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THE PHASE RETRIEVAL PROBLEM FOR SOLUTIONS

OF THE HELMHOLTZ EQUATION

PHILIPPE JAMING & SALVADOR PÉREZ-ESTEVA

Abstract. In this paper we consider the phase retrieval problem
for Herglotz functions, that is, solutions of the Helmholtz equation
∆u + λ2u = 0 on domains Ω ⊂ Rd, d ≥ 2. In dimension d = 2, if
u, v are two such solutions then |u| = |v| implies that either u = cv

or u = cv̄ for some c ∈ C with |c| = 1. In dimension d ≥ 3, the
same conclusion holds under some restriction on u and v: either
they are real valued or zonal functions or have non vanishing mean.

1. Introduction

The phase retrieval problem consists in reconstructing a function
from its modulus or the modulus of some transform of it (frame coef-
ficient, Fourier transform,...) and some structural information on the
function (e.g. to be compactly supported). This kind of problems
occur in many scientific fields such as microscopy, holography, crystal-
lography, neutron radiography, optical coherence tomography, optical
design, radar signal processing , quantum mechanics to name a few. We
refer to the books [Hu, St], the review articles [KST, Mi, Fi, LBL] and
to the introduction of our previous paper [Ja] for descriptions of various
instances of this problems, some solutions to it (both theoretical and
numerical) and for further references.
The problem can be split into two main questions:
– design algorithms that allow to reconstruct at least one solution.
– obtain uniqueness results (up to obvious invariants of the problem

like the multiplication by a constant phase factor).
After having long been ignored by mathematicians, recent progress

on the algorithmic aspect of the problem [CSV, WdAM] has triggered
a lot of attention to this problem. While the design of numerical algo-
rithms allowing to reconstruct one solution is of course essential, the
task can only be complete once one is certain to reconstruct all solu-
tions of interest. This is generally not possible as long as uniqueness
is not guarantied and plainly justifies the second part of the problem.
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Uniqueness is also usefull in order to have stability results in presence
of additive noise. In this paper, we will only deal with the uniqueness
aspect of the problem. More precisely, the phase retrieval problem is
extremely common in optical sciences, among other reasons, this is due
to the lack of sensitivity of optical measurement instruments to phase.
It turns out that optical signals are solution of partial differential equa-
tions and our aim is to show that this information can be of some use in
the phase retrieval problem. In our previous work [Ja], we considered
solutions of the free Shrödinger equation. Our aim here is to pursue
a similar study for solutions of the Helmholtz equation ∆u + λ2u = 0
in a domain Ω ⊂ Rd, d ≥ 2 where by domain we mean an open con-
nected subset of Rd. Recall that this equation is obtained by reducing
the wave equation to monochromatic waves and that |u|2 when u is a
solution of this equation is the intensity of the monochromatic wave
and does not vary with time. Note also that a different version of the
phase retrieval problem for solutions of the Helmholtz equation has
been recently studied in [KS, Kl1, Kl2, KR2] and for the Shrödinger
equation in [KR1] and references therein.
Finally, note that, up to a renormalization, we may restrict attention

to the case λ = 1. Up to a translation, we may also assume that 0 ∈ Ω.
We are thus concerned with the following problem:

Phase Retrieval Problem for the Helmholtz Equation. Let

d ≥ 2 and 0 ∈ Ω ⊂ Rd be a domain. Let u, v be two solutions of the

Helmholtz equation on Ω

(H) ∆u+ u = 0.

Does |v| = |u| imply that v = cu or v = cū for some c ∈ C with |c| = 1.

Of course, if v = cu or v = cū then v is also a solution of (H) and
|v| = |u|. We will say that v is a trivial solution of the phase retrieval
solution for u. This problem, as stated still eludes us. Our aim here is
to show that, in many instances, the problem has only trivial solutions.
Our main result is then the following:

Main Theorem. Let d ≥ 2 and 0 ∈ Ω ⊂ Rd be a domain. Let u, v be

two solutions of the Helmholtz equation on Ω

∆u+ u = 0 , ∆v + v = 0

on Ω. Assume one of the following holds

— u and v are real valued;

— u has non-zero mean;

— The dimension is d = 2;
— d ≥ 3 and u, v are zonal functions.
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Then there exists a constant c ∈ C such that either v = cu on Ω or

v = cū on Ω i.e. v is a trivial solution of the phase retrieval problem.

Recall that a zonal function is a function of the form ϕ(〈x, x0〉). Such
functions are sometimes also called ridge functions.

The remaining of this paper is organized as follows: in the next sec-
tion, we gather all information we need about spherical harmonics and
Bessel function and then reformulate the problem in terms of spherical
harmonic coefficients. The remaining of the paper is then devoted to
the proofs of the various statements of the main theorem, Section 4
is devoted to the 2-dimensional cases and Section 3 to the other three
cases.

2. Preliminaries

2.1. Notations. Throughout this paper, d is an integer, d ≥ 2. The

Euclidean norm in Rd is denoted by |x| =
(
x21+ · · ·+x2d

)1/2
and we set

Sd−1 = {x ∈ Rd : |x| = 1}. We denote the standard basis of Rd by
e1, . . . , ed.
We denote by N0 the set of non-negative integers, N = N0∪{0}. For

α ∈ Nd
0 we use the standard multi-index notation, |α| = α1 + · · ·+ αd

and ∂α = ∂α1

x1
· · ·∂αd

xd
. The Laplace operator is defined by ∆ =

d∑

j=1

∂2xj .

2.2. Spherical harmonics. Let us here gather some information on
spherical harmonics as can be found in many books in harmonic anal-
ysis. We will here take the notations from [FD, Chapter 1].
We denote by Pd

m the space of homogeneous polynomials of degree
m in Rd and

Hd
m = {P ∈ Pd

n : ∆P = 0}
the space of harmonic homogeneous polynomials of degree n in Rd. Re-

call that this space has dimension N(m) =

(
m+ d− 1

m

)
−
(
m+ d− 3

m− 2

)

with the standard convention that the second term vanishes for m = 0
and m = 1. In particular N(0) = 1, and for m ≥ 1, N(m) = 2 when
d = 2 while N(m) = 2m+ 1 when d = 3
We will not distinguish homogeneous polynomials and their restric-

tion to Sd−1. In particular, Hd
m and Hd

n are orthogonal subspaces of
L2(Sd−1) when n 6= m.
Recall the following definition:
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Definition 2.1. A function f on Rd or Sd−1 is said to be zonal with
respect to some ζ0 ∈ Sd−1 if there exists a function f0 on R such that
f(x) = f0(〈x, ζ0〉).
Such functions can be described in terms of a so-called zonal basis:

Y j
m(θ) = Cd/2−1

m (
〈
θ, ζjm

〉
)

where {ζjm, m ≥ 0, j = 1, . . . , N(m)} ⊂ Sd−1, ζ1m = ζ0 for every m and
Cλ
m is the Gegenbauer polynomial of degree m and parameter λ are

given by

Cλ
m(z) =

⌊m/2⌋∑

k=0

(−1)k
Γ(m− k + λ)

Γ(λ)k!(m− 2k)!
(2z)m−2k.

For the existence of such a basis, see e.g. [FD, Theorem 3.3]. A zonal
function has then an expension in L2(Sd−1) in terms of (Y 1

m)m≥0 only: f
is zonal with respect to ζ0 if and only if f =

∑
m≥0 am(f)Y

1
m. A zonal

basis need not be orthogonal however, the orthogonality property of
the Hd

m’s show that there is no convergence issue in L2(Sd−1). Those
basis have the very desirable property for our problem to be real valued.
We also recall that the zonal basis is extended to Rd by homogeneity,

Y j
m(x) = |x|mCd/2−1

m

(〈
x
|x|
, ζjm

〉)
.

We will need the following simple Lemma:

Lemma 2.2. Let m,n, d be integers, m,n ≥ 1, d ≥ 3 λ = d/2 − 1,
a, b ∈ C \ {0}, ζ1, ζ2 ∈ Sd−1. Assume that aCλ

m(〈θ, ζ1〉)2 = bCλ
n(〈θ, ζ2〉)2

then m = n, ζ2 = ±ζ1 and a = b.

Proof. Let ζ3, ζ4 ∈ Sd−1 be such that

(i) ζ1, ζ3, ζ4 are form an orthonormal basis of its span;
(ii) ζ2 ∈ span{ζ1, ζ3}.
Write ζ2 = cosϕζ1 + sinϕζ3 with ϕ ∈ [0, 2π), so that we want to

show that ϕ = 0 or ϕ = π.
Let θ = cos s

(
cos tζ1+sin tζ3

)
+sin sζ4 ∈ Sd−1 then 〈θ, ζ1〉 = cos t cos s

while 〈θ, ζ2〉 = cos(t−ϕ) cos s and aCλ
m(〈θ, ζ1〉)2 = bCλ

n(〈θ, ζ2〉)2 reduces
to

(2.1) aCλ
m

(
cos t cos s

)2
= bCλ

n

(
cos(t− ϕ) cos s

)2
.

As powers of the function cosx are linearly independent, it remains
to look at the highest order term in cos s to see that (2.1) implies

a

(
2mΓ(m+ λ)

m!

)2

cos2m t = b

(
2nΓ(n+ λ)

n!

)2

cos2n(t − ϕ).
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Using again the linear independence of powers of cos, this implies
that m = n and thus reduces to

a cos2m t = b cos2m(t− ϕ).

As

22m cos2m t = (eit + e−it)2m =
2m∑

j=0

(
2m

j

)
ei(2m−2j)t

we get a = be−i(2m−2j)ϕ for j = 0, . . . , 2m. Therefore a = b and ϕ = 0
or ϕ = π that is ζ2 = ±ζ1. �

Remark 2.3. Note that if m = 0 or if a = 0, we get a = b but, of course,
we can not conclude that ζ2 = ±ζ1.
From e.g. [FD, Theorem 1.9], we can construct another real valued

basis for d ≥ 3. If α ∈ Nd
0 is obtained as follows: α ∈ Nd

0, |α| = m

(2.2) pα(x) =
(−1)m

2m
(
d−2
2

)
m

|x|d−2+2m∂α|x|−d+2 = xα + |x|2qα(x)

with qα an homogeneous polynomial of degree m− 2 (when m = 0 or
1, qα = 0). Then

{pα : α ∈ Nd
0, |α| = m, αd = 0 or 1}

is a basis of Hd
m, that is not orthonormal.

For j = 0 or j = 1, let us write N j
m = {α ∈ Nd

0, |α| = m, αd = j},
and write Nm = N 0

m ∪N 1
m.

Lemma 2.4. For every integer m ≥ 0, the set of polynomials

{p2α : α ∈ Nd
0, |α| = m, αd = 0 or 1}

is linearly independent.

Proof. Note that p2α = x2α + 2xα|x|2qα(x) + |x|4qα(x)2. Assume that
(2.3)∑

α∈Nm

λαp
2
α =

∑

α∈Nm

λαx
2α + 2|x|2

∑

α∈Nm

λαx
αqα + |x|4

∑

α∈Nm

λαq
2
α = 0.

In this sum, the terms
∑

α∈N 0
m

λαx
2α are clearly linearly independent from

from all other terms (since x2ed factors in them), thus
∑

α∈N 0
m

λαx
2α = 0

and finally λα = 0 if αd ∈ N 0
m. But then (2.3) reduces to

x2ed
∑

α∈N 1
m

λαx
2α−2ed + 2|x|2xed

∑

α∈N 1
m

λαx
α−edqα + |x|4

∑

α∈N 1
m

λαq
2
α = 0.
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Again, the first term is linearly independent from the two others, thus∑

α∈N 1
m

λαx
2α−2ed = 0 and finally λα = 0 for α ∈ N 1

m as well. �

2.3. Bessel functions. Here we gather some basic facts about Bessel
functions (of integral order) that can be found e.g. in [AS] and [Wa].
Let n ≥ 0 be an integer and α > 0. Recall that the Bessel function

Jn+a can be defined via the power series

Jn+α(r) =
(r
2

)n+α ∞∑

k=0

(−1)k

k!Γ(n+ α + k)

(r
2

)2k
.

Alternatively

J0(r) =
1

π

∫ π

0

cos(r sin θ) dθ

and, for n ≥ 1,

Jn(r) =
2rn√

π2nΓ(n+ 1/2)

∫ 1

0

(1− t2)n−1/2 cos(rt) dt.

Finally, recall that for a negative integer n < 0, we may define Jn =
(−1)nJ−n.
From these expressions, one immediately deduces that |J0(r)| ≤ 1

and, for n ∈ Z \ {0}

|Jn+α(r)| ≤
2√

πΓ(n+ α + 1/2)

(r
2

)n+α
.

In particular, if (an) ∈ ℓ2(Z), the series
∑

n∈Z

anJn(r)

is uniformly convergent over every bounded interval. Moreover, all
formal computations that we will use are directly justified with these
estimaes.
Next, if n,m ∈ N0, then (see [AS, Formula 9.1.14], [Wa, p 147])

(2.4) Jn+α(r)Jm+α(r) =
(r
2

)n+m+2α

∞∑

k=0

(−1)kΓ(n+m+ 2a+ 2k + 1)

Γ(n+ a+ k + 1)Γ(m+ a+ k + 1)Γ(n+m+ 2a+ k + 1)

(r
2

)2k
.

As a consequence, Jn(r)Jm(r) ∼ rn+m+2α when r → 0. Moreover, using
the pointwise bound of Jn, we see that if (cn,m)n,m≥0 is of moderate
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growth then

r−2α
∑

n,m≥0

cn,mJn+α(r)Jm+α(r)

is holomorphic in a neighborhood of 0. Moreover if, for some η > 0
and for 0 ≤ r < η,

∑

n,m≥0

cn,mJn+α(r)Jm+α(r) = 0

then, for every j ≥ 0,
∑

n+m=j cn,mJn+α(r)Jm+α(r) = 0. But then,

using [Wa, p150]:

Jn+α(r)Jm+α(r) =
2

π

∫ π/2

0

Jn+m+2α(2r cos θ) cos(n−m)θ dθ

we have

0 =

∫ π/2

0

Jj+2α(2r cos θ)

(
j∑

n=0

cn,j−n cos(2n− j)θ

)
dθ

= rj+2α
∞∑

k=0

(−1)k

k!Γ(j + 2α + k)!
r2k

×
∫ π/2

0

(
j∑

n=0

cn,j−n cos(2n− j)θ

)
cosj+2k θ dθ.

It follows that, for every j, k ≥ 0,

j∑

n=0

cn,j−n

∫ π/2

0

cos(2n− j)θ cosj+2k θ dθ = 0

that we rewrite
(2.5)
∫ π/2

0


cosj θ

∑

0≤n≤j/2

cn,j−n + cj−n,n
2

cos(2n− j)θ


 (cos2 θ)k dθ = 0.

We will now use the following simple lemma:

Lemma 2.5. Let f : [a, b] → [0, 1] be C1, strictly monotonic and onto,
then {fk}k∈N is dense in L2[a, b].

Proof. According to Hahn-Banach’s, it is enough to show that, if ϕ ∈
L2[a, b] is such that

(2.6)

∫ b

a

ϕ(s)fk(s) ds = 0
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for every k ≥ 0 then ϕ = 0. But
∫ b

a

ϕ(s)fk(s) ds =

∫ 1

0

ϕ
(
f−1(t)

)

f ′
(
f−1(t)

)tk dt

thus, (2.6) implies that

∫ 1

0

ψ(t)tk dt = 0 for every k ≥ 0 where ψ(t) =

ϕ
(
f−1(t)

)

f ′
(
f−1(t)

) . As {tk}k∈N in L2[0, 1], we get ψ = 0 thus ϕ = 0. �

Applying Lemma 2.5 to (2.5) implies that, for every j ≥ 0 and every
θ ∈ (0, π/2)

cosj θ
∑

0≤n≤j/2

cn,j−n + cj−n,n
2

cos(2n− j)θ = 0.

This implies that for every j ≥ 0 and every 0 ≤ n ≤ j, cn,j−n+cj−n,n =
0. We have thus proved the following lemma:

Lemma 2.6. Let α, η > 0. Let (cn,m)n,m≥0 be a sequence with at most
polynomial growth. The following are equivalent:

(i) for every 0 ≤ r < η,
∑

n,m≥0

cn,mJn+α(r)Jm+α(r) = 0.

(ii) for every j ≥ 0 and every 0 ≤ k ≤ j, ck,j−k + cj−k,k = 0.

We will apply this lemma in the form
∑

n,m≥0

cn,mJn+α(r)Jm+α(r) =
∑

n,m≥0

c̃n,mJn+α(r)Jm+α(r)

if and only if, for every j ≥ 0 and every 0 ≤ k ≤ j, ck,j−k + cj−k,k =
c̃k,j−k + c̃j−k,k.

2.4. Reduction of the problem. Let us first make the following ob-
servation: solutions of the Helmholtz equation are real analytic in Ω, a
connected set. Therefore, if u = cv (resp. u = cv̄) in a ball B(0, ε) ⊂ Ω,
then u = cv (resp. u = cv̄) in the whole of Ω. We may thus assume
that Ω is a ball centered at 0.
We will now need to describe the solutions of

(H) ∆u+ u = 0

in polar coordinates. As is well known and easily shown, in a neigh-
borhood B(0, ε) ⊂ Ω of 0, a solution u of (H) can be expanded as a
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series

(2.7) u(rθ) ∼ (2π)1/2r−(d−2)/2

∞∑

m=0

N(m)∑

j=1

am,j(u)Jν(m)(r)Y
j
m(θ)

where ν(m) = m + (d − 2)/2 and {Y j
m}j=1,...,N(m) is a basis for the

spherical harmonics of degree m in Rd.
Throughout the remaining of this section, u, v will be two solutions

of (H) in Ω such that |u| = |v|.
Now (2.7) implies

(2.8) |u(rθ)|2 = 2π

rd−2

∞∑

m,n=0

cm,n(u)Jm+ d−2

2

(r)Jn+ d−2

2

(r)

where

cm,n(u) =

N(m)∑

j=1

N(n)∑

k=1

am,j(u)an,k(u)Y
j
m(θ)Y

k
n (θ).

Note that cm,n(u) = cn,m(u). Therefore, Lemma 2.6 implies that |u| =
|v| is equivalent to ℜ

(
cm,n−m(u)

)
= ℜ

(
cm,n−m(v)

)
for all 0 ≤ m ≤ n.

Finally, replacing n by n+m and using the symmetry cn,m(u) = cm,n(u),
we obtain the following:

Lemma 2.7. Let d ≥ 2 and 0 ∈ Ω ⊂ Rd. Let u, v be two solutions
of the Helmholtz equation (H) on Ω. Then |u| = |u| if and only if for
every 0 ≤ m ≤ n

(2.9) ℜ
(
cm,n(u)

)
= ℜ

(
cm,n(v)

)
.

Note that cm,m(u) =

∣∣∣∣∣∣

N(m)∑

k=1

am,k(u)Y
k
m(θ)

∣∣∣∣∣∣

2

. In particular,

(2.10) ℜ
(
cm,m(v)

)
= ℜ

(
cm,m(v)

)

is the classical phase retrieval problem for trigonometric polynomials.
We are thus facing a family of classical phase retrieval problems (2.10)
with compatibility relations ℜ

(
cm,n(v)

)
= ℜ

(
cm,n(v)

)
, n 6= m.

The main difference between the 2 dimensional problem and the
higher dimensional one is that the 2 dimensional one has only trivial
solutions (for fixed m). We will show that the compatibility relations
imply that the same trivial solution has to be chosen independently of
m.
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Further, if {Y k
m}k=1,...,N(m) is an orthonormal basis of Hd

m then, inte-
grating over Sd−1 and using orthogonality, we obtain

(2.11)

N(m)∑

k=1

|am,k(u)|2 =
N(m)∑

k=1

|am,k(v)|2.

As a consequence if u is a trigonometric polynomial in the sense that
{am,j(u)} has finite support, so has {am,j(v)} and v is also a trigono-
metric polynomial. We have thus proved the following lemma:

Lemma 2.8. Let d ≥ 2 and 0 ∈ Ω ⊂ Rd. Let u, v be two solutions of
the Helmholtz equation (H) on Ω.
Assume that u is a trigonometric polynomial (K-finite) in the sense

that its expansion in spherical harmonics (2.7) has only finitely many
terms. If |u| = |v|, then v is also a trigonometric polynomial.

3. The case of dimension d ≥ 3

3.1. The real case. Let us now start by showing that the problem
is very simple if one restricts it to real valued solutions. In this case,
|u| = |v| is equivalent to u2 = v2 thus (u− v)(u+ v) = 0. Thus, one of
u = v or u = −v occurs on a set of positive measure and, as u, v are
analytic, either u = v or u = −v.
According to [Le, Sj], (see also [JK]) in dimension d = 2, and to [GJ]

for general dimension, solutions of the Helmholtz equation in Rd are
uniquely determined by their restriction to two generic hyperplanes. It
follows from [FBGJ] that this result also holds for solutions on domains.
Those results extend to the phase retrieval problem as follows:

Proposition 3.1. Let d ≥ 2 and 0 ∈ Ω ⊂ Rd. Let u, v be two solutions
of the Helmholtz equation (H) on Ω. Let θ1, θ2, θ3 ∈ Sd−1 and assume
that 1

π
arccos 〈θj , θk〉 /∈ Q when j 6= k ∈ {1, 2, 3}. Assume that

— u, v are real valued;
— |u| = |v| on the hyperplanes Ω ∩ θ⊥j , j = 1, 2, 3 (a fortiori if

|u| = |v| on Ω).
Then either u = v or u = −v.

Proof. As we have already noticed, we have (u − v)(u + v) = 0 on
Ω∩ θ⊥j . Therefore, for each j = 1, 2, 3 at least one of the following two
cases holds
— either u = v on a subset of Ω ∩ θ⊥j of positive d − 1-dimensional

Lebesgue measure on the hyperplane, thus by analicity, on Ω ∩ θ⊥j ;
— or u = −v on Ω ∩ θ⊥j .
We thus have 2 cases to consider
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— either u = v on at least 2 of θ⊥j , j = 1, 2, 3.

— or u = −v on at least 2 of θ⊥j , j = 1, 2, 3.
Up to replacing v by −v the second case reduces to the first one so

that we can assume that u = v on θ⊥1 , θ
⊥
2 . According to [FBGJ], this

implies u = v everywhere. �

3.2. Solutions of the Helmholtz equation with non vanishing

mean in dimension d ≥ 3. In this section, the basis of spherical
harmonics will be the real basis given by (2.2).

Theorem 3.2. Let d ≥ 3 and 0 ∈ Ω ⊂ Rd be a domain. Let u, v be
two solutions of the Helmholtz equation (H) on Ω. Assume that

∫

Sd−1

u(ηθ) dσ(θ) 6= 0

for some η > 0 such that B(0, η) ⊂ Ω and Jd/2−1(η) 6= 0.
If |v| = |u| then there exists c ∈ C with |c| = 1 such that, either

u = cv or u = cv.

Proof. As Y 1
0 = 1 and all other spherical harmonics have vanishing

spherical means,

a0,1(u) =
ηd/2−1

√
2πσ(Sd−1)Jd/2−1(η)

∫

Sd−1

u(ηθ) dσ(θ) 6= 0

is, up to a multiplicative constant, the mean of u over ηSd−1. But,
(2.9) for m = n = 0 reduces to |a0,1(v)|2 = |a0,1(u)|2. In particular,
v as non-zero mean as well. Further, up to changing u and v by uni-
modular multiples, we may then assume that a0,1(u) = a0,1(v) and that
this quantity is real.

Next, note that c0,n(u) =

N(n)∑

k=1

a0,1(u)an,k(f)Y k
n (θ) since Y 1

0 (θ) = 1.

Thus

ℜ
(
c0,n(u)

)
= a0,1(u)

N(n)∑

k=1

ℜ
(
an,k(u)

)
Y k
n (θ)

As the Y k
n ’s are linearly independent, (2.9) for m = 0 implies that

ℜ
(
an,k(v)

)
= ℜ

(
an,k(u)

)

thus ℜ(v) = ℜ(u).
As |v|2 = |u|2 we deduce that |Im (v)|2 = |Im (u)|2. But Im u, Im v

are real solutions of the Helmholtz equation. Proposition 3.1 then im-
plies that

either Im v = Im u or Im v = −Im u,
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that is v = u or v = ū. �

3.3. The sparse case and the zonal cases in dimension d ≥ 3.
In this section, d ≥ 3 and we fix an orthonormal basis of spherical
harmonics

{Y j
m}m≥0,j=1,...,N(m)

that is either zonal or is of the form (2.2). In particular, it is real and
has the property that if a(Y j

m)
2 = b(Y k

n )
2 on Sd−1, then m = n, j = k

and b = a. For the zonal basis this is due to Lemma 2.2 and is a
consequence of Lemma 2.4 for the other basis.

Definition 3.3. We will say that u ∈ L2(Sd−1) is sparse (in the basis
{Y m

j }) if, for every m there exists at most one j = j(m) such that
am,j(u) 6= 0.

Example 3.4. A zonal function is sparse in a zonal basis.

Proposition 3.5. Let d ≥ 3 and 0 ∈ Ω ⊂ Rd be a domain. Let u, v be
two solutions of the Helmholtz equation (H) on Ω.
Assume that both u and v are sparse in a common real orthonormal

basis of spherical harmonics {Y j
m, m ≥ 0, 0 ≤ j ≤ N(m)}. If |v| = |u|

then there exists a c ∈ C with |c| = 1 such that either v = cu or v = cu.

Proof. Let u, v be two sparse functions:

u(rθ) =

√
2π

rd/2−1

∑

m≥0

am,j(m)(u)Jν(m)(r)Y
j(m)
m (θ)

and

v(rθ) =

√
2π

rd/2−1

∑

m≥0

am,k(m)(v)Jν(m)(r)Y
k(m)
m (θ)

and assume that |u| = |v|. Note that some of the am,j(m)(u)’s may still
be zero. For simplicity, we set j(m) = 1 when am,j(u) = 0 for all j and
k(m) = 1 when am,k(v) = 0 for all k.
First, (2.9) for n = m implies that

∣∣am,j(m)(u)
∣∣2(Y j(m)

m

)2
=
∣∣am,k(m)(v)

∣∣2(Y k(m)
m

)2
.

This implies that k(m) = j(m), i.e that am,k(u) and am,k(v) have same
support, and that

∣∣am,j(m)(u)
∣∣ =

∣∣am,j(m)(v)
∣∣.

Let M = {m ≥ 0 : am,j(m)(u) 6= 0} and m0 = minM. Then,
up to replacing u, v by unimodular multiples, with may assume that
am0,j(m0)(u) = am0,j(m0)(v) is real (and non zero).
Next, note that, for m ∈ M,

cm,n(u) = am,j(m)(u)an,j(n)(u)Y
j(m)
m (θ)Y j(n)

n (θ)
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and similarily

cm,n(v) = am,j(m)(v)an,j(n)(v)Y
j(m)
m (θ)Y j(n)

n (θ)

Further, Y
j(m)
m (θ)Y

j(n)
n (θ) is a non-zero real polynomial. Thus (2.9)

reduces to

ℜ
(
am,j(m)(u)an−m,j(n−m)(u)

)
= ℜ

(
am,j(m)(v)an−m,j(n−m)(v)

)

for every 0 ≤ m ≤ n. Taking m = m0 and n = 2m0 + k we get

ℜ
(
am0+k,j(m0+k)(u)

)
= ℜ

(
am0+k,j(m0+k)(v)

)
.

It follows that ℜ(u) = ℜ(v) and, as in the previous proof, this implies
that either u = v or u = v̄. �

4. The 2 dimensional case

In this section, we will specifically treat the 2 dimensional case for
which uniqueness is guarantied:

Theorem 4.1. Let 0 ∈ Ω ⊂ R2 be a domain. Let u, v be two solutions
of the Helmholtz equation (H) on Ω be such that |v| = |u|. Then there
exists c ∈ C with |c| = 1 such that either v = cu on Ω or v = cū on Ω.

Proof. A basis of spherical harmonics is given by the usual Fourier basis
{eikθ, k ∈ Z} so that we may write u in polar coordinates as a Fourier
series

u(rθ) =
√
2π
∑

k∈Z

û(k)J|k|(r)e
ikθ.

Note that cm,n(u) =




|û(0)|2 if m = n = 0

û(0)
(
û(−n)e−inθ + û(n)einθ

)
if m = 0, n > 0(

û(−m)e−imθ + û(m)eimθ
)(
û(−n)e−inθ + û(n)einθ

)
if m,n > 0

.

We will now exploit Lemma 2.7, that is ℜcm,n(u) = ℜcm,n(v) for every
0 ≤ m ≤ n.
We have already treated the case û(0) 6= 0 so that we will now assume

that û(0) = 0. This implies that c0,0(v) = c0,0(u) = 0, thus v̂(0) = 0.

Next cm,m(u) =
∣∣û(−m)e−imθ + û(m)eimθ

∣∣2 is real so that

(4.12)
∣∣v̂(−m)e−imθ + v̂(m)eimθ

∣∣2 =
∣∣û(−m)e−imθ + û(m)eimθ

∣∣2

for every m ≥ 1. We thus need the following lemma:
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Lemma 4.2. Let m,n ∈ N. Let a, b, c, d ∈ C be such that, for every
θ ∈ R,

(4.13)
∣∣aeimθ + be−imθ

∣∣2 =
∣∣ceimθ + de−imθ

∣∣2

then there exists κ ∈ C such that either aeimθ + be−imθ = κ
(
ceimθ +

de−imθ
)
for every θ or aeimθ + be−imθ = κ

(
ceimθ + de−imθ

)
for every θ.

Proof of Lemma 4.2. This lemma is folklore in the subject, for sake
of completeness, let us here give the proof. Expanding the square in
(4.13) we see that |a|2 + |b|2 = |c|2 + |d|2 and ab̄ = cd̄. In particular
|a||b| = |c||d|, so that |a|2, |b|2 have same sum and product as |c|2, |d|2.
There are thus two possibilities, either |a| = |c| and |b| = |d| or |a| = |d|
and |b| = |c|. We may thus write a = ceiϕ and b = deiψ (resp. a = d̄eiϕ

and b = c̄eiψ) so that cd̄ei(ϕ−ψ) = cd̄ (resp. cd̄ei(ϕ−ψ) = cd̄). We now
distinguish 3 cases:

(i) If cd̄ 6= 0 then eiϕ = eiψ and the conclusion is straightforward.
(ii) If c = 0 then a = 0 — resp. b = 0— and

aeimθ + be−imθ = eiψde−imθ = eiψ(ceimθ + de−imθ)

— resp. aeimθ + be−imθ = eiϕd̄eimθ = eiϕ(ceimθ + de−imθ).
(iii) If d = 0 then b = 0 — resp. a = 0— and aeimθ + be−imθ =

eiϕ(ceimθ+de−imθ) — resp. aeimθ+be−imθ = eiψ(ceimθ + de−imθ).

The proof of the lemma is thus complete. �

Applying this lemma, we may now distinguish two cases:

Type I. We will say that m is of type I if
(
û(m), û(−m)

)
6= (0, 0) and

if there exists κm ∈ C with |κm| = 1 such that

v̂(−m)e−imθ + v̂(m)eimθ = κm
(
û(−m)e−imθ + û(m)eimθ

)
.

Type C. We will say that m is of type C if
(
û(m), û(−m)

)
6= (0, 0)

and if there exists κm ∈ C with |κm| = 1 such that

v̂(−m)e−imθ + v̂(m)eimθ = κm
(
û(−m)e−imθ + û(m)eimθ

)
.

It should be noted that m can be of both types simultaneously. This
happens precisely when |û(−m)| = |û(m)|, in this case, we may write
û(−m) = e−2iθm û(m) so that

û(−m)e−imθ + û(m)eimθ = e−iθm û(m) cos(mθ + θm).

Type R. We will say that m is of type R if |û(m)| = |û(−m)| 6= 0 and
if there exists κm ∈ C with |κm| = 1, θm ∈ R such that

{
û(−m)e−imθ + û(m)eimθ = e−iθm û(m) cos(mθ + θm)
v̂(−m)e−imθ + v̂(m)eimθ = κme

−iθm û(m) cos(mθ + θm)
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Also,
(
ĝ(m), ĝ(−m)

)
6= (0, 0) if m has a type.

We will now need the following lemma:

Lemma 4.3. Letm 6= n ∈ N. Let a, b, c, d ∈ C be such that (a, b), (c, d) 6=
(0, 0). Let κ, κ′ ∈ C with |κ| = |κ′| = 1. Assume that

ℜ
(
κ′κ̄(aeimθ + be−imθ)(ceinθ + de−inθ)

)

= ℜ
(
(aeimθ + be−imθ)(ceinθ + de−inθ)

)

for every θ ∈ R.

(i) If |a| 6= |b| or |c| 6= |d|, then κ′ = κ.
(ii) If |a| = |b| and |c| = |d|, write b = e−2iϕa, d = e−2iψc and

α = e−iϕa, β = e−iψc. Then either κ′ = κ or κ′ =
αβ

αβ
κ.

Proof of Lemma 4.3. Let us first observe that, if ℜ(uz) = ℜ(z) with
u, z ∈ C, |u| = 1 and z 6= 0 then either uz = z and u = 1 or uz = z̄.
We thus have to prove that the second case only occurs when |a| = |b|

and |c| = |d| and that κ, κ′ are then related by κ′ =
αβ

αβ
κ.

(4.14) κ′κ̄(aeimθ + be−imθ)(ceinθ + de−inθ)

= (aeimθ + be−imθ)(ceinθ + de−inθ)

for a set of positive measure of θ’s thus, by analycity, for all θ.
Expanding and comparing the coefficients of e±imθ±inθ (recall that

m 6= n) this is equivalent to

(i) κ′κ̄ac = bd, (ii) κ′κ̄ad = bc, (iii) κ′κ̄bc = ad and (iv) κ′κ̄bd = ac.

First, if a = 0 (resp. b = 0) then, as b 6= 0 (resp a 6= 0), the two first
equations imply d = c = 0, a contradiction. Thus a 6= 0 and b 6= 0 and
any of the equations then shows that c 6= 0 and d 6= 0 since otherwise
they would both be 0.

Next, (i)/(ii) reads
c

d
=
d̄

c̄
thus |c|2 = |d|2 and comparing modulus

in (i) then shows that |a| = |b|. We then write b = e−2iϕa, d = e−2iψc.
But then, (4.14) reads

κ′κ̄e−i(ϕ+ψ)ac(ei(mθ+ϕ) + e−i(mθ+ϕ))(ei(nθ+ψ) + e−i(nθ+ψ))

= ace−i(ϕ+ψ)(ei(mθ+ϕ) + e−i(mθ+ϕ))(ei(nθ+ψ) + e−i(nθ+ψ))

which reduces to κ′ =
αβ

αβ
κ. �
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As a consequence of the lemma we get that, if m,n are of type I
(resp. of type C) and one of them is not of type R, then κm = κn. We
thus obtain the following:
— either all m are of type R and then

(4.15)





u(rθ) =
√
2π

∞∑

m=1

βmJm(r) cos(mθ + θm)

v(rθ) =
√
2π

∞∑

m=1

κmβmJm(r) cos(mθ + θm)

where βm = û(m)e−iθm and for every m,n for which û(m)û(n) 6= 0,

either κm = κn or κm =
βm
βm

βn

βn
κn.

— or there exists exactly at least one m that is not of type R and at
least one m of type R (thus of type R and C) and then κm = κn := κ
for every m,n and

(4.16)

v(rθ) = κ
√
2π


 ∑

m of type I not R

Jm(r)
(
û(−m)e−imθ + û(m)eimθ

)

+
∑

m of type R

û(−m)e−iθmJm(r) cos(mθ + θm)

+
∑

m of type C not R

Jm(r)
(
û(−m)e−imθ + û(m)eimθ

)

 ;

— or no m is of type R and then there exists κ, κ̃ such that

(4.17) v(rθ) = κ
√
2π

∑

m of type I

Jm(r)
(
û(−m)e−imθ + û(m)eimθ

)

+ κ̃
∑

m of type C

Jm(r)
(
û(−m)e−imθ + û(m)eimθ

)
.

We will now show that in the two last cases one of the type I or
type C sums in (4.16)-(4.17) is empty. This follows from the following
lemma and the fact that ℜcm,n(v) = ℜcm,n(u) with m of type I but not
R and n of type C but not R:
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Lemma 4.4. Let m 6= n ∈ N. Let a, b, c, d ∈ C be such that (a, b) 6=
(0, 0) and (c, d) 6= (0, 0). Let κ, κ′ ∈ C with |κ| = |κ′| = 1. If

ℜ
(
κ′κ̄(aeimθ + be−imθ)(ceinθ + de−inθ)

)

= ℜ
(
(aeimθ + be−imθ)(ceinθ + de−inθ)

)

for every θ ∈ R then |c| = |d|.
We postpone the proof of the lemma to the end of the proof of

the theorem. Let us first conclude with the first case (4.15). Let

m0 = inf{m : βm 6= 0} and let κ̃m0
=

βm0

βm0

κm0
. We may then write

M0 := {m : βm 6= 0, κm = κm0
}, M1 := {m : βm 6= 0, κm 6= κm0

}. If
M1 = ∅ then g = κm0

f otherwise let m1 = minM1. Then for every
m ∈ M1, κmβm = κ̃m0

βm. Further, if n ∈ M0 and m ∈ M1 then
κn 6= κm thus

κnβn = βn
βmκm

βm
= κ̃m0

βn.

But then

g(θ) = κm0

∑

m∈M0

βm cos(mθ + θm) + κ̃m0

∑

m∈M1

βm cos(mθ + θm)

= κ̃m0

∑

m≥1

βm cos(mθ + θm) = κ̃m0
f.

�

Proof of Lemma 4.4. We will use the fact that two complex numbers
of same modulus and same real part are either equal of conjugate of
one an other. Therefore
— either

(4.18) κ′κ̄(aeimθ + be−imθ)(ceinθ + de−inθ)

= (aeimθ + be−imθ)(ceinθ + de−inθ)

– or

(4.19) κ′κ̄(aeimθ + be−imθ)(ceinθ + de−inθ)

= (aeimθ + be−imθ)(ceinθ + de−inθ)

Note that, by analycity, if one of the alternatives holds for a set
of positive measure of θ’s, then it holds for every θ. Further, up to
exchanging the roles of the two factors, (4.19) reduces to (4.18). But,
expanding the factors, we see that this equation is equivalent to

(i) κ′κ̄ad̄ = ac (ii) κ′κ̄ac̄ = ad
(iii) κ′κ̄bc̄ = bd (iv) κ′κ̄bd̄ = bc.
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Now, if c = 0 then d 6= 0 and (i) implies that a = 0 while (iv) implies
b = 0 which is excluded. Using (ii) and (iii) we can also exclude d = 0.
Further (i),(ii) imply that |a||c| = |a||d| while (iii),(iv) imply |b||c| =

|b||d|. As one of a, b 6= 0 we get |c| = |d| which was excluded. �
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