`=k+1

P
l
n ,

k
n

c

(
R(q,∇sq)cs(s, `n )

)
→

n→∞
r(s, kn ),

with the exception that the sum starts at ` = 0 for r0.
More details on this can be found in Appendix B.

Remark 6 (Euclidean case and existence of geodesics)
Just as in the continuous case, when M = Rd, the cur-
vature terms Rk’s vanish and we obtain

x0
′′(s) = 0, q′′k (s) = 0, k = 0, . . . , n− 1, ∀s ∈ [0, 1],

i.e. the geodesics are composed of straight lines in the
SRV coordinates. We can again avoid the problem of
the qk(s)’s going through zero by allowing two consec-
utive components xk and xk+1 to be equal, and set-
ting qk = 0 when that happens. In that case, we get
a complete finite-dimensional manifold, which is by the
Hopf-Rinow theorem geodesically complete, i.e. any two
curves can be linked by a minimizing geodesic. Indeed,
since the SRV coordinates of geodesics are straight
lines, a sequence in (Rd)n+1 converges if and only if its
SRV coordinates x0, q0, . . . , qn−1 converge in Rd (the
sequence subscript is omited), and so the completeness
of (Rd)n+1 follows from that of Rd. The question of
whether this property still holds in the non flat case is
postponed to future work.

Using equations (20) we can now build the exponen-
tial map, that is, an algorithm allowing us to ap-
proximate the geodesic of Mn+1 starting from a point
(x00, . . . , x

0
n) ∈ Mn+1 at speed (u0, . . . , un) with uk ∈

Txk
M for all k = 0, . . . , n. In other words, we are look-

ing for a path [0, 1] 3 s 7→ α(s) = (x0(s), . . . , xn(s))

such that xk(0) = x0k and xk
′(0) = uk for all k, and

that verifies the geodesic equations (20). Assume that
we know at time s ∈ [0, 1] the values of xk(s) and xk′(s)
for all k = 0, . . . , n. Then we propagate using

xk(s+ ε) = logxk(s)
εxk
′(s),

xk
′(s+ ε) = (xk

′(s) + ε∇sxk′(s))
s,s+ε

.

In the following proposition, we see how we can com-
pute the acceleration ∇sxk′ for each k.

Proposition 8 (Discrete exponential map) Let
[0, 1] 3 s 7→ α(s) = (x0(s), . . . , xn(s)) be a geodesic
path in Mn+1. For all s ∈ [0, 1], the coordinates of its
acceleration ∇sα′(s) can be iteratively computed in the

following way

∇sx0′ = − 1

n

(
R0 + f

(−)
0 (R1)

+ . . .+ f
(−)
0 ◦ · · · ◦ f (−)n−2(Rn−1)

)
,

∇sxk+1
′‖ = ∇sfk(xk

′) + fk(∇sxk′) +
1

n
∇sgk(∇sqk)

+
1

n
gk(∇2

sqk) +R(τk, Yk)(xk+1
′‖),

for k = 0, . . . , n − 1, where the Rk’s are defined as in
Proposition 7, the symbol ·‖ denotes the parallel trans-
port from xk+1(s) back to xk(s) along the geodesic link-
ing them, the maps ∇sfk and ∇sgk are given by Lemma
2, Yk is given by Equation (19) and

∇sτk = (Dτα
′)k, ∇svk =

1

|τk|
(
∇sτk −∇sτkT

)
,

∇sqk =

√
n

|τk|

(
∇sτk −

1

2
∇sτkT

)
,

∇2
sqk = − 1

n
g
(−)
k

(
Rk+1 + f

(−)
k+1(Rk+2)

+ . . .+ f
(−)
k+1 ◦ · · · ◦ f

(−)
n−2(Rn−1)

)
.

Proof The proof is given in Appendix B.

The equations of Proposition 8 allow us to iteratively
construct a geodesic s 7→ α(s) in Mn+1 for metric Gn

from the knowledge of its initial conditions α(0) and
α′(0). The next step is to construct geodesics under
boundary constraints, i.e. to find the shortest path be-
tween two elements α0 and α1 of Mn+1.

3.2.3 Jacobi fields and geodesic shooting

As explained in Section 2.2.2 for the continuous model,
we solve the boundary value problem using geodesic
shooting. To do so, recall that we need to character-
ize the Jacobi fields for the metric Gn, since these
play a role in the correction of the shooting direc-
tion at each iteration of the algorithm. Recall also that
for any geodesic s 7→ α(s) in Mn+1 and Jacobi field
s 7→ J(s) along α, there exists a family of geodesics
(−δ, δ) 3 a 7→ α(a, ·) such that α(0, s) = α(s) for all s
and

J(s) =
∂

∂a

∣∣∣∣
a=0

α(a, s).

Proposition 9 (Discrete Jacobi fields) Let [0, 1] 3
s 7→ α(s) = (x0(s), . . . , xn(s)) be a geodesic path in
Mn+1, [0, 1] 3 s 7→ J(s) = (J0(s), . . . , Jn(s)) a Jacobi
field along α, and (−δ, δ) 3 a 7→ α(a, ·) a corresponding
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family of geodesics, in the sense just described. Then J
verifies the second order linear ODE

∇2
sJ0 = R(x0

′, J0)x0
′ − 1

n

(
∇aR0 + f

(−)
0 (∇aR1) + . . .

+ f
(−)
0 ◦ · · · ◦ f (−)n−2(∇aRn−1)

)
− 1

n

n−2∑
k=0

k∑
`=0

f
(−)
0 ◦ · · · ◦ ∇a

(
f
(−)
`

)
◦ · · · ◦ f (−)k (Rk+1),

∇2
sJk+1

‖
= fk(∇2

sJk) + 2∇sfk(∇sJk) +∇2
sfk(Jk)

+
1

n
gk(∇2

s∇aqk) +
2

n
∇sgk(∇s∇aqk) +

1

n
∇2
sgk(∇aqk)

+ 2R(τk, Yk)(∇sJk+1
‖) +R(∇sτk, Yk)(Jk+1

‖)

+R(τk,∇sYk)(Jk+1
‖) +R(τk, Yk)

(
R(Yk, τk)(Jk+1

‖)
)
,

for all 0 ≤ k ≤ n− 1, where Rk := R(qk,∇sqk)xk
′ and

the various covariant derivatives according to a can be
expressed as functions of J and ∇sJ ,

∇aRk = R
(
∇aqk,∇sqk

)
xk
′ +R

(
qk,∇s∇aqk

+R(J, xk
′)qk

)
xk
′ +R

(
qk,∇sqk)∇sJk,

∇aqk =

√
n

|τk|

(
∇aτk −

1

2
∇aτkT

)
, ∇aτk = (DτJ)k,

∇avk =
1

|τk|
(
∇aτk −∇aτkT

)
,

∇s∇aqk = n gk
−1((∇sJk+1)‖ +R(Yk, τk)(Jk+1

‖)

−∇sfk(Jk)− fk(∇sJk)
)

+ n∇s
(
gk
−1)(Jk+1

‖ − fk(Jk)
)
,

∇2
s∇aqk = − 1

n

n−1∑
`=k+1

g
(−)
k ◦ f (−)k+1 ◦ · · · ◦ f

(−)
`−1(∇aR`)

+R(∇sxk′, Jk)qk +R(xk
′,∇sJk)qk + 2R(xk

′, Jk)∇sqk

− 1

n

n−1∑
`=k+1

`−1∑
j=k

g
(−)
k ◦ · · · ◦ ∇a

(
f
(−)
j

)
◦ · · · ◦ f (−)`−1(R`),

∇sYk = (∇sxk′)T + bk(∇sxk′)N + ∂sbk(xk
′)N

+ (1− bk)
(
〈xk′,∇svk〉vk〈xk′, vk〉∇svk

)
+ 1

2 (∇2
sτk)T

+K
1− ak
|τk|2

(∇2
sτk)N + ∂s

(
K

1− ak
|τk|2

)
(∇sτk)N

+
(

1
2 −K

1− ak
|τk|2

)
(〈∇sτk,∇svk〉vk + 〈∇sτk, vk〉∇svk),

with the notation conventions f (−)k+1 ◦ . . . ◦ f
(−)
k−1 := Id,∑n−1

`=n := 0 and with the maps

∇a
(
f
(−)
k

)
(w) = (∇afk)(−)(w) + fk

(
R(Zk, τk)(wk+1

‖)
)
,

∇a
(
g
(−)
k

)
(w) = (∇agk)(−)(w) + gk

(
R(Zk, τk)(wk+1

‖)
)
,

∇s
(
gk
−1)(w) = ∂s|qk|−1|qk|gk−1(w) +|qk|−1∂s(b−1k )wN

+ |qk|−1
(
1/2− b−1k

)(
〈w,∇svk〉vk + 〈w, vk〉∇svk

)
,

and

Zk = Jk
T + bkJk

N + 1
2∇aτk

T +K
1− ak
|τk|2

∇aτkN .

Proof The proof is given in Appendix B.

The equations of Proposition 9 allow us to iteratively
compute the Jacobi field J along a geodesic α - and
in particular, its end value J(1) - from the knowl-
edge of the initial conditions {Jk(0), 0 ≤ k ≤ n} and
{∇sJk(0), 0 ≤ k ≤ n}. Indeed, if at time s ∈ [0, 1] we
have Jk(s) and ∇sJk(s) for all k = 0, . . . , n, then we
can propagate using

Jk(s+ ε) =
(
Jk(s) + ε∇sJk(s)

)xk,xk+1 ,

∇sJk(s+ ε) =
(
∇sJk(s) + ε∇2

sJk(s)
)xk,xk+1 ,

where∇2
sJk(s) is deduced from∇2

sJk−1(s) using Propo-
sition 9. We can now apply Algorithm 1, where we
replace the smooth geodesic equations (7) by the dis-
crete geodesic equations (20) and we solve them us-
ing the exponential map described in Proposition 8.
Notice that in Mn+1, the kth component of the L2-
logarithm map between two elements α0 = (x00, . . . , x

0
n)

and α1 = (x10, . . . , x
1
n) is given by logx0

k
(x1k).

Algorithm 3 (Discrete geodesic shooting)
Input: α0 = (x00, . . . , x

0
n), α1 = (x10, . . . , x

1
n).

Initialization: w = logL
2

α0
(α1).

Repeat until convergence :

1. compute the geodesic s 7→ α(s) starting from α0 at
speed w using Proposition 8,

2. evaluate the difference j := logL
2

α(1)(α1) between the
target curve α1 and the extremity α(1) of the ob-
tained geodesic,

3. compute the initial derivative ∇sJ(0) of the Jacobi
field s 7→ J(s) along α verifying J(0) = 0 and
J(1) = j using Proposition 9,

4. correct the shooting direction w = w +∇sJ(0).

Output : geodesic α(s).

Recall that the map ϕ : Tα(0)M→ Tα(1)M, ∇sJ(0) 7→
J(1) associating to the initial derivative ∇sJ(0) of a
Jacobi field with initial value J(0) = 0 its end value
J(1), is a linear bijection between two vector spaces
which can be obtained using Proposition 9. Its inverse
map can be computed by considering the image of a
basis of Tc(0)M.

3.3 A discrete analog of unparameterized curves

The final step in building our discrete model is to intro-
duce a discretization of the quotient shape space. There
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seems to be no natural, intrinsic definition of the shape
of a discrete curve, as by definition we are lacking in-
formation : we only have access to a finite number n+1

of points. Therefore we will make the assumption that
we know the equations of the underlying curves, that
is, that for each discrete curve α, we have access to the
shape ᾱ of the smooth curve of which α is the discretiza-
tion. In practice, we can set ᾱ to be the shape of an op-
timal interpolation. The goal, for two elements α0, α1

of shapes α0, α1, is to redistribute the n + 1 points on
α1 to minimize the discrete distance to the n+1 points
α0 on α0, and obtain

αopt1 = argmin{dn(α0, α) |α has shape c1}, (21)

where dn is the geodesic distance associated to the dis-
crete metric Gn. We approximate αopt1 using Algorithm
2, i.e. by iteratively computing the "horizontal part"
of the geodesic linking α0 to an iteratively improved
discretization of α1. Since there is no "discrete shape
bundle", we simply define the vertical and horizontal
spaces in α as the discrete analogs of the ones of the
smooth case

Vernα := {mv : m = (mk)k ∈ Rn+1,m0 = mn = 0},
Hornα := {h ∈ TαMn+1 : Gn(h,mv) = 0

∀m = (mk)k ∈ Rn+1,m0 = mn = 0},

where v = (vk)k is still defined by (13). Similarly to the
continuous case, we can show the following result.

Proposition 10 (Discrete horizontal space) Let
α ∈ Mn+1 and h ∈ TαM

n+1. Then h ∈ Hornα if and
only if it verifies〈
(Dτh)k, vk

〉
− 4

|τk|
|τk−1|

〈
(Dτh)k−1, b

−1
k−1vk

‖

+ ( 1
4 − b

−1
k−1)λk−1vk−1

〉
= 0.

with the notation λk := 〈v‖k+1, vk〉. Any tangent vector
w ∈ TαM

n+1 can be uniquely decomposed into a sum
w = wver + whor where wver = mv ∈ Vernα, whor =

w−mv ∈ Hornα and the components (mk)k verify m0 =

m1 = 0 and the following recurrence relation

Akmk+1 +Bkmk + Ckmk−1 = Dk, (22)

with coefficients

Ak = λk,

Bk = −1− 4
|τk|
|τk−1|

(b−2k−1 + λ2k−1( 1
4 − b

−2
k−1)),

Ck =
|τk|
|τk−1|

λk−1,

Dk =
〈
(Dτw)k, vk

〉
− 4

|τk|
|τk−1|

(
b−1k−1

〈
(Dτw)k−1, v

‖
k

〉
+ ( 1

4 − b
−1
k−1)λk−1

〈
(Dτw)k−1, vk−1

〉)
.

Proof Let h ∈ TαM be a tangent vector. It is horizontal
if and only if it is orthogonal to any vertical vector, that
is any vector of the form mv with m = (mk)k ∈ Rn+1

such that m0 = mn = 0. Recall that by definition

(Dτw)k := (wk+1
‖ − wk)T + b−1k (wk+1

‖ − akwk)N ,

and so with the notation λk := 〈vk+1
‖, vk〉, we get

(Dτ (mv))Tk = mk+1(vk+1
‖)T −mkvk

= (mk+1λk −mk)vk,

(Dτ (mv))Nk = b−1k mk+1(vk+1
‖)N

= b−1k mk+1(vk+1
‖ − λkvk).

The scalar product between h and mv is then

Gnα(h,mv) =

n−1∑
k=0

(
b−1k mk+1

〈
(Dτh)k, vk+1

‖ − λkvk
〉

+ 1
4 (mk+1λk −mk)

〈
(Dτh)k, vk

〉)
|τk|−1

=

n−1∑
k=0

mk+1

|τk|

(
b−1k
〈
(Dτh)k, vk+1

‖ − λkvk
〉

+ 1
4λk

〈
(Dτh)k, vk

〉)
− 1

4

n−1∑
k=0

mk

|τk|
〈
(Dτh)k, vk

〉
.

Changing the indices in the first sum and taking into
account that m0 = mn = 0, we obtain

n−1∑
k=1

mk

(
|τk−1|−1

〈
(Dτh)k−1, b

−1
k−1vk

‖

+ ( 1
4 − b

−1
k−1)λk−1vk−1

〉
− 1

4 |τk|
−1〈(Dτh)k, vk

〉)
= 0.

Since this is true for all such m the summand is equal
to zero for all k and we get the desired equation. The
decomposition of a tangent vector w into a vertical part
mv and a horizontal part w −mv with m = (mk)k ∈
Rn+1 such that m0 = mn = 0, is then simply charac-
terized by the fact that w −mv verifies this equation.

In the discrete case, soving the ODE (8) to find the
horizontal part of a vector simply boils down to solving
the recurrence relation (22), allowing us to compute
the coefficients of the PDE (12). Now we present an
algorithm to solve a discrete version of this PDE and
compute the discrete analog of the horizontal part of a
(discrete) path of discrete curves.
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Algorithm 4 (Horizontal part of a path)
Input : α(s) = (x0(s), . . . , xn(s)), s = 0, 1

m , . . . , 1.
Initialization : for k = 0, . . . , n,

ϕ(0)( kn ) = k
n , xhork (0) = xk(0).

For j = 0, . . . ,m− 1,

1. set s = j/m, m0(s) = mn+1(s) = 0 and solve
B1 A1 · · · 0

C2
. . . . . .

...
...

. . . . . . An−2
0 · · · Cn−1 Bn−1




m1

...

...
mn−1

 =


D1

...

...
Dn−1

 ,

2. for k = 0, . . . , n,

∆ϕ(s)( kn ) =

{
n
(
ϕ(s)(k+1

n )− ϕ(s)( kn )
)

if mk ≥ 0,

n
(
ϕ(s)( kn )− ϕ(s)(k−1n )

)
if mk < 0,

ϕs(s)(
k
n ) =

mk(s)

|nτk(s)|
∆ϕ(s)(k),

ϕ(s+ 1
m )( kn ) = ϕ(s)( kn ) + 1

mϕs(s)(
k
n ),

3. interpolate between the {xk(s+ 1
m ), k = 0, . . . , n} to

obtain N + 1 values {y`(s + 1
m ), ` = 0, . . . , N} and

interpolate between the {ϕ(s+ 1
m )( kn ), k = 0, . . . , n}

to obtain N+1 values {ψ(s+ 1
m )( `n ), ` = 0, . . . , N},

4. for k = 0, . . . , n,

find ` s.t. k
n ≤ ψ(s+ 1

m )( `N ) < k+1
n ,

set xhork (s+ 1
m ) = y`(s+ 1

m ).

Output: αhor(s) = (xhor0 (s), .., xhorn (s)), s = 0, 1
m , . . . , 1.

Step 1 computes the coefficients of the PDE. The
Ak, Bk, Ck, Dk are computed using the definitions of
Proposition 10 for w = α′(s), i.e. (Dτα

′(s))k =

∇sτk(s). Step 2 solves the PDE. The increment ∆ϕ
is a discretization of the t-derivative, and so it is cru-
cial to make it depend on the sign of m in order to
follow the characteristic curves. Steps 3 and 4 simply
inverse the reparameterization ϕ obtained after step 2
in order to deduce the horizontal part of α. It is im-
portant to note that for s = 1, interpolation between
the points {xk(s), k = 0, . . . , n} should be achieved so
as to remain on the initial shape α(1), obtained e.g. by
spline interpolation of the points of α(1). Finally, we
can perform optimal matching in the discrete case.

Algorithm 5 (Discrete optimal matching)
Input: α0 = (x00, . . . , x

0
n), α1 = (x10, . . . , x

1
n).

Initialization : α̃1 = α1.
Repeat until convergence :

1. compute geodesic s 7→ α(s) = (x0(s), . . . , xn(s)) be-
tween α0 and α̃1 using Algorithm 3,

2. compute s 7→ αhor(s) = (xhor0 (s), . . . , xhorn (s)) the
horizontal part of α using Algorithm 4,

3. set α̃1 = αhor(1).

Output : αopt1 = α̃1.

4 Simulations

We test the optimal matching (OM) algorithm in sev-
eral settings : for curves in the hyperbolic half-plane H2,
for curves in R2 and R3, and for curves on the sphere
S2. Regarding the geometry of H2 and the useful algo-
rithms such as the exponential map and the logarithm
map, we refer the reader to [10]. Concerning the geom-
etry of S2, we have used the same formulas as those
given in appendix in [24].

We start by comparing Algorithm 5 to the popular
dynamic programming (DP) method, presented e.g. in
[16]. This alternative approach to optimal matching be-
tween two curves c1 and c2 considers a discrete grid of
[0, 1]×[0, 1] and tries to find the optimal non-decreasing
path ϕ(t) in that grid that puts into correspondence
c1(t) and c2(ϕ(t)). To do so, at each point (t1, t2) of
the grid, it tests all the possible matchings between
the pieces of curves c1([0, t1]) and c2([0, t2]), and keeps
only the one that gives the shortest geodesic. This boils
down to testing all the non-decreasing paths that lead
to this point. Since this is computationally costly, the
algorithm only tests the paths going through the points
located at the bottom-left in a square of a certain size,
as shown in Figure 6. Even though the computations
are additive, this method requires to compute a large
number of geodesics. Results of comparison of Algo-
rithm 5 to this method are shown in Figure 8 for a pair
of curves in R2 and three pairs of curves in R3. The
DP method is carried out for a square of side s = 7.
The first row displays the geodesics between the initial
parameterized curves (which are all arc-length param-
eterized except for the second example) and the second
and third rows the horizontal geodesics obtained with
the optimal matching and dynamic programing algo-
rithms respectively. We can see that the two methods
give very similar results : in the first example, at each
extremity, a portion of the circle is matched to almost
a single point of the segment, in order to maximize the
portions in correspondence where the speeds are posi-
tively colinear. In the second example, we consider two
curves in R3 that are identical modulo translation and
parameterization. This difference in the parameteriza-
tion induces an artificial deformation of the geodesic
(first row), which is "straightened out" in the horizontal
geodesics given by both methods. The last two exam-
ples illustrate the fact that arc-length parameterization
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Fig. 6 Illustration of the dynamic programming algorithm.

does not always yield a relevant matching : in the third
example, it seems more natural to put into correspon-
dence the portions of the curves that are "before the
turn", and to match together the ones that are "af-
ter the turn", as given by both the OM algorithm and
DP. The fourth row shows the corresponding optimal
matchings, i.e. the optimal reparameterizations ϕ such
that c1(t) is matched to c2(ϕ(t)), in red (OM) and black
(DP), and we can check in the fifth row the horizontal-
ity of the solutions by looking at the ratio, in norm,
of the vertical part of the speed vector of the geodesic
divided by its horizontal part. We can see that this ra-
tio is largely reduced from the initial geodesic (dashed
black line) to the horizontal ones (full red and black
lines). Finally, the lengths of the geodesics of the first
three lines of Figure 8 are given in Table 1 in the corre-
sponding order, showing that the horizontal geodesics
are indeed shorter. The lengths on the first row give
the distance between the initial parameterized curves,
while the lengths on the second and third row yield a
distance between the shapes.

To summarize, it seems that both methods give very
similar results when tested on the same metric : they
both tend to put into correspondence the parts of the
curves that have same shape and orientation. However
the dynamic programing approach requires the compu-
tation of a large number of geodesics between pieces
of curves, whereas in the examples shown here (Fig-
ures 9 to 11), the number of iterations required range
from 4 to 12, resulting in the same amount of geodesic
computations. It should also be noted that it is usually
the first iteration that gives the biggest "jump" on the
fiber, i.e. that results in the most important reparame-
terization of the target curve. It could therefore also be
used to get a good initialization for some approximate
faster method.

We then consider examples where the base mani-
fold has negative curvature. Figure 9 shows horizontal
geodesics obtained using the OM algorithm as well as
the corresponding optimal matchings in [0, 1] × [0, 1],

Fig. 7 Stability of the norm of the speed of a geodesic ob-
tained by geodesic shooting as the number of points used to
compute it increases.

for plane curves (first row) and the same curves tak-
ing their values in the hyperbolic half-plane (second
row). We can see that the geometry of the base man-
ifold significantly influences the optimal matching be-
tween two given curves. To evaluate the performance of
the geodesic shooting algorithm used to perform OM,
we display in Figure 7 the evolution of the norm of the
speed of the geodesic obtained for the two curves on the
bottom-right corner of Figure 9 (the vertical and hor-
izontal segments of H2) as the number of points used
to compute the geodesic increases (from 20 to 500).
The evolutions of the maximum and minimum values
maxs∈[0,1] |cs(s)|, mins∈[0,1] |cs(s)| are shown in dashed
lines, and that of the mean value with a full line. We can
see that the more refined the discretization, the closer
we get to a geodesic. It is to be noted that these two
segments are the same as those considered in [18] to
illustrate an extension of the SRV framework to curves
in Lie groups. Since this metric structure coincides with
the one studied here in the planar case, it is not surpris-
ing to find similar results for the plane curves. However,
the results in H2 are quite different.

Finally, we show illustrations on the sphere. Figure
10 shows geodesics before (top row) and after (bottom
row) optimal matching, for two pairs of curves repre-
senting hurricane tracks from the NASA Tropical Storm
Tracks Database1. Once again we can see that the op-
timal matching algorithm seems to "flatten out" the
deformation between two curves. In the last figure, we
show a set of plane trajectories between Paris and Cara-
cas downloaded from the IAGOS-MOZAIC database 2.
It is visually clear that there are two clusters, probably
due to different weather conditions. These clusters are
easily retrieved using agglomerative hierarchical clus-
tering based on the horizontal geodesic distance. We
can find the centers of these clusters by computing the
Fréchet means, i.e. for each cluster, the curve that mini-

1 https://ghrc.nsstc.nasa.gov/storms/.
2 http://iagos.sedoo.fr/.
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Fig. 8 Optimal matching between curves in R2 or R3 in the SRV framework achieved using Algorithm 5 compared to
dynamic programming. The first line shows the geodesics between the initial parameterizations, the second line the horizontal
geodesics obtained with Algorithm 5, the third line the horizontal geodesics obtained with dynamic programming, the fourth
line the optimal matchings for our method (in red) and dynamic programming (in black). The fifth line shows the ratio
vertical/horizontal, in norm, of the speed of the initial geodesic (dashed line), the horizontal geodesic obtained with Algorithm
5 (red) and the horizontal geodesic obtained with dynamic programming (black).

4.400 4.349 10.785 10.478
4.300 3.000 9.680 9.305
4.301 3.000 9.691 9.307

Table 1 Length of the geodesics shown in the first three lines of Figure 8, displayed in the same order.
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Fig. 9 Horizontal geodesics and the corresponding optimal matching between curves in R2 (first line) and H2 (second line).

Fig. 10 Geodesics between hurricane tracks in S2 before (top) and after (bottom) optimal matching.

Fig. 11 Plane trajectories between Paris and Caracas (left) and Fréchet mean curves of the two clusters given by agglomerative
hierarchical clustering (right).
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mizes the sum of the squared distances to all the curves
of the cluster. This can be achieved using a Karcher flow
algorithm, summarized as follows.

Algorithm 6 (Karcher flow)
Input: α1, . . . , αN .
Initialization : α̂ = α1.
Repeat until convergence :

1. for i = 1, . . . , N ,
– compute the horizontal geodesic s 7→ αhor(s)

from α̂ to αi using Algorithm 5,
– set wi = (αhor)′(0),
– update αi = αhor(1).

2. set w = 1
N

∑N
i=1 wi,

3. update α̂ = expα̂ w.

Output : α̂.

The obtained mean curves are shown on the right-hand
side of Figure 11.

5 Proof of Theorem 1

We conclude this paper with the proof of Theorem 1.
Let us first remind the result.

Theorem 1 Let s 7→ c(s) be a C1-path of C2-curves
with non vanishing derivative with respect to t. This
path can be identified with an element (s, t) 7→ c(s, t)

of C1,2([0, 1]× [0, 1],M) such that ct 6= 0. Consider the
C1-path in Mn+1, s 7→ α(s) = (x0(s), . . . , xn(s)), that
is the discretization of size n of c. Then there exists a
constant λ > 0 such that for n large enough, the differ-
ence between the energies of c and α is bounded by

|E(c)− En(α)| ≤ λ

n
(inf |ct|)−1|cs|22,∞ (1 + |ct|1,∞)

3
,

where E and En are the energies with respect to metrics
G and Gn respectively and where

|ct|1,∞ := |ct|∞ + |∇tct|∞,
|cs|2,∞ := |cs|∞ + |∇tcs|∞ + |∇2

t cs|∞,

and |w|∞ := sups,t∈[0,1] |w(s, t)| denotes the supremum
over both s and t of a vector field w along c.

Proof (Proof of Theorem 1) To prove this result, we in-
troduce the unique path ĉ of piecewise geodesic curves
of which α is the n-discretization. It is obtained by link-
ing the points x0(s), x1(s), . . . , xn(s) of α by pieces of
geodesics for all times s ∈ [0, 1]

ĉ(s, kn ) = c(s, kn ) = xk(s),

ĉ(s, ·)|[ k
n ,

k+1
n ] is a geodesic,

for k = 0, . . . , n. Then the difference between the energy
of the path of curves E(c) and the discrete energy of
the path of discrete curves En(α) can be controlled in
two steps :

|E(c)− En(α)| ≤ |E(c)− E(ĉ)|+ |E(ĉ)− En(α)|.

Step 1. We first consider the difference between
the continuous energies of the smooth and piecewise
geodesic curves

|E(c)− E(ĉ)| =
∣∣∣∣∫ 1

0

∫ 1

0

(
|∇sq(s, t)|2−|∇sq̂(s, t)|2

)
dtds

∣∣∣∣
≤
∫ 1

0

∫ 1

0

∣∣|∇sq(s, t)|2−|∇sq̂(s, t)|2∣∣dtds

≤
∫ 1

0

∫ 1

0

(|∇sq(s, t)|+ |∇sq̂(s, t)|) ·

|∇sq(s, t)t,
k
n −∇sq̂(s, t)t,

k
n |dtds.

Note that the parallel transports ∇sq(s, t)t,
k
n and

∇sq̂(s, t)t,
k
n are performed along different curves –

c(s, ·) and ĉ(s, ·) respectively. Let us fix s ∈ [0, 1],
0 ≤ k ≤ n and t ∈

[
k
n ,

k+1
n

]
. From now on we will

omit "s" in the notation w(s, t) to lighten notations.
Using the notation w‖(t) := w(t)t,

k
n to denote the par-

allel transport of a vector field w from t to k
n along its

baseline curve, the difference we need to control is

|∇sq‖ −∇sq̂‖|

=
∣∣|ct|− 1

2 (∇sct − 1
2∇sct

T )‖−|ĉt|−
1
2 (∇sĉt − 1

2∇sĉt
T )‖
∣∣

=
∣∣(∇sct − 1

2∇sct
T )‖(|ct|−

1
2 − |ĉt|−

1
2 )

+ |ĉt|−
1
2

(
(∇sct‖ −∇sĉt‖)− 1

2 (∇sct‖ −∇sĉt‖)T
)∣∣.

Since |w − 1
2w

T | ≤ |w| for any vector w, we can write

|∇sq‖ −∇sq̂‖| ≤ |∇sct| ·
∣∣|ct|−1/2

− |ĉt|−1/2
∣∣+ |ĉt|−1/2|∇sct‖ −∇sĉt‖|.

(23)

Let us first consider the difference |c‖t − ĉ
‖
t |. Since

ĉt(t)
t, kn = ĉt(

k
n ), we can write

|ct(t)t,
k
n − ĉt(t)t,

k
n |

≤ |ct(t)t,
k
n − ct( kn )|+ |ct( kn )− ĉt( kn )|.

The first term is smaller than 1/n · |∇tct|∞. To bound
the second term, we place ourselves in a local chart
(ϕ,U) centered in c( kn ) = c(s, kn ), such that c([0, 1] ×
[0, 1]) ⊂ U . After identification with an open set of Rd
– where d is the dimension of the manifold M– using
this chart, we get

|ct( kn )− ĉt( kn )| ≤
∣∣ct( kn )− n

(
c(k+1

n )− c( kn )
)∣∣

+
∣∣ĉt( kn )− n

(
c(k+1

n )− c( kn )
)∣∣ .
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Since a geodesic locally looks like a straight line (see
e.g. [6]) there exists a constant λ1 such that∣∣ĉt( kn )− n(c(k+1

n )− c( kn ))
∣∣ ≤ λ1∣∣c(k+1

n )− c( kn )
∣∣2,

and so

|ct( kn )− ĉt( kn )| ≤ 1
2n |ctt|∞ + λ1

n |ct|
2
∞.

The second derivative in t of the coordinates of c in the
chart (U,ϕ) can be written ctt` = ∇tct` − Γ `ijctictj for
` = 1, . . . , d, and so there exists a constant λ2 such that
|ctt| ≤ λ2

(
|∇tct|∞ + |ct|2∞

)
, and∣∣c‖t − ĉ‖t ∣∣ ≤ λ3

n

(
|ct|1,∞ + |ct|21,∞

)
. (24)

This means that for n large enough, we can write e.g.

1
2 inf |ct| ≤ |ĉt| ≤ 3

2 |ct|∞. (25)

From (24) we can also deduce that

∣∣|ct|− 1
2 − |ĉt|−

1
2

∣∣ =

∣∣|ct| − |ĉt|∣∣
|ct|

1
2 + |ĉt|

1
2

≤ |c‖t − ĉ
‖
t |

|ct|
1
2 + |ĉt|

1
2

≤ λ3

n (inf |ct|)−
1
2

(
|ct|1,∞ + |ct|21,∞

)
.

(26)

Let us now consider the difference |∇sct‖−∇sĉt‖|. Since
cs(s,

k
n ) = ĉs(s,

k
n ), we get

|∇sct(t)t,
k
n −∇sĉt(t)t,

k
n | ≤

∣∣∣∇tcs(t)t, kn −∇tcs( kn )
∣∣∣

+
∣∣∣∇tcs( kn )− n

(
cs(

k+1
n )

k+1
n , kn − cs( kn )

)∣∣∣
+
∣∣∣∇tĉs(t)t, kn −∇tĉs( kn )

∣∣∣
+
∣∣∣∇tĉs( kn )− n

(
ĉs(

k+1
n )

k+1
n , kn − ĉs( kn )

)∣∣∣
and so

|∇sct(t)t,
k
n −∇sĉt(t)t,

k
n | ≤ 3

2n |∇
2
t cs|∞ + 3

2n |∇
2
t ĉs|∞.

(27)

We can decompose ∇2
t ĉs(s, t) = ∇t∇sĉt(s, t) =

∇s∇tĉt(s, t) +R(ĉt, ĉs)ĉt(s, t), and since ∇tĉt(s, t) = 0

and |R(X,Y )Z| ≤ |K| · (|〈Y,Z〉||X| + |〈X,Z, 〉||Y |) ≤
2|K| · |X| · |Y | · |Z| by Cauchy Schwarz, we get using
Equation (25)

|∇2
t ĉs| ≤ 2 |ĉt|2 |ĉs| ≤ 9

2 |ct|
2
∞|ĉs|. (28)

To bound |ĉs| we apply Lemma 1 to the Jacobi field
J : [0, 1] 3 u 7→ ĉs(s,

k+u
n ) along the geodesic γ(u) =

ĉ(s, k+un ), that is

J(u)u,0 = J(0)T + ak(u)J(0)N

+ u∇tJ(0)T + bk(u)∇tJ(0)N
(29)

where, since γ′(0) = 1
n ĉt(s,

k
n ) = τk(s), the coefficients

are defined by
ak(u) = cosh(|τk|u) , bk(u) = sinh(|τk|u)

|τk| , K = −1,

ak(u) = 1, bk(u) = u, K = 0,

ak(u) = cos(|τk|u) , bk(u) = sin(|τk|u)
|τk| , K = +1.

This gives J(1)1,0 = J(0)T + ak(1)J(0)N +∇tJ(0)N +

bk(1)∇tJ(0)N and so

∇tJ(0)T =
(
J(1)1,0 − J(0)

)T
∇tJ(0)N = bk(1)−1

(
J(1)1,0 − ak(1)J(0)

)N
.

Injecting this into (29), we obtain since u = nt− k and
ĉs(s,

k
n ) = cs(s,

k
n ),

ĉs(t)
t, kn = cs(

k
n )T + ak(nt− k)cs(

k
n )N

+ (nt− k)
(
cs(

k+1
n )

k+1
n , 1n − cs( kn )

)T
+ bk(nt−k)

bk(1)

(
cs(

k+1
n )

k+1
n , 1n − ak(1)cs(

k
n )
)N
.

(30)

When n→∞, ak(1)→ 1, bk(1)→ 1, and since 0 ≤ nt−
k ≤ 1, ak(nt− k)→ 1, bk(nt− k)→ 1 also. Therefore,
for n large enough we can see that |ĉs| ≤ λ4|cs|∞ for
some constant λ4. Injecting this into (28) gives

|∇2
t ĉs|∞ ≤ 9λ4

2 |ct|
2
∞|cs|∞,

and so the difference (27) can be bounded by

|∇sct‖ −∇sĉt‖| ≤ 3
2n

(
|∇2

t cs|∞ + 9λ4

2 |ct|
2
∞|cs|∞

)
≤ λ5

n |cs|2,∞
(
1 + |ct|21,∞

)
,

(31)

for some constant λ5. Injecting (25), (26) and (31) in
Equation (23) we obtain

|∇sq‖ −∇sq̂‖| ≤ λ3

n (inf |ct|)−
1
2 |cs|2,∞

(
|ct|1,∞ + |ct|21,∞

)
+ λ5

√
2

n (inf |ct|)−
1
2 |cs|2,∞

(
1 + |ct|21,∞

)
,

|∇sq‖ −∇sq̂‖| ≤ λ6

n (inf |ct|)−
1
2 |cs|2,∞ (1 + |ct|1,∞)

2
,

(32)

for some constant λ6. To conclude this first step, let us
bound the sum
|∇sq|+ |∇sq̂|

= |ct|−
1
2 |∇sct − 1

2∇sct
T |+ |ĉt|−

1
2 |∇sĉt − 1

2∇sĉt
T |

≤ (inf |ct|)−
1
2 |∇tcs|∞ +

√
2(inf |ct|)−

1
2 |∇tĉs|∞.

(33)

Taking the derivative according to t on both sides of
(30), we get since n|τk(s)| = |ĉt(s, kn )|,

∇tĉs(t)t,
k
n = |ĉt( kn )|ek(nt− k)cs(

k
n )N

+ n
(
cs(

k+1
n )‖ − cs( kn )

)T
+ n ak(nt−k)

bk(1)

(
cs(

k+1
n )‖ − ak(1)cs(

k
n )
)N

,
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since derivation of the coefficients give b′k(u) = ak(u)

and a′k(u) = |τk|ek(u) = 1
n |ĉt(

k
n )|ek(u), where

ek(u) =


sinh (|τk|u) , if K = −1,

0 if K = 0,

− sin (|τk|u) , if K = +1.

Since the coefficients ek(nt − k), ak(nt − k)/bk(1) and
ak(1) are bounded for n large enough, and since |ĉt| ≤
3
2 |ct|∞, we can write for some constant λ7,

|∇tĉs|∞ ≤ λ7 (|ĉt|∞|cs|∞ + |∇tcs|∞)

≤ 3λ7

2 |cs|2,∞ (1 + |ct|1,∞) .
(34)

Inserting this into (33) gives

|∇sq|+ |∇sq̂|

≤ (inf |ct|)−1/2
(
|∇tcs|∞ + 3λ7√

2
|cs|2,∞ (1 + |ct|1,∞)

)
≤ λ8(inf |ct|)−1/2|cs|2,∞(1 + |ct|1,∞).

(35)

Finally, we are able to bound the difference between the
energies of the smooth and piecewise-geodesic paths by
combining Equations (32) and (35)

|E(c)− E(ĉ)| ≤ λ6λ8
n

(inf |ct|)−1|cs|22,∞ (1 + |ct|1,∞)
3
.

Step 2. Let us now consider the difference of energy
between the path of piecewise geodesic curves and the
path of discrete curves. Since ∇sqk(s) = ∇sq̂(s, kn ) for
all s ∈ [0, 1] and 0 ≤ k ≤ n, we can write

|E(ĉ)− En(α)|

=

∣∣∣∣∣
∫ 1

0

(∫ 1

0

|∇sq̂(s, t)|2dt− 1

n

n−1∑
k=0

|∇sqk(s)|2
)

ds

∣∣∣∣∣
≤
n−1∑
k=0

∫ 1

0

∫ k+1
n

k
n

∣∣ |∇sq̂(s, t)|2 − |∇sq̂(s, kn )|2
∣∣ dtds

≤
n−1∑
k=0

∫ 1

0

∫ k+1
n

k
n

(
|∇sq̂(s, t)|+ |∇sq̂(s, kn )|

)
·

∣∣∇sq̂(s, t)t, kn −∇sq̂(s, kn )
∣∣dtds.

We fix once again s ∈ [0, 1], 0 ≤ k ≤ n and t ∈
[
k
n ,

k+1
n

]
.

As in step 1, we will omit "s" in most notations. Since
|ĉt(t)| = |ĉt( kn )|, we get∣∣∇sq̂(t)t, kn −∇sq̂( kn )

∣∣
≤
∣∣∣|ĉt( kn )|− 1

2

(
∇sĉt(t)t,

k
n −∇sĉt( kn )

− 1
2

(
∇sĉt(t)t,

k
n −∇sĉt( kn )

)T)∣∣∣
≤ |ĉt( kn )|− 1

2

∣∣∇sĉt(t)t, kn −∇sĉt( kn )
∣∣.

Considering once again the Jacobi field

J(u) := ĉs(
k+u
n ), u ∈ [0, 1],

along the geodesic γ(u) = ĉ(k+un ), Equation (29) gives

ĉs(t)
t, kn = cs(

k
n )T + ak(nt− k)cs(

k
n )N

+ (t− k
n )∇tĉs( kn )T + bk(nt− k) 1

n∇tĉs(
k
n )N .

Recall that b′k(u) = ak(u) and a′k(u) = |τk|ek(u), and so
taking the derivative with respect to t and decomposing
∇tĉs( kn )T = ∇tĉs( kn )−∇tĉs( kn )N , we obtain

∇tĉs(t)t,
k
n −∇tĉs( kn ) = |ĉt( kn )|ek(nt− k) · cs( kn )N

+
(
ak(nt− k)− 1

)
∇tĉs( kn )N .

Noticing that ek(nt−k)
(nt−k)|τk| → 1 and ak(nt−k)−1

(nt−k)|τk| → 0 when
n→∞, we can deduce that for n large enough,

|ek(nt− k)| ≤ 2(nt− k)|τk| ≤ 2|τk| = 2
n |ct| ≤

2
n |ct|∞,

|ak(nt− k)− 1| ≤ (nt− k)|τk| ≤ |τk| = 1
n |ct| ≤

1
n |ct|∞.

This gives

∫ k+1
n

k
n

∣∣∇tĉs(s, t)t, kn −∇tĉs(s, kn2 )|dt

≤ 2
n2

(
|ct|2∞|cs|∞ + |ct|∞|∇tĉs|∞

)
.

Recall from (34) and (35) that

|∇tĉs|∞ ≤ 3λ7

2 |cs|2,∞ (1 + |ct|1,∞) ,

|∇sq̂|∞ ≤ 3λ7√
2

(inf |ct|)−
1
2 |cs|2,∞ (1 + |ct|1,∞) ,

and so∫ k+1
n

k
n

(
|∇sq̂(t)|+ |∇sq̂( kn )|

)
· |∇sq̂(t)t,

k
n −∇sq̂( kn )|dt

≤ 2|∇sq̂|∞
√

2(inf |ct|)−
1
2

∫ k+1
n

k
n

∣∣∇tĉs(t)t, kn −∇tĉs( kn )|dt

≤ 6λ7(inf |ct|)−1|cs|2,∞(1 + |ct|1,∞) 2
n2

(
|ct|2∞|cs|∞

+ |ct|∞ 3λ7

2 |cs|2,∞ (1 + |ct|1,∞)
)

≤ λ9

n2 (inf |ct|)−1|cs|22,∞(1 + |ct|1,∞)3.

Finally, we obtain

|E(ĉ)− En(α)| ≤ λ9
n

(inf |ct|)−1|cs|22,∞ (1 + |ct|1,∞)
3
,

which completes the proof.
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Appendix A

Lemma 1 Let γ : [0, 1]→M be a geodesic of a mani-
fold M of constant sectional curvature K, and J a Ja-
cobi field along γ. Then the parallel transport of J(t)

along γ from γ(t) to γ(0) is given by

J(t)t,0 = JT (0) + ãk(t)JN (0)

+ t∇tJT (0) + b̃k(t)∇tJN (0),

for all t ∈ [0, 1], where
ãk(t) = cosh (|γ′(0)|t) , b̃k(t) = sinh(|γ′(0)|t)

|γ′(0)| , K = −1,

ãk(t) = 1, b̃k(t) = t, K = 0,

ãk(t) = cos (|γ′(0)|t) , b̃k(t) = sin(|γ′(0)|t)
|γ′(0)| , K = +1.

Proof As a Jacobi field along γ, J satisfies the well-
known equation (see e.g. [7])

∇2
tJ(t) = −R(J(t), γ′(t))γ′(t).

If M is flat, we get ∇2
tJ(t) = 0 and so J(t) = J(0) +

t∇tJ(0). If not, we can decompose J in the sum J =

JT+JN of two vector fields that parallel translate along
γ, JT = 〈J, v〉v with v = γ′/|γ′|, and JN = J − JT .
Since 〈∇2

tJ, γ
′〉 = 0 and γ′ is parallel along γ, we get

by integrating twice that

〈J(t), γ′(t)〉 = 〈∇tJ(0), γ′(0)〉t+ 〈J(0), γ′(0)〉,
〈J(t), v(t)〉 = 〈∇tJ(0), v(0)〉t+ 〈J(0), v(0)〉.

Since

∇2
tJ

T (t) = ∇2
t 〈J(t), v(t)〉v(t) = 〈∇2

tJ(t), v(t)〉v(t) = 0,

the normal component JN is also a Jacobi field, that is
it verifies

∇2
tJ

N (t) = −R(JN (t), γ′(t))γ′(t).

And since M has constant sectional curvature K, for
any vector field w along γ we have

〈R(JN , γ′)γ′, w〉 = K
(
〈γ′, γ′〉〈JN , w〉−〈JN , γ′〉〈γ′, w〉

)
= 〈K|γ′|2JN , w〉,

and the differential equation verified by JN can be
rewritten ∇2

tJ
N (t) = −K |γ′(t)|2 JN (t). Since the

speed of the geodesic γ has constant norm, the solu-
tion to that differential equation is of the form

JN (t) =
(
λe|γ

′(0)|t + µe−|γ
′(0)|t

)
ω(t),

when K = −1 and

JN (t) =
(
λei|γ

′(0)|t + µe−i|γ
′(0)|t

)
ω(t),

when K = 1. Using the initial conditions JN (0) and
∇tJN (0) to find the constants λ, µ, we get for K = −1

JN (t) = JN (0) cosh (|γ′(0)|t) +∇tJN (0)
sinh(|γ′(0)|t)
|γ′(0)| ,

and for K = 1, the same formula with cosine and sine
functions instead of hyperbolic cosine and sine.

Lemma 3 The covariant derivatives of the func-
tions f

(−)
k and g

(−)
k with respect to s are functions

Txk+1(s)M → Txk(s)M given by

∇s
(
f
(−)
k

)
: w 7→ (∇sfk)(−)(w) + fk

(
R (Yk, τk) (wk+1

‖)
)
,

∇s
(
g
(−)
k

)
: w 7→ (∇sgk)(−)(w) + gk

(
R (Yk, τk) (wk+1

‖)
)
,

where

(∇sfk)(s)(−) = ∇sfk(s) ◦ P xk+1(s),xk(s)
γk(s)

,

(∇sgk)(s)(−) = ∇sgk(s) ◦ P xk+1(s),xk(s)
γk(s)

,

Yk = (xk
′)T + bk(xk

′)N + 1
2∇sτk

T +K
1− ak
|τk|2

∇sτkN ,

if K is the sectional curvature of the base manifold.

Proof Fix 0 ≤ k ≤ n and let wk+1 : s 7→ wk+1(s) be
a vector field along the curve xk+1 : s 7→ xk+1(s). By
definition,

∇s
(
f
(−)
k (wk+1)

)
= ∇s

(
f
(−)
k

)
(wk+1) + f

(−)
k (∇swk+1),

∇s
(
g
(−)
k (wk+1)

)
= ∇s

(
g
(−)
k

)
(wk+1) + g

(−)
k (∇swk+1).

Consider the path of gedesics s 7→ γk(s, ·) such that
for all s ∈ [0, 1], γk(s, 0) = xk(s), γk(s, 1) = xk+1(s)

and t 7→ γk(s, t) is a geodesic. We denote by wk+1
‖

the vector field along the curve xk obtained by par-
allel transporting back the vector wk+1(s) along the



A discrete framework to find the optimal matching between manifold-valued curves 23

geodesic γk(s, ·) for all s ∈ [0, 1], i.e. wk+1
‖(s) =

P 1,0
γk(s,·)(wk+1(s)). We have

∇s
(
f
(−)
k (wk+1)

)
= ∇s

(
fk(wk+1

‖)
)

= ∇sfk(wk+1
‖) + fk

(
∇s(wk+1

‖)
)
,

(36)

and so we need to compute ∇s(wk+1
‖). Let V (s, t) :=

P 1,t
γk(s,·)(wk+1) so that ∇sV (s, 1) = ∇swk+1 and
∇sV (s, 0) = ∇s(wk+1

‖), then

∇sV (s, 1)1,0 = ∇sV (s, 0) +

∫ 1

0

∇t∇sV (s, t)t,0dt,

= ∇sV (s, 0) +

∫ 1

0

R(∂tγk
t,0, ∂sγk

t,0)V (s, t)t,0dt,

since ∇tV = 0, and where ∂tγk(s, t)t,0 = τk(s). We get,
since ∇R = 0,

(∇swk+1)‖ = ∇s(wk+1
‖)+R

(
τk,

∫ 1

0

∂sγk
t,0dt

)
(wk+1

‖).

(37)

To find an expression for ∂sγkt,0, we consider the Jacobi
field J(t) := ∂sγk(s, t) along the geodesic t 7→ γk(s, t).
The vector field J verifies

J(0) = xk
′(s), J(1) = xk+1

′(s), ∇tJ(0) = ∇sτk(s),

where the last equality results from the inversion
∇t∂sγk(s, 0) = ∇s∂tγk(s, 0) and ∂tγk(s, 0) = τk(s). Ap-
plying Lemma 1 gives, for all k = 0, . . . , n− 1,

∂sγk(s, t)
t,0

= xk
′(s)T + ak(s, t)xk

′(s)N

+ t∇sτk(s)T + bk(s, t)∇sτk(s)N .

with the coefficients

ak(s, t) =


cosh (|τk(s)|t) , if K = −1,

1 if K = 0,

cos (|τk(s)|t) , if K = +1,

bk(s, t) =


sinh (|τk(s)|t) /|τk(s)| if K = −1,

1 if K = 0,

sin (|τk(s))|t) /|τk(s)| if K = +1.

Integrating this and injecting it in (37) gives

∇s(wk+1
‖) = (∇swk+1)‖ +R (Yk, τk) (wk+1

‖), (38)

where Yk is defined by

Yk = (xk
′)T + bk(xk

′)N + 1
2∇sτk

T +K
1− ak
|τk|2

∇sτkN ,

and injecting this in (36) finally gives,

∇s
(
f
(−)
k (wk+1)

)
= ∇sfk(wk+1

‖) + fk
(
(∇swk+1)‖

)
+ fk

(
R (Yk, τk) (wk+1

‖)
)

= (∇sfk)(−)(wk+1) + f
(−)
k (∇swk+1)

+ fk
(
R (Yk, τk) (wk+1

‖)
)
,

which is what we wanted. The covariant derivative
∇s
(
g
(−)
k (wk+1)

)
can be computed in a similar way.

Appendix B

Proposition 6 (Discrete geodesic equations) A
path s 7→ α(s) = (x0(s), . . . , xn(s)) in Mn+1 is a
geodesic for metric Gn if and only if its SRV repre-
sentation s 7→

(
x0(s), (qk(s))k

)
verifies the following

differential equations

∇sx0′ +
1

n

(
R0 + f

(−)
0 (R1)

+ . . .+ f
(−)
0 ◦ · · · ◦ f (−)n−2(Rn−1)

)
= 0,

∇2
sqk +

1

n
g
(−)
k

(
Rk+1 + f

(−)
k+1(Rk+2)

+ . . .+ f
(−)
k+1 ◦ · · · ◦ f

(−)
n−2(Rn−1)

)
= 0,

for all k = 0, . . . , n − 1, with the notations (13) and
Rk := R(qk,∇sqk)xk

′.

Proof We consider a variation (−δ, δ) 3 a 7→ α(a, ·) =

(x0(a, ·), . . . , xn(a, ·)) of this curve which coincides with
α for a = 0, i.e. α(0, s) = α(s) for all s ∈ [0, 1], and
which preserves the end points of α, i.e. α(a, 0) = α(0)

and α(a, 1) = α(1) for all a ∈ (−δ, δ). The energy of
this variation with respect to metric Gn can be seen as
a real function of the variable a and is given by

En(a) =
1

2

∫ 1

0

(
|∂sx0(a, s)|2 +

1

n

n−1∑
k=0

|∇sqk(a, s)|2
)

ds,

and its derivative (En)′(a) with respect to a is∫ 1

0

(〈
∂a∂sx0, ∂sx0

〉
+

1

n

n−1∑
k=0

〈
∇a∇sqk,∇sqk

〉)
ds

=

∫ 1

0

(〈
∂s∂ax0, ∂sx0

〉
+

1

n

n−1∑
k=0

〈
∇s∇aqk +R(∂axk, ∂sxk)qk,∇sqk

〉)
ds,

= −
∫ 1

0

(〈
∇s (∂sx0) , ∂ax0

〉
+

1

n

n−1∑
k=0

〈
∇2
sqk,∇aqk

〉
+
〈
R(qk,∇sqk)∂sxk, ∂axk

〉)
ds,
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where we integrate by parts to obtain the third line
from the second. The goal is to express ∂axk in terms
of ∂ax0 and ∇aq`, ` = 0, · · · , k. That way, the only
elements that depend on a once we take a = 0 are
(∂ax0,∇aq0, · · · ,∇aqn−1) which can be chosen inde-
pendently to be whatever we want. Let us fix 0 ≤
k ≤ n − 1 and s ∈ [0, 1] and consider the path of
geodesics a 7→ γk(a, ·) such that γk(a, 0) = xk(a, s),
γk(a, 1) = xk+1(a, s) and ∂tγk(a, 0) = τk(a, s) =

logxk(a,s)
(xk+1(a, s)). Then by definition, for each a ∈

[0, 1], t 7→ J(a, t) := ∂aγk(a, t) is a Jacobi field along
the geodesic t 7→ γk(a, t) of M , and so Lemma 1 gives

∂axk+1
‖ = ∂axk

T +ak ∂axk
N +∇aτkT +bk∇sτkN , (39)

where ∂axk+1
‖ denotes the parallel transport of ∂axk+1

from xk+1(s) to xk(s) along the geodesic. Differentia-
tion of qk =

√
n τk/|τk| gives

∇sqk =
√
n |τk|−1/2

(
∇sτk − 1

2∇sτk
T
)
,

and taking the tangential part on both sides yields
∇sqkT =

√
n |τk|−1/2 1

2∇sτk
T , and so finally

∇sτk = |τk|1/2/
√
n
(
∇sqk +∇sqkT

)
= |qk|/n

(
∇sqk +∇sqkT

)
.

Injecting this in (39) and noticing that 〈fk(w), z〉 =

〈w, fk(z)〉 and 〈gk(w), z〉 = 〈w, gk(z)〉 for any pair of
vectors w, z gives

∂axk+1
‖ = fk(∂axk) +

1

n
gk(∇aqk), (40)〈

wk+1, ∂axk+1

〉
=
〈
f
(−)
k (wk+1), ∂axk

〉
+

1

n

〈
g
(−)
k (wk+1),∇aqk

〉
, (41)

for any tangent vector wk+1 ∈ Txk+1
M . From equation

(41) we can deduce, for k = 1, . . . , n,

〈
wk, ∂axk

〉
=
〈
f
(−)
0 ◦ · · · ◦ f (−)k−1(wk), ∂ax0

〉
+

1

n

k−1∑
`=0

〈
g
(−)
` ◦ f (−)`+1 ◦ · · · ◦ f

(−)
k−1(wk),∇aq`

〉
.

With the notation Rk := R(qk,∇sqk)xk
′ we get

〈
Rk, ∂axk

〉
=
〈
f
(−)
0 ◦ · · · ◦ f (−)k−1(Rk), ∂ax0

〉
+

1

n

k−1∑
`=0

〈
g
(−)
` ◦ f (−)`+1 ◦ · · · ◦ f

(−)
k−1(Rk),∇aq`

〉
,

and we can then write the derivative of the energy
(En)′(0) for a = 0 in the following way

−
∫ 1

0

(〈
∇sx0′ +

1

n

n−1∑
k=0

f
(−)
0 ◦ · · · ◦ f (−)k−1(Rk), ∂ax0

〉
+

1

n2

n−1∑
k=1

k−1∑
`=0

〈
g
(−)
` ◦ f (−)`+1 ◦ · · · ◦ f

(−)
k+1(Rk),∇aq`

〉
+

1

n

n−1∑
k=0

〈
∇2
sqk,∇aqk

〉)
ds,

where in the first sum we use the notation convention
f0 ◦ · · · ◦ f−1 := Id. Noticing that the double sum can
be rewritten
n−2∑
`=0

n−1∑
k=`+1

〈
g
(−)
` ◦ f (−)`+1 ◦ · · · ◦ f

(−)
k−1(Rk),∇aq`

〉
,

we obtain for (En)′(0)

−
∫ 1

0

(〈
∇sx0′ +

1

n

n−1∑
k=0

f
(−)
0 ◦ · · · ◦ f (−)k−1(Rk), ∂ax0

〉

+
1

n

n−1∑
k=0

〈
∇2
sqk +

1

n

n−1∑
`=k+1

g
(−)
k ◦ f (−)k+1 ◦ · · ·

◦ f (−)`−1(R`),∇aqk
〉)

ds,

(42)

where in the last sum we use the convention
∑n−1
`=n =

0. Since this quantity has to vanish for any choice
of (∂ax0(0, ·),∇aq0(0, ·), . . . ,∇aqn−1(0, ·)), the geodesic
equations for the discrete metric are

∇sx0′ +
1

n

n−1∑
k=0

f
(−)
0 ◦ · · · ◦ f (−)k−1(Rk) = 0,

∇2
sqk +

1

n

n−1∑
`=k+1

g
(−)
k ◦ f (−)k+1 ◦ · · · ◦ f

(−)
`−1(R`) = 0,

for all k = 0, . . . , n−1, with the conventions
∑n−1
`=n = 0

and f0 ◦ · · · ◦ f−1 := Id.

Remark 4 Let [0, 1] 3 s 7→ c(s, ·) ∈ M be a C1 path
of smooth curves and [0, 1] 3 s 7→ α(s) ∈ Mn+1 the
discretization of size n of c. We denote as usual by
q := ct/|ct|1/2 and (qk)k their respective SRV repre-
sentations. When n → ∞ and |τk| → 0 while n|τk|
stays bounded for all 0 ≤ k ≤ n, the coefficients of the
discrete geodesic equation (20) for α converge to the co-
efficients of the continuous geodesic equation (7) for c,
i.e.

∇sx0′(s) = −r0(s) + o(1),

∇2
sqk(s) = −|qk(s)|(rk(s) + rk(s)T ) + o(1),
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for all s ∈ [0, 1] and k = 0, . . . , n − 1, where rn−1 = 0

and for k = 1, . . . , n− 2,

rk(s) :=
1

n

n−1∑
`=k+1

P
l
n ,

k
n

c

(
R(q,∇sq)cs(s, `n )

)
→

n→∞
r(s, kn ),

with the exception that the sum starts at ` = 0 for r0.

Proof This is due to three arguments : (1) at the limit,
fk(w) = w + o(1/n) and gk(w) = |qk|(w + wT ) +

o(1/n), (2) parallel transport along a piecewise geodesic
curve uniformly converges to the parallel transport
along the limit curve, and (3) the discrete curvature
term Rk(s) converges to the continuous curvature term
R(q,∇sq)cs(s, kn ) for all k. Indeed, let ĉ be the unique
piecewise geodesic curve of which α is the discretiza-
tion, i.e. c

(
k
n

)
= ĉ
(
k
n

)
= xk for all k = 0, . . . , n and ĉ is

a geodesic on each segment
[
k
n ,

k+1
n

]
. Defining

r̂0 := 1
n

(
R0 + f

(−)
0 (R1) + . . .+ f

(−)
0 ◦ · · · ◦ f (−)n−2(Rn−1)

)
r̂k := 1

n

(
Rk+1 + f

(−)
k+1(Rk+2) + . . .

+ f
(−)
k+1 ◦ · · · ◦ f

(−)
n−2(Rn−1)

)
1 ≤ k ≤ n− 2,

r̂n−1 := 0,

the geodesic equations can be written in terms of the
vectors r̂k

∇sx0′(s) + r̂0(s) = 0,

∇2
sqk(s) + g

(−)
k

(
r̂k(s)

)
= 0.

We can show that for any 0 ≤ k ≤ ` ≤ n − 2 and any
vector w ∈ Tx`+1

M ,∣∣∣f (−)k ◦ · · · ◦ f (−)` (w)− P
`+1
n , kn

c (w)
∣∣∣

≤
∑̀
j=k

|aj − 1| ·
∣∣∣f (−)j+1 ◦ · · · ◦ f

(−)
` (w)

∣∣∣
+
∣∣∣P `+1

n , kn
ĉ (w)− P

`+1
n , kn

c (w)
∣∣∣ .

Since |aj − 1|/|τk|2 → 0 when n → ∞ and n|τk| stays
bounded, we have for all 0 ≤ j ≤ n and n large enough
|aj−1| ≤ 1

n2 , and using the fact that parallel transport
along a piecewise geodesic curve uniformly converges to
the parallel transport along the limit curve, we get

|f (−)k ◦ · · · ◦ f (−)` (w)− P
`+1
n , kn

c (w)| → 0

when n→∞. Now, denoting by

R(s, t) := R(q,∇sq)cs(s, t)

the curvature term involved in the continuous geodesic
equations, we have since xk

′(s) = cs(s,
k
n ) and

|R(X,Y )Z| ≤ |K| · (|〈Y, Z〉||X|+ |〈X,Z, 〉||Y |) ≤ 2|K| ·
|X| · |Y | · |Z| by Cauchy Schwarz,

|Rk −R( kn )| ≤ |R(qk − q( kn ),∇sqk)xk
′|

+ |R(q( kn ),∇sqk −∇sq( kn ))xk
′|

≤ |qk − q( kn )| · |∇sqk| · |xk′|
+ |q( kn )| · |∇sqk −∇sq( kn )| · |xk′|

Let us show that both summands of this upper bound
tend to 0 when n→∞.

|qk − q( kn )| =
∣∣∣|nτk|− 1

2nτk − |ct( kn )|− 1
2 ct(

k
n )
∣∣∣

≤ ||nτk|−
1
2 − |ct( kn )|− 1

2 | · |nτk|+ |ct( kn )|− 1
2 |nτk − ct( kn )|

=
|nτk| − |ct( kn )|
|nτk|

1
2 + |ct( kn )| 12

· |nτk|+ |ct( kn )|− 1
2 |nτk − ct( kn )|

≤

(
|nτk|

|nτk|
1
2 + |ct( kn )| 12

+ |ct( kn )|− 1
2

)
|nτk − ct( kn )|

and since the portion of c(s, ·) on the segment [ kn ,
k+1
n ]

is close to a geodesic at the limit, |nτk − ct(
k
n )| → 0

when n→∞, and so does |qk(s)− q( kn )|. Similarly,

|∇sqk −∇sq( kn )| =
∣∣∣|nτk|−1/2(n∇sτk − 1

2n∇sτk
T )

− |ct|−1/2(∇sct( kn )− 1
2∇sct(

k
n )
T

)
∣∣∣

≤ ||nτk|−1/2 − |ct( kn )|−1/2| · |n∇sτk|

+ |ct|−1/2|n∇sτk −∇sct( kn )|,

where once again ||nτk|−1/2 − |ct( kn )|−1/2| → 0 and
|n∇sτk| is bounded. The last term can be bounded,
for n large enough, by

|n∇sτk −∇sct( kn )| ≤ |n∇sτk − n
(
cs(

k+1
n )‖ − cs( kn )

)
|

+ |∇tcs( kn )− n
(
cs(

k+1
n )‖ − cs( kn )

)
|

≤ n|1− b−1k | · |cs(
k+1
n )‖ − cs( kn )|

+
1

n
|∇t∇tcs|∞

≤ 1

n
(|∇tcs|∞ + |∇t∇tcs|∞),

since ∇sτk = (Dτα
′)k = (xk+1

‖ − xk)T + b−1k (xk+1
′ −

xk
′)N and b−1k → 1. Finally, we can see that

|r̂0(s)− r0(s)| ≤ 1

n
|R0 −R(0)|+ 1

n

n−2∑
`=0

|R`+1 −R( `+1
n )|

+
1

n

n−2∑
`=0

∣∣∣f (−)0 ◦ . . . ◦ f (−)` (R`+1)− P
`+1
n ,0

c (R`+1)
∣∣∣

goes to 0 when n → ∞. We can show in a similar way
that |g(−)k (r̂k)− |qk|(rk + rk

T )| → 0 when n→∞.
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Proposition 7 (Discrete exponential map) Let
[0, 1] 3 s 7→ α(s) = (x0(s), . . . , xn(s)) be a geodesic
path in Mn+1. For all s ∈ [0, 1], the coordinates of its
acceleration ∇sα′(s) can be iteratively computed in the
following way

∇sx0′ = − 1

n

(
R0 + f

(−)
0 (R1)

+ . . .+ f
(−)
0 ◦ · · · ◦ f (−)n−2(Rn−1)

)
,

∇sxk+1
′‖ = ∇sfk(xk

′) + fk(∇sxk′) +
1

n
∇sgk(∇sqk)

+
1

n
gk(∇2

sqk) +R(τk, Yk)(xk+1
′‖),

for k = 0, . . . , n − 1, where the Rk’s are defined as in
Proposition 7, the symbol ·‖ denotes the parallel trans-
port from xk+1(s) back to xk(s) along the geodesic link-
ing them, the maps ∇sfk and ∇sgk are given by Lemma
2, Yk is given by Equation (19) and

∇sτk = (Dτα
′)k, ∇svk =

1

|τk|
(
∇sτk −∇sτkT

)
,

∇sqk =

√
n

|τk|

(
∇sτk −

1

2
∇sτkT

)
,

∇2
sqk = − 1

n
g
(−)
k

(
Rk+1 + f

(−)
k+1(Rk+2)

+ . . .+ f
(−)
k+1 ◦ · · · ◦ f

(−)
n−2(Rn−1)

)
.

Proof For all s ∈ [0, 1], we initialize ∇sxk′(s) for k = 0

using the first geodesic equation in (20); the difficulty
lies in deducing ∇sxk+1

′(s) from ∇sxk′(s). Just as we
have previously obtained (40), we can obtain by replac-
ing the derivatives with respect to a by derivatives with
respect to s

xk+1
′‖ = xk

′T + ak xk
′N +∇sqkT + bk∇sτkN , (43)

xk+1
′‖ = fk(xk

′) +
1

n
gk(∇sqk),

and by differentiating with respect to s

∇s
(
xk+1

′‖
)

= ∇sfk(xk
′) + fk(∇sxk′)

+
1

n
∇sgk(∇sqk) +

1

n
gk(∇2

sqk).
(44)

We have already computed (38) the covariant derivative
of a vector field s 7→ wk+1(s)

‖ ∈ Txk(s)M and so we can
write

∇s
(
xk+1

′‖) =
(
∇sxk+1

′)‖ +R(Yk, τk)
(
xk+1

′‖),
where Yk is defined by Equation (19). Together with
Equation (44), this gives the desired equation for
∇sxk+1

′‖. Finally, ∇sτk = (Dτα
′)k results directly

from (43), ∇2
sqk is deduced from the second geodesic

equation and the remaining equations follow from sim-
ple computation.

Proposition 8 (Discrete Jacobi fields) Let [0, 1] 3
s 7→ α(s) = (x0(s), . . . , xn(s)) be a geodesic path in
Mn+1, [0, 1] 3 s 7→ J(s) = (J0(s), . . . , Jn(s)) a Jacobi
field along α, and (−δ, δ) 3 a 7→ α(a, ·) a corresponding
family of geodesics, in the sense just described. Then J
verifies the second order linear ODE

∇2
sJ0 = R(x0

′, J0)x0
′ − 1

n

(
∇aR0 + f

(−)
0 (∇aR1) + . . .

+ f
(−)
0 ◦ · · · ◦ f (−)n−2(∇aRn−1)

)
− 1

n

n−2∑
k=0

k∑
`=0

f
(−)
0 ◦ · · · ◦ ∇a

(
f
(−)
`

)
◦ · · · ◦ f (−)k (Rk+1),

∇2
sJk+1

‖
= fk(∇2

sJk) + 2∇sfk(∇sJk) +∇2
sfk(Jk)

+
1

n
gk(∇2

s∇aqk) +
2

n
∇sgk(∇s∇aqk) +

1

n
∇2
sgk(∇aqk)

+ 2R(τk, Yk)(∇sJk+1
‖) +R(∇sτk, Yk)(Jk+1

‖)

+R(τk,∇sYk)(Jk+1
‖) +R(τk, Yk)

(
R(Yk, τk)(Jk+1

‖)
)
,

for all 0 ≤ k ≤ n− 1, where Rk := R(qk,∇sqk)xk
′ and

the various covariant derivatives according to a can be
expressed as functions of J and ∇sJ ,

∇aRk = R
(
∇aqk,∇sqk

)
xk
′ +R

(
qk,∇s∇aqk

+R(J, xk
′)qk

)
xk
′ +R

(
qk,∇sqk)∇sJk,

∇aqk =

√
n

|τk|

(
∇aτk −

1

2
∇aτkT

)
, ∇aτk = (DτJ)k,

∇avk =
1

|τk|
(
∇aτk −∇aτkT

)
,

∇s∇aqk = n gk
−1((∇sJk+1)‖ +R(Yk, τk)(Jk+1

‖)

−∇sfk(Jk)− fk(∇sJk)
)

+ n∇s
(
gk
−1)(Jk+1

‖ − fk(Jk)
)
,

∇2
s∇aqk = − 1

n

n−1∑
`=k+1

g
(−)
k ◦ f (−)k+1 ◦ · · · ◦ f

(−)
`−1(∇aR`)

+R(∇sxk′, Jk)qk +R(xk
′,∇sJk)qk + 2R(xk

′, Jk)∇sqk

− 1

n

n−1∑
`=k+1

`−1∑
j=k

g
(−)
k ◦ · · · ◦ ∇a

(
f
(−)
j

)
◦ · · · ◦ f (−)`−1(R`),

∇sYk = (∇sxk′)T + bk(∇sxk′)N + ∂sbk(xk
′)N

+ (1− bk)
(
〈xk′,∇svk〉vk〈xk′, vk〉∇svk

)
+ 1

2 (∇2
sτk)T

+K
1− ak
|τk|2

(∇2
sτk)N + ∂s

(
K

1− ak
|τk|2

)
(∇sτk)N

+
(

1
2 −K

1− ak
|τk|2

)
(〈∇sτk,∇svk〉vk + 〈∇sτk, vk〉∇svk),

with the notation conventions f (−)k+1 ◦ . . . ◦ f
(−)
k−1 := Id,∑n−1

`=n := 0 and with the maps

∇a
(
f
(−)
k

)
(w) = (∇afk)(−)(w) + fk

(
R(Zk, τk)(wk+1

‖)
)
,

∇a
(
g
(−)
k

)
(w) = (∇agk)(−)(w) + gk

(
R(Zk, τk)(wk+1

‖)
)
,
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∇s
(
gk
−1)(w) = ∂s|qk|−1|qk|gk−1(w) +|qk|−1∂s(b−1k )wN

+ |qk|−1
(
1/2− b−1k

)(
〈w,∇svk〉vk + 〈w, vk〉∇svk

)
,

and

Zk = Jk
T + bkJk

N + 1
2∇aτk

T +K
1− ak
|τk|2

∇aτkN .

Proof For all a ∈ (−δ, δ), α(a, ·) verifies the geodesic
equations (20). Taking the covariant derivative of these
equations according to a we obtain

∇a∇s∂sx0 (45)

+
1

n

n−1∑
k=0

∇a
(
f
(−)
0 ◦ · · · ◦ f (−)k−1

(
R(qk,∇sqk)∂sxk

))
= 0,

∇a∇2
sqk +

1

n

n−1∑
`=k+1

∇a
(
g
(−)
k ◦ f (−)k+1 ◦ · · · (46)

◦ f (−)`−1
(
R(q`,∇sq`)∂sx`

))
= 0.

Since for a = 0, ∇a∇s∂sx0 = ∇2
sJ0 +R(J0, ∂sx0)∂sx0,

we get

∇2
sJ0 = R(∂sx0, J0)∂sx0

− 1

n

n−1∑
k=0

∇a
(
f
(−)
0 ◦ · · · ◦ f (−)k−1

(
R(qk,∇sqk)∂sxk

))
,

and the differentiation

∇a
(
f
(−)
0 ◦ · · · ◦ f (−)k−1(Rk)

)
= f

(−)
0 ◦ · · · ◦ f (−)k−1(∇aRk)

+

k−1∑
`=0

f
(−)
0 ◦ · · · ◦ ∇a

(
f
(−)
`

)
◦ · · · ◦ f (−)k−1(Rk)

gives the desired equation for ∇2
sJ0. Now we will try

to deduce ∇2
sJk+1 from (46). If Jk+1

‖(s) denotes the
parallel transport of the vector Jk+1(s) from xk+1(s)

back to xk(s) along the geodesic that links them, we
know from (40) that

Jk+1
‖ = fk(Jk) +

1

n
gk(∇aqk). (47)

We also know from (38) that

(∇sJk+1)‖ = ∇s(Jk+1
‖) +R(τk, Yk)(Jk+1

‖), (48)

and by iterating

(∇2
sJk+1)‖ = ∇s

(
(∇sJk+1)‖

)
+R

(
τk, Yk

)(
(∇sJk+1)‖

)
= ∇2

s(Jk+1
‖) +∇s

(
R(τk, Yk)(Jk+1

‖)
)

+R
(
τk, Yk

)(
(∇sJk+1)‖

)

Developping and injecting Equation (47) in the latter
gives

(∇2
sJk+1)‖ = ∇2

s

(
fk(Jk)

)
+

1

n
∇2
s

(
gk(∇aqk)

)
+R(∇sτk, Yk)(Jk+1

‖) +R(τk,∇sYk)(Jk+1
‖)

+R(τk, Yk)(R(Yk, τk)(Jk+1
‖))

+ 2R
(
τk, Yk

)(
(∇sJk+1)‖

)
.

Developping the covariant derivatives ∇2
s

(
fk(Jk)

)
and

∇2
s

(
gk(∇aqk)

)
gives the desired formula. Now let us ex-

plicit the different terms involved in these differential
equations. Since ∇R = 0 and ∇a∂sxk = ∇s∂axk, we
have

∇aRk = R(∇aqk,∇sqk)∂sxk +R(qk,∇a∇sqk)∂sxk

+R(qk,∇sqk)∇sJk
= R

(
∇aqk,∇sqk

)
xk
′ +R

(
qk,∇s∇aqk

+R(J, xk
′)qk

)
xk
′ +R

(
qk,∇sqk)∇sJk.

By taking the inverse of (47) we get

∇aqk = ng−1k
(
Jk+1

‖ − fk(Jk)
)
,

and taking the derivative according to s on both sides
and injecting Equation (48) gives

∇s∇aqk = n gk
−1((∇sJk+1)‖ +R(Yk, τk)(Jk+1

‖)

−∇sfk(Jk)− fk(∇sJk)
)

+ n∇s
(
gk
−1)(Jk+1

‖ − fk(Jk)
)
.

To obtain ∇2
s∇aqk, notice that

∇2
s∇aqk

= ∇s∇a∇sqk +∇s
(
R(∂sxk, Jk)qk

)
,

= ∇a∇2
sqk +R(∂sxk, Jk)∇sqk +∇s

(
R(∂sxk, Jk)qk

)
,

and injecting Equation (46) with

∇a
(
g
(−)
k ◦ f (−)k+1 ◦ · · · ◦ f

(−)
`−1(R`)

)
= g

(−)
k ◦ f (−)k+1 ◦ · · · ◦ f

(−)
`−1(∇aR`)

+

`−1∑
j=k

g
(−)
k ◦ · · · ◦ ∇a

(
f
(−)
j

)
◦ · · · ◦ f (−)`−1(R`),

gives us the desired formula. ∇sYk results from simple
differentiation, and differentiating the maps f (−)k and
g
(−)
k with respect to a is completely analogous to the
the computations of Lemma 3. Finally, the inverse of
gk is given by gk−1 : Txk

M → Txk
M ,

gk
−1 : w 7→ |qk|−1

(
b−1k w +

(
1
2 − b

−1
k

)
wT
)
,

and since

∇s(wT ) = (∇sw)T + 〈w,∇svk〉vk + 〈w, vk〉∇svk,
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it is straightforward to verify that

∇s
(
gk
−1)(w) = ∇s

(
gk
−1(w)

)
− gk−1(∇sw)

gives

∇s
(
gk
−1)(w)=∂s|qk|−1|qk|gk−1(w)+|qk|−1∂s(b−1k )wN

+ |qk|−1
(
1/2− b−1k

)(
〈w,∇svk〉vk + 〈w, vk〉∇svk

)
.
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