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Robust sensor localization with locally-computed, global H∞-design

Anton Korniienko, Usman A. Khan, and Gerard Scorletti

Abstract

This paper considers sensor localization in Rm, i.e. the problem to find the positions of an arbitrary number of

sensor nodes in the presence of at least m+ 1 anchor nodes, given only the inter-node distances. Assuming that the

sensors lie in the convex hull of the anchors, we provide a linear, continuous-time update at each sensor that uses

barycentric coordinates and Cayley-Menger determinants. In this paper, we consider design enhancements by adding

a dynamic controller in the feed-forward loop of the location estimator at each sensor. We show that the dynamic

controller has the ability to both speed-up the convergence and improve the transient behavior, while ensuring a certain

disturbance rejection that could be introduced by inter-node communication. The design of the local controllers is

based on the input-output approach, H∞ design and does not require the knowledge of global parameters. Simulations

illustrates the concepts described in the paper.

Index Terms

Sensor localization, Robust control, Decentralized control, Control of networks, Sensor fusion.

I. INTRODUCTION

This paper considers sensor localization where the problem is to find the positions of sensors placed in a Euclidean

space, Rm, given a certain number of anchors with perfectly known locations. It is well-known that the localization

problem requires at least m + 1 anchors, in general, given only pairwise distances. However, problems with a

large number of sensors typically require a much higher number of anchors. The literature on localization is

largely based on the well-known triangulation and trilateration principles, see [1] for details, or in some cases,

a combination of both. Centralized localization algorithms include: maximum likelihood estimators, [2]; multi-

dimensional scaling (MDS), [3], [4]; and optimization-based methods, see [5]; for additional work, see [6], [7].

On the other hand, a significant attention is also devoted to distributed localization algorithms that can be

characterized into two classes: multilateration and successive refinements. In multilateration algorithms, [8], [9],

each sensor estimates its distance from the anchors, possibly via multi-hop communication, and then calculates

its location via trilateration. Successive refinement algorithms utilize an iterative optimization of a cost function

and can be found in, e.g., [10]. Reference [11] discusses a Self-Positioning Algorithm (SPA) that provides a

GPS-free positioning and builds a relative coordinate system. Other related work also consists of graph-theoretic

approaches [12], [13], and probabilistic methods, [14], [15].
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name}.{last name} @ec-lyon.fr. Their work is supported by a grant from la Région Rhône-Alpes.
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Of significant relevance to this paper are Refs. [1], [16], where a discrete-time algorithm, named DILOC, is

described assuming that the sensors lie inside the convex hull of at least m+1 anchors in Rm. DILOC is completely

local and distributed: each sensor finds a triangulation set of m+1 neighboring nodes (sensors and/or anchors) such

that the sensor in question lies inside the convex hull of this set. The locations estimates are subsequently updated

as a linear combination of the neighboring locations (estimates) in the triangulation set. The coefficients in this

linear update are the barycentric coordinates, attributed to August F. Möbius, [17]. Assuming that a triangulation set

exists at each sensor, DILOC converges to the true sensor locations. It is important to note that DILOC is linear and

only requires m+ 1 anchors regardless of the number of sensors as long as the deployment (convexity) conditions

are satisfied.

In [18], we provide DILOC-CT that is a continuous-time analog of DILOC and show that by using a proportional

controller in the location estimators, the convergence speed can be increased arbitrarily. Since this increase may

come at the price of unwanted transients especially when there is disturbance introduced by the network, we

consider dynamic controllers that guarantee certain performance and disturbance rejection properties. However, the

controller design in [18] is not local, i.e., it requires all of the barycentric coordinates to be known in order to

compute the controller parameters. In this paper, we describe a distributed control design that is completely local

and only relies on a spectral bound of the matrix of barycentric coordinates. The design in this paper, thus, can be

directly implemented at the sensors and no central computation is required. Our approach is based on H∞ design

principles and uses the input-output approach, see e.g., [19]–[21].

We now describe the rest of the paper. Section II describes the problem and recaps DILOC-CT while Section III

presents the interpretation of the problem under consideration in frequency domain (s-domain). Section IV discusses

the main results on using the input-output approach for the decentralized controller design. Section V illustrates

the concepts and Section VI concludes the paper.

Notation: The superscript, ‘T ’, denotes a real matrix transpose while the superscript, ‘∗’, denotes the complex-

conjugate transpose. The N ×N identity matrix is denoted by IN and the n×m zero matrix is denoted by 0n×m.

The dimension of the identity or zero matrix is omitted when it is clear from the context. The diagonal aggregation

of two matrices A and B is denoted by diag(A,B). The Kronecker product, denoted by ⊗, between two matrices, A

and B, is defined as A ⊗ B = [aijB]. We use Tx→y(s) to denote the transfer function between an input, x(t),

and an output, y(t). With matrix, G, partitioned into four blocks, G11, G12, G21, G22, G?K denotes the Redheffer

product, [22], i.e., G?K = G11 +G12K (I −G22K)
−1
G21. Similarly, K ?G = G22 +G21K (I −G11K)

−1
G12.

For a stable LTI system, G, ‖G‖∞ denotes the H∞ norm of G. For a complex matrix, P , σ̄ (P ) denotes its

maximal singular value while ρ(P ) denotes its spectral radius. Finally, the symbols, ’≥’ and ’>, denote positive

semi-definiteness and positive-definiteness of a matrix, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this paper we consider the problem of Distributed Localization problem in continuous time (DILOC-CT)

see [1], [16], [18], [23] for details. It consists in a network of M sensors, in the set Ω, with unknown locations,



and N anchors, in the set κ, with known locations, all located in Rm, m ≥ 1; let Θ = Ω ∪ κ. Let x∗i ∈ R1×m

denote the true location of the ith sensor, i ∈ Ω; similarly, uj ∈ R1×m, j ∈ κ, for an anchor. We assume that each

sensor knows its distances to the nearby nodes (sensors and/or anchors). The problem is to find the locations of

the sensors in Ω. For this purpose, let xi(t) ∈ R1×m denote the m-dimensional row-vector of sensor i’s location

estimate, where t ≥ 0 is the continuous-time variable. DILOC-CT is given by the following equation, where (t) is

dropped in the sequel for convenience:

ẋi = α(−xi + ri); ri ,
∑

j∈Θi∩Ω

pijxj +
∑

j∈Θi∩κ
bijuj , (1)

where pij’s are the sensor-to-sensor and bij’s are sensor-to-anchor barycentric coordinates and Θi is the triangulation

set at sensor i. Note that Θi may not contain any anchor and all barycentric coordinates are positive and sum to 1.

Let x(t)∈ RM×m (and u(t)∈ R(m+1)×m) denote the matrix regrouping the vectors of sensor (and anchor)

locations, and let P , {pij} and B , {bij}. Since ρ(P ) < 1, it can be shown that the resulting dynamics,

ẋ = −α(I − P )x + αBu , Pαx +Bαu, ∀α > 0 converge to the true sensor locations:

lim
t→∞

x(t) = (I − P )−1Bu = x∗

A. Problem formulation

Towards a more practical system, we consider the received signal at each sensor to incur a zero-mean additive

disturbance, ni(t), whose frequency spectrum lies in the interval, [ω−z , ω
+
z ]. With this disturbance, the location

estimator is given by

ẋi = α(−xi + ri + ni). (2)

We replace the proportional gain, α, with a dynamic controller, K(s); see Fig. 1 leading to the dynamical system, Ts,

at each sensor. We note that the above localization algorithm is linear and in continuous-time, which allow us

to use frequency-based design approach, which has advantages in handling multi-objective specifications and in

treating the disturbance, usually present in High-Frequency (HF) range. The control design problem is to ensure

global stability and global performance expressed in terms of a certain transient behavior, convergence rate, and

disturbance rejection, all at the same time. In this paper, we relax the knowledge of P and B, required for controller

design in [18]. In particular, we propose a controller design not for a given topology, P,B, but for a set of all

topologies bounded in the sense of maximum singular value.

1/sK(s)
xi(t)

ri(t)

Network
yi(t)εi(t)

ni(t)
Ts

Fig. 1. DILOC-CT architecture, see [18].



III. DILOC-CT WITH DYNAMIC CONTROLLER: s-DOMAIN ANALYSIS

Since DILOC-CT is decoupled in the coordinates, each local system, Ts, see Fig. 1, can be analyzed per coordinate

and the same analysis can be extended to other coordinates. Recall that the network location estimate, x(t), is

an M ×m matrix where each column is associated to a location coordinate in Rm. We let x to be an arbitrarily

chosen column of x corresponding to one chosen dimension. Similarly, we let n, r, ε, and y (signals in Fig. 1) to

represent M -dimensional vectors; for any of such vectors, the subscript i denotes the chosen coordinate at sensor i.

Similar to [18], the global system under consideration is described by:

x = (IM ⊗ Ts(s)) rn, (3)
rn

εref

ε

 =


P B IM

−IM (IM − P )−1B 0

P − IM B IM


︸ ︷︷ ︸

H0


x

u

n

 . (4)

where s is Laplace variable, the input vector u ∈ RN represents the anchors position sent to the sensors, n ∈ RM

is the input vector regrouping all sensor disturbance signals ni, x∗ ∈ RM and x ∈ RM are the vectors regrouping

the true and estimated sensor location x∗i and xi. The signal rn ∈ RM : rn , r+ n = Px+Bu+ n, is the vector

regrouping all local sensor inputs rni . The signal εref ∈ RM : εref , x∗ − x = (IM − P )−1Bu− x is the vector

regrouping all sensor localization tracking errors εrefi and the signal ε ∈ RM : ε , rn− x is the vector regrouping

all local sensor errors εi.

The local transfer function, Ts, identical at each sensor. It is complementary sensitivity function related to

sensitivity transfer function S(s) by

Ts(s) =
K(s)

s+K(s)
; S(s) = 1− Ts(s) =

s

s+K(s)
(5)

Given the representation in Eqs. (3) and (4), we have

T
[ un ]→

[
εref

ε

] =
[
T
u→εref

T
n→εref

Tu→ε Tn→ε

]
= (IM ⊗ Ts) ? H0. (6)

Let us define the following global transfer functions:

Sg(s) , Tu→εref (s), T g(s) ,
K(s)

s
Tn→ε(s),

KSg(s) , K(s)Tn→ε(s).

(7)

In [18], we proposed a method for control design, K(s), that ensures the global stability and performance expressed

in terms of frequency-dependent constraints on transfer functions, Sg , T g and KSg . However, as pointed out before,

the control law could be designed only if the interconnection topology, i.e., P and B, is known in advance. In this

paper, we propose an extension of the method in [18] to a set of possible interconnection topologies defined in

terms of maximum singular value on interconnection matrix, P :

σ̄(P ) ≤ γ < 1. (8)



Clearly, the convergence requirement for DILOC-CT, i.e., ρ(P ) < 1, is implied by the above inequality. However,

the conditions for the existence of a dynamic controller that ensures the global stability and performance for all

interconnections satisfying Eq. (8) are potentially more restrictive that only for one given interconnection, P . For

this reason, we propose a reduction that is justified by the following Theorem.

Theorem 1: Consider DILOC-CT described in Fig. 1. If the local dynamic controller, K(s), (i) ensures the global

system stability and (ii) does not contain pure derivative actions, i.e., K(0) 6= 0, then it ensures global tracking

performance, i.e., DILOC-CT converges to the true sensor locations, x∗:

lim
t→∞

x(t) = (I − P )−1Bu = x∗. (9)

Proof: See [23] for the proof.

Based on Theorem 1, and the fact that the speed of convergence is proportional to the static gain of controller,

see [18], we can reduce the global performance transfer function by eliminating the inputs and outputs related to

the tracking performance: u and εref , in Eqs. (4) and (6). We thus obtain the following reduced global system

description:

Tn→ε = (IM ⊗ Ts) ? H1, (10)

where ‘?’ is the Redheffer product, with Ts defined by Eq. (5) and H1 by

H1 =

 P I

P − I I

 .
Hence, the following control design problem can formulated:

Problem 1 (Control problem): Given the global system in Eq. (10), for all possible sensor interconnection topol-

ogy such that, P satisfies Eq. (8), find the local controller, K(s), such that the global system is stable and satisfies

the following frequency constraints:

|K (jω)| ≥ ΩK (ω) , in LF range,

σ (T g (jω)) ≤ ΩT (ω) , in HF range,

σ (KSg (jω)) ≤ ΩKS (ω) , in HF range.

(11)

Furthermore, each sensor should be able to solve the problem locally, i.e., the computation of K is to be performed

at each sensor.

We now briefly explain the frequency constraints. The first constraint, ΩK , ensures zero steady-state error (K(0) 6=

0) and provides a handle on the speed of convergence for each sensor to its true location. The second and third

constraints, ΩT and ΩKS , impose a maximum bandwidth on T g and a maximum gain on KSg , which, in turn, limits

the disturbance amplification by each sensor in high-frequency range. Specifics on these constraints are tabulated

in Table I and are further elaborated in Section V.

It is important to note, that the proposed result is general enough to cover the case of not reduced problem, i.e.,

imposing the frequency constraints for all transfer functions, Sg , KSg and T g , as it is proposed in [18]. However,



TABLE I

DILOC-CT DESIGN SPECIFICATIONS

Performance specs. Frequency constraint Range

Zero steady-state
Global stability and |K (jω)| ≥ K0 LF

Conv. speed

Disturbance reduction
−60 dB/dec slope for σ̄ (T g (jω))

HF
−40 dB/dec slope for σ̄ (KSg (jω))

to reduce the computational load such that the proposed design method can by easily implemented at each sensor,

the reduced version of the Problem 1 is solved in section V.

IV. MAIN RESULTS

We now describe the main results of this paper. Before we start, in subsection IV-A, we recap the input-output

approach and present its main Theorem: Theorem of graph separation which can be used to solve the problem

under consideration for one given interconnection topology. Then, in subsection IV-B, we extend the result to a

more general case where the interconnection topology is not fixed but supposed to belong to a bounded set. Finally,

in subsection IV-C, we specialize the obtained result to the case of sensor localization under consideration.

A. Input-output Approach

We now describe the input-output approach used to solve Problem 1. We use the concept of dissipativity taken

from [19]–[21], [24], a simplified version of which is defined below.

Definition 1 (Dissipativity): An LTI, stable, and causal operator, H , is strictly {X,Y, Z}-dissipative, where X =

XT , Y, Z = ZT , are real matrices such that [
X Y

Y T Z

]
is full-rank; if ∃ ε > 0 such that for almost all ω > 0 I

H(jω)

∗  X Y

Y T Z

 I

H(jω)

 ≤ −εI. (12)

If the inequality in Eq. (12) is satisfied with ε = 0, the operator is said to be {X,Y, Z}-dissipative.

Based on the dissipativity characterization of two interconnected systems, T and H, the following result could

be obtained ensuring the stability and performance of the interconnection T ?H.

Theorem 2: Given η > 0, a stable LTI system, H, interconnected with an LTI system, T , and real matrices, X =

X T ≥ 0, Y , Z = ZT ≤ 0 of appropriate dimensions, if

(i) H is {diag(X ,−η2I), diag (Y, 0) , diag (Z, I)}-dissipative, and

(ii) T is strictly {−Z,−YT ,−X}-dissipative,

then the global system, T ?H, is stable and

‖T ?H‖∞ ≤ η. (13)



Proof: The proof of Theorem 2 can be found in [21], and it relies on a version of the graph-separation theorem

used in [19] for the stability and an S-procedure, [25], for the performance. It can also be seen as a generalization

of the Kalman-Yakubovich-Popov lemma, [26].

Remark 1: We note that for a given interconnection topology, P , Problem 1 can be solved by applying Theorem 2

with H = H1, T = (I ⊗ Ts) and dissipativity matrices chosen as X = Q ⊗X , Y = Q ⊗ Y , Z = Q ⊗ Z with a

positive-definite symmetric matrix, Q ∈ RM×M , see [18] for more details. However, for this purpose, the knowledge

of interconnection matrix, H1 (and thus P ), is necessary. In turn, the knowledge of all barycentric coordinates, P ,

to compute the local controller may be restrictive from an application point of view. Indeed, if the barycentric

coordinates are known in advance, the position of each sensor could be easily computed at some central computer

and then transmitted to the sensors. In order to avoid such knowledge, the condition (i) of Theorem 2 should be

satisfied not only for one given interconnection P but for a set of all possible interconnections. In this paper,

we present this extension based on the idea of representing the interconnection matrix, P , as an uncertainty and

exploiting the fact that it is bounded in terms of its spectral radius, ρ(P ) ≤ γ < 1, implying Eq. (8).

B. Global Performance for a set of Topologies

One approach to solve the Problem 1 could be to derive a similar constraint on the augmented interconnection

matrix H1 based on the constraint (8), see Eq. (10):

σ̄(P ) ≤ γ < 1⇒ σ̄(H1) ≤ γ̃ < 1 (14)

Depending on the performance under consideration, the last condition could be very restrictive and actually never

be applied in practice. For this reason, in this paper we propose to transform the system Eq. (10) in the form

of an LFT (Linear Fractional Transform) interconnection of local subsystem dynamics, Ts, and one or several

(repeated) interconnection matrices, P . Such a transformation is general enough to cover a large set of performance

specifications. It could be easily performed in the case of sensor localization problem under consideration as shown

later. In this case, it is possible to derive less restrictive global performance conditions based on the constraint in

Eq. (8), instead of Eq. (14). Let us thus consider the following general description of the transformed global system:

p = diag
(
IM ⊗ Ts, Im ⊗ P̄

)
(q) , q

z

 =

 H11 H12

H21 H22


︸ ︷︷ ︸

H

 p

w

 ,
(15)

is a finite-dimensional, stable LTI system, w(t) is the input vector of dimension nw, z(t) is the output vector of

dimension nz , and q(t), p(t), are internal signals of dimensions ng . The local subsystem is Ts = G ? K with nl

inputs and outputs1. We note that ng = (1 +m)nl ×M . Please also note that, to cover general result, the systems

1Without loss of generality and for the ease of notation, the square local system case is presented here.



under consideration in Eq.(15) could be Multi-Input Multi-Output (MIMO) if nl > 1. In this case, interconnection

matrix P̄ = P ⊗ Inl
and its maximum singular value respect the same condition as P , i.e., Eq. (8).

The global transfer function between external input, w, and output, z, is Tw→z = diag
(
IM ⊗ Ts, Im ⊗ P̄

)
? H ,

and its H∞-norm is ensured by the local controller, K, by the following theorem providing the main result of the

paper.

Theorem 3: Given η > 0 and γ > 0, a stable LTI system, H , a local plant, G, and real matrices, X = XT ≥

0, Y , Z = ZT , if there exist

(i) positive-definite matrices Q and D of appropriate dimensions, such that H is {diag(Q⊗X,−D⊗I,−η2I), diag (Q⊗ Y, 0, 0) , diag
(
Q⊗ Z, γ2D ⊗ I, I

)
}-

dissipative, and

(ii) a local controller, K, such that Ts = G ?K is strictly {−Z,−Y T ,−X}-dissipative,

then the local controller, K, ensures that the global system,
(
I ⊗ Ts, I ⊗ P̄

)
? H , is stable and

‖
(
I ⊗ Ts, I ⊗ P̄

)
? H‖∞ ≤ η

for all interconnection matrices P̄ satisfying

σ̄(P̄ ) ≤ γ. (16)

Proof: See [23] for the proof.

C. Local Control for Global Performance of DILOC-CT

In the previous subsection, we presented the Theorem that allows to solve Problem 1 for all interconnection

topologies that satisfy Eq. (8) if the global system is transformed in the LFT form of Eq. (15). In this subsection,

we show how this transformation is made for DILOC-CT application under consideration in order to ensure the

frequency depended bounds, Eq. (11) by decentralized control, K.

Note that H1 in Eq. (10) can be written in form of an LFT of one interconnection matrix, P , since:

H1 =

 0 IM

−IM IM

+

 IM

IM

P [ IM 0
]
.

Therefore, Eq. (10) can be equivalently written as: x

xp

 = diag (IM ⊗ Ts, P )

 rn

rp

 ,


rn

rp

ε

 =


0 IM IM

IM 0 0

−IM IM IM


︸ ︷︷ ︸

H2




x

xp

n


 ,

(17)

with xp = Prp, rp = x, and matrix, H2, independent of uncertain interconnection matrix, P .

The Problem 1 is now solved by the following theorem according to a similar argument as in Section IV-B.



Theorem 4 (Control Design): Given η > 0 and γ > 0, the system described in Eq. (17), and real scalars, X ≥

0, Y, Z ≤ 0, if there exists positive-definite matrix, Q ∈ RM×M and a real scalar D > 0, such that

(i) H2 is
{

diag
(
XQ,−D,−η2I

)
, diag (Y Q, 0, 0), diag

(
ZQ, γ2D, I

)}
-dissipative,

and a local controller, K, such that for Ts and S in Eq. (5):

(ii) Ts is strictly {−Z,−Y,−X}-dissipative with ‖T̂ (s)‖∞ < 1, and T̂s(s) =
(
T (s) + Y

X

)√
X2

Y 2−XZ ;

(iii) |S (jω)| ≤ ωΩ−1
K (ω) , in the LF range;

(iv) |K (jω)S (jω) | ≤ η−1 min {ΩKS (ω) , ωΩT (ω)} , in the HF range;

then the local controller K solves the Problem 1 for all possible interconnection matrix P satisfying

σ̄(P ) ≤ γ. (18)

Proof: See [23] for the proof.

Remark 2: Conditions (ii)-(iv) of Theorem 3 are decentralized local conditions since they are only related to local

subsystem dynamics. However, due to the condition (i), these local conditions imply the appropriate global system

behavior: global stability and global system performance defined in Problem 1. In the scalar case, it is possible to

find Q, η2 and X,Y, Z dissipativity parameters (based on quasi-convex optimization) that, for a given γ, satisfy

condition (i), and maximally relax condition (ii), see [21] for more details. These algorithms can be implemented

locally at each sensor provided the information on the number of sensors, M , is available to each sensor. In this

case, the controller design reduces to a local H∞ design problem, i.e., find a controller, K, such that it satisfies

the conditions (ii)-(iv). It is a standard H∞ design problem and can be easily solved (see [27]) and implemented

by each sensor for a computed η and frequency constraints fixed by ΩK , ΩT , ΩKS .

V. SIMULATIONS

We consider a network of M = 20 sensors and N = m+1 = 3 anchors in R2. The sensors lie in the convex hull

(triangle) formed by the anchors The sensor deployment is assumed to be free as soon as each sensor is connected

to three neighbors such that it lies in their convex hull and resulting network topology P is such that it respects

constraint (8).

First performance specification needed to be ensured by local controllers, K, is the sensor localization objective,

lim
t→∞

x = x∗. Second is the rejection of the disturbance, n, each component of which is a realization of a band-

limited noise with amplitude, A < 5, in frequency range, [ω−z ω+
z ] = [600 105] rad/sec. To achieve the specifications,

we consider the frequency constraints, ΩK(ω),ΩT (ω),ΩKS(ω), see Problem 1 and Table I, shown as red dotted

lines in Fig. 2.

Based on the proposed approach, see Theorem 4, each sensor is able to compute its local controller, K, that

ensures the global performance specifications. The only information needed to be transmitted to the sensors is the

total number of sensors, M = 20, in the network, the spectral bound for the network topology, γ = 0.99, and

frequency constraints ΩK(ω), ΩT (ω), ΩKS(ω), see Remark 2. With this information, the quasi-convex optimization

problem proposed in [21] could be solved by each sensor, which for the global system description in Eq. (17),



yields X = −3.33, Y = 1.17, Z = 1 and the global transfer function bound, η = 9.7. The local controller, K(s),

is then computed using standard H∞-design, [27], to ensure the conditions (ii)-(iv) of Theorem 4:

K(s) =
8.8 · 108

(s+ 777.5)(s+ 7508)
.
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Fig. 2. Maximum (solid red line) and minimum (solid blue line) singular value of K, KSg , and T g for different network topologies of 20

sensors, respecting constraint (8), together with corresponding frequency constraints (red dotted line).

As expected, the local controller is a low-pass filter with high gain, K(0) ≈ 150.9 ≥ K0, in the Low Frequency

(LF) range, and the negative slope (−40 dB/dec) in the HF range. According to the Theorem 4, the designed

controller solves the Problem 1, i.e., it ensures the frequency constraints, Eq. (11), as can be verified in Fig. 2. It

is important to note that even if the tracking performance specification was not directly imposed by the augmented

global system under consideration, Eq.(17), since the global stability is ensured and the computed controller has

no pure derivative actions, K(0) 6= 0, by Theorem 1, the steady-state localization error εref = x∗ − x → 0.

This is confirmed by temporal simulations of sensor network for 10 randomly chosen interconnection topologies

that respect the constraint in Eq. (8). The temporal evolution of the mean value of localization errors, εrefi , and

command signals, yi’s, are presented in Fig. 3. To illustrate the interest of using the dynamic controller instead of a

static one, Fig. 3 presents also the temporal simulations for the case of proportional gain controller K = α = K0.

Even though it ensures the same tracking performance (speed of convergence) as the dynamic controller proposed

in this paper, it can be seen that due to the frequency constraint imposed on global transfer functions, KSg and

T g , the influence of the disturbance, n, at each sensor is significantly reduced.

VI. CONCLUSIONS

In this paper, we consider a continuous-time, LTI algorithm to solve the sensor localization problem in Rm with

at least m+ 1 anchors which know their locations. Towards a more practical scenario, we consider the information

exchange to incur a zero-mean additive disturbance whose frequency spectrum lies in a certain HF range. To maintain

certain performance objectives while reducing the impact of the disturbance, we design a dynamic controller at



Fig. 3. Temporal simulations for 10 different topologies: (Left) Static controller, α = K0; (Right): Dynamic controller, K(s). Note the high

values of the control command, yi(t)’s, with the static controller, that could overexcite the local system, integrator, at each sensor.

each sensor with frequency-dependent performance objectives using the H∞ theory. This controller is computed

with local information and relies on a spectral bound on the interconnection matrices. We show that this dynamic

controller does not only ensure global system stability but is also able to meet certain performance objectives

embedded in frequency-dependent constraints.
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[17] August Ferdinand Möbius, Der barycentrische calcul, 1827.

[18] U. A. Khan, A. Korniienko, and K. H. Johansson, “An H∞ - based approach for robust sensor localization,” in Proc. IEEE Conf. on

Decision and Control, Osaka, Dec. 2015, pp. 1719–1724.

[19] P. J. Moylan and D. J. Hill, “Stability criteria for large-scale systems,” IEEE Trans. Aut. Control, vol. AC-23, no. 2, pp. 143–149, Apr.

1978.

[20] G. Scorletti and G. Duc, “An LMI approach to decentralized H∞ control,” Int. J. Control, vol. 74, no. 3, pp. 211–224, 2001.

[21] A. Korniienko, G. Scorletti, E. Colinet, and E. Blanco, “Performance control for interconnection of identical systems: Application to PLL

network design,” International Journal of Robust and Nonlinear Control, vol. 26, no. 1, pp. 3–27, Jan. 2016.

[22] J. Doyle, A. Packard, and K. Zhou, “Review of LFT’s, LMI’s and µ,” in IEEE Conf. Decision and Control, IEEE, Ed., Brighton, England,

Dec. 1991, vol. 2, pp. 1227–1232.

[23] A. Korniienko, U. A. Khan, and G. Scorletti, “Robust sensor localization with locally-computed, global H∞-design,” Tech. Rep.,

Laboratoire Ampère, Ecole Centrale de Lyon, 2016.

[24] A. Korniienko, G. Scorletti, E. Colinet, E. Blanco, J. Juillard, and D. Galayko, “Control law synthesis for distributed multi-agent systems:

Application to active clock distribution networks,” in Proc. American Control Conf., San Francisco, June 2011, pp. 4691– 4696.

[25] V. A. Yakubovich, “The S-procedure in non-linear control theory,” Vestnik Leningrad Univ. Math., vol. 4, pp. 73–93, 1977, In Russian,

1971.

[26] A. Rantzer, “On the Kalman-Yakubovich-Popov lemma,” Systems and Control Letters, vol. 27, no. 5, Jan. 1996.

[27] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control, Analysis and Design, John Wiley and Sons Chischester, 2005.


