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Abstract 6 

This paper presents an analytical method for modeling the vibro-acoustic behavior of 7 

ribbed non-rectangular orthotropic clamped plates. To do this, the non-rectangular plate 8 

is embedded in an extended rectangular simply supported plate on which a spring 9 

distribution is added, blocking the extended part of the surface, and allowing the 10 

description of any inner surface shapes. The acoustical radiation of the embedded plate 11 

is ensured using the radiation impedances of the extended rectangular simply 12 

supported plate. This method is applied to an upright piano soundboard: a 13 

non-rectangular orthotropic plate ribbed in both directions by several straight stiffeners. 14 

A modal decomposition is adopted on the basis of the rectangular extended simply 15 

supported plate modes, making it possible to calculate the modes of a piano 16 

soundboard in the frequency range 0; 3000  Hz, showing the different associated mode 17 

families. Likewise, the acoustical radiation is calculated using the radiation impedances 18 

of a simply supported baffled plate, demonstrating the influence of the string coupling 19 

point positions on the acoustic radiated power. The paper ends with the introduction of 20 

indicators taking into account spatial and spectral variations of the excitation depending 21 

on the notes, which add to the accuracy of the study from the musical standpoint. A 22 
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parametrical study, which includes several variations of soundboard design, highlights 1 

the complexity of rendering high-pitched notes homogeneous.  2 
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I.  INTRODUCTION 1 

Traditionally designed using empirical approaches, musical instruments are now being 2 

studied regarding the perceptive and subjective aspects of the sounds they produce. 3 

Indeed, many parameters influence their timbres, ranging from the wood used [1] to 4 

specifications linked to their design, which greatly determines their vibratory behavior. 5 

In the case of the piano, the soundboard plays an essential role in the functioning of the 6 

instrument. Indeed, string sections are too thin to radiate on their own. Thus their 7 

vibrations are transmitted to the soundboard through bridges that serve as effective 8 

acoustic radiators. The geometry of a soundboard is complex and composed of a 9 

non-rectangular plate, traditionally made of spruce (orthotropic material), ribbed on one 10 

side by several beams placed perpendicular to the wood fibers, and by one or two 11 

bridges almost parallel to the fibers, on the opposite side. Fig. 1 shows an example of 12 

such a structure. 13 

The vibro-acoustic broadband behavior of this structure has been studied by several 14 

authors including Fletcher [2], Weinrech [3], and Kindel [4], then by Suzuki [5], [6], 15 

Conklin [7]–[9], Giordano [10]–[12], Dérogis [13], Berthaut [14], Bensa [15], Stulov [16], 16 

and more recently by Ege and Boutillon [17], [18], Chaigne [19], Chabassier [20], 17 

Rigaud [21], and Etcheniquel [22]. It is now the subject of software development for 18 

piano sound synthesis [23]. 19 

Many other works already exist on the subject of ribbed structures and not only in the 20 

area of musical instruments. Indeed, nowadays simple structures like beams and 21 

isotropic plates are described well [24]–[33], but the design and modeling of ribbed 22 
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structures nonetheless remains a major topic of research. Most of these studies have 1 

focused on periodically ribbed isotropic flat plates [34]–[44], curved panels [45], 2 

stiffened cylindrical shells [46]–[53], and more recently laminated composite panels [54], 3 

[55] and sandwich structures [56]–[59]. 4 

Problems linked to the piano soundboard have been studied from the angle of purely 5 

musical issues. These included the quest for a good compromise between “sustain / 6 

radiated power” and poor color in high frequencies (i.e poor spectrum of last notes), 7 

both of which appear to be the main difficulties confronting piano makers. 8 

Although modelling flat ribbed structures and their baffled radiation has long been an 9 

area of research, taking into account non-rectangular geometry, non-special orthotropy 10 

(i.e. the axes of orthotropy are not parallel to the boundary if rectangular) and attached 11 

bars in orthogonal directions simultaneously is a real challenge. 12 

With a view to solving these issues, modelling is performed using a variational approach 13 

in which the judicious use of simply supported rectangular extended plate modes and 14 

radiation impedances is introduced. The aim of this model of an upright piano 15 

soundboard, which avoids any object discretization, is to provide an interesting 16 

alternative to a complete numerical method such as the FEM-BEM method (with long 17 

computing time), which could obviously be used. 18 

Consequently, this model facilitates parametrical studies and, for example, highlights 19 

the influence of ribs and bridges (numbers, width, length, height) on the acoustical 20 

radiation of the piano soundboard and, more generally, on orthotropic ribbed panels. 21 
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This article is the continuation of works presented in [60]. The first part of the article 1 

presents how the non-rectangular edges and orientation of the materials composing the 2 

piano soundboard are formulated by the addition of springs. Then, in the second part, 3 

the model of the soundboard of a Pleyel P131 is described. It comprises the addition of 4 

ten ribs, two bridges and two “cut-off” corner beams. The modal aspects are presented 5 

in the frequency range 0; 3000  Hz. In particular we discuss the different families of 6 

modes due to stiffening. Then, several numerical results including mobility and acoustic 7 

radiated power are presented for an excitation moving along the main bridge at the 8 

position of the string couplings. We show how the vibro-acoustical behavior of the 9 

soundboard depends on the positions of the strings, and how the discrete frequencies 10 

of the notes (the sources) make analysis difficult. 11 

Drawing its inspiration from [61], [62], a parametrical study shows the complexity of 12 

obtaining homogeneous high-pitched notes and how it is related to the soundboard 13 

design (main bridge discontinuity, ribs in the high frequency domain, etc.). This is done 14 

by introducing a new indicator applied to the mobility and the acoustic radiated power, 15 

taking into account the discrete spacing aspects (discontinuous excitation points) and 16 

the discrete frequencies of the keys at the same. 17 

II. ORTHOTROPY WITH UNSPECIFIED ANGLE18 

In traditional piano soundboard design, the direction of the wood fibers is not parallel to 19 

the edges: we define this as the angle of orthotropy 𝜃. See Fig. 1. In this part we focus 20 

on a method of modeling the orientation of the fibers and describing the non-rectangular 21 

contours. We demonstrate the originality of this method which allows us to describe, 22 
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from the analytical standpoint, any shapes embedded within a rectangular shape, and to 1 

take into account non-specified orthotropy, i.e. when the main axes of orthotropy are not 2 

parallel to the soundboard shapes. 3 

	4 
Fig.	1	-	(Color	online)	Upright	piano	soundboard	of	Pleyel	P131	with	Ex	and	Ey	being	the	strong	and	the	5 

weak	Young’s	moduli	of	the	wood.	View	from	front	side	(bridge	side)	with	ribs	and	cut-off	corner	6 

beams	added	in	transparency.	7 

II.A. THEORETICAL FORMULATION 8 

In order to describe both the non-rectangular contours and the unspecified angle of 9 

orthotropy, the following model uses the simple basis of a special rectangular 10 

orthotropic plate, i.e. the Young’s moduli are parallel to the plate edges. See Fig. 2 on 11 

the left. By adding several springs (dark points) to block the transverse displacement, 12 

we describe the non-rectangular contours and the unspecified angle, as shown in 13 

Fig. 2 on the right. The boundary conditions will tend to clamped conditions. 14 
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	1 
Fig.	2	-	(Color	online)	The	addition	of	springs	on	a	rectangular	simply	supported	plate.	On	the	left:	the	2 

initial	plate	with	specific	orthotropy;	on	the	right:	the	addition	of	springs.	The	non–rectangular	3 

contours	and	the	non-specified	angle	of	orthotropy	are	well	described.	4 

Thus it is possible to describe any edges the user wishes (not limited to only 5 

soundboards) as suggested in Fig. 3. Obviously, it is possible to model a grand piano 6 

but we chose to study a Pleyel P131 upright soundboard available at the lab (kindly 7 

given by ITEMM, European Technological Institution for Music Professions). 8 

	9 
Fig.	3	-	(Color	online)	Examples	of	possible	geometries	with	different	orthotropy	angles	and	edges.	10 

II.A.1. HAMILTONIAN 11 

The model is based on a variational approach. We express the Hamiltonian of the 12 

whole plate-spring system to determine the eigenvalue problem (no external works 13 
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are considered). An additional external force will be introduced in II.A.3 for the 1 

forced response calculation. 2 

The starting point of our modeling is a simply supported rectangular plate with 3 

specific orthotropy. It follows the thin plate Love-Kirchhoff hypothesis for which the 4 

Hamiltonian can be easily found in the literature [25]. Additional information on the 5 

kinetic hypothesis can be found in a previous article [60]. 6 

We consider several springs coupled to the plate at the coordinates 𝑥&, 𝑦& . We 7 

give the following Hamiltonian for a plate with a number of springs Ns: 8 

𝐻*+ =
1
2

𝜌ℎ𝑤
˙ 3 − (𝐷7𝑤,883 + 𝐷:𝑤,;;3 + 𝐷3𝑤,88𝑤,;; + 𝐷<𝑤,8;3 )

>?

;@A

>B

8@A
𝑑𝑥𝑑𝑦

DE

DF

𝑑𝑡

+ −
1
2

𝑘𝑤3 𝑥, 𝑦 𝛿(𝑥 − 𝑥&)𝛿(𝑦 − 𝑦&)
>?

;@A

>B

8@A
𝑑𝑥𝑑𝑦

DE

DF

𝑑𝑡
JK

&@7

 

(1) 

with 𝑤  being the plate transverse displacement; 𝑘  the spring rigidity; 𝑡A; 𝑡7  an 9 

arbitrary time interval; 𝐿8	and	𝐿; the plate dimensions; 𝜌 the plate mass density; ℎ 10 

the plate thickness; 𝐷7 = QBRS

ET EUVB?V?B
, 𝐷: =

Q?RS

ET EUVB?V?B
, 𝐷3 =

V?BQBRS

W EUVB?V?B
 and 𝐷< =

XB?RS

S  11 

the plate dynamic stiffness; 𝜈8; and 𝜈;8 = 𝜈8;
𝐸;

𝐸8  its Poisson coefficients; 12 

𝐸8 and 𝐸; the two Young moduli of the plate. 13 

The first line of the equation is related to the plate and the second to the springs 14 

where the Dirac distributions render them localized at the coordinates 𝑥&, 𝑦& . 15 

Table 1 gives the properties of the extended rectangular orthotropic spruce plate 16 

(Fig. 2). 17 
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II.A.2. MODAL DECOMPOSITION 1 

As mentioned previously, the starting point of our model is a rectangular simply 2 

supported plate. This basis, currently used in the area of vibrations, is particularly 3 

adapted for an analytical approach and has been studied several times [26], [46], 4 

[63]. Of course, this basis is not the real basis of the embedded plate but only a 5 

convenient basis for our model, as will be shown in the following. Using modal 6 

decomposition, the transverse displacement is written as a linear combination of 7 

simply supported plate modes weighted by modal amplitudes 𝑎\] 𝑡 : 8 

𝑤 𝑥, 𝑦, 𝑡 = 𝑎\] 𝑡 𝜙\] 𝑥, 𝑦
J

]@7

_

\@7

	∀𝑥 ∈ 0; 𝐿8 	and	𝑦 ∈ 0; 𝐿;  (2) 

where 𝜙\] 𝑥, 𝑦 = sin 𝑚𝜋
𝐿8 𝑥 sin 𝑛𝜋

𝐿; 𝑦 . 9 

By injecting the modal decomposition (2) into Eq. (1) and using the orthogonal 10 

properties of eigenvectors, it is possible to analytically calculate the surface 11 

integral in the Hamiltonian. Thus the functional depends on the two variables 12 

𝑎\] 𝑡 , 𝑎\](𝑡)  and no longer on the transverse displacement 𝑤 𝑥, 𝑦, 𝑡  and its 13 

space and temporal derivatives. Thus we have: 14 

𝐻*+(𝑎\](𝑡), 𝑎
˙
\](𝑡)) = ℒ

DE

DF
(𝑎\](𝑡), 𝑎

˙
\](𝑡)𝑑𝑡 (3) 

where ℒ(𝑎\](𝑡), 𝑎
˙
\](𝑡)) is termed the Lagrangian of the system. 15 

By applying the differential form of the principle of least action and using 16 

Euler-Lagrange equations, the action of the system is minimized, leading to the 17 

following homogeneous linear system: 18 
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𝑀+ijDk + 𝑀&+lm]n&	 𝑎 + 𝐾+ijDk + 𝐾&+lm]n&	 𝑎 = 0 (4) 

where 𝑀	and	𝐾  represent mass and rigidity matrices. These matrices are 1 

constituted by the sum of diagonal matrices coming from the plate and full and 2 

symmetrical matrices from the springs. 3 

Solving the corresponding eigenvalue problem Eq. (4) allows calculating the 4 

modes of the embedded plate: eigen-frequencies and modal shapes, the matrix of 5 

eigenvectors and thus the transfer matrix 𝑇 between the initial simply supported 6 

basis and the system basis, which is the orthonormed basis of the eigenvectors 7 

[60]. We give the relation between the two bases with 𝑎	and	𝑏 being the vectors of 8 

modal amplitudes in the initial basis and in the new basis, respectively: 9 

𝑎 = 𝑇𝑏 (5) 

Consequently, the real modal shapes of the embedded plate are built as a linear 10 

combination of the simply supported shapes of the extended plate: 11 

𝛷 m 𝑥, 𝑦 = 𝑎\]
(m) 𝜙\] 𝑥, 𝑦

J

]@7

_

\@7

	∀𝑥 ∈ 0; 𝐿8 	and	𝑦 ∈ 0; 𝐿;  (6) 

Where 𝑖  indicates the column number in the matrix of eigenvectors. 12 

Note that the size of these matrices, which is governed by the truncation on the 13 

orders M and N in the finite modal decomposition Eq. (2), determines the precision 14 

of the results. 15 

II.A.3. FORCED RESPONSE 16 

We assume that the fluid loading is negligible, so the light fluid assumption is 17 

made (for a full fluid loading coupling, see [26]). Here, we consider a sinusoidal 18 
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and harmonic external force applied at point (𝑥k, 𝑦k)  with an amplitude of 1N. 1 

Following the same approach as before, we determine the vector of generalized 2 

force 𝐹nk] (second member of Eq. (4)) for which the components are defined by: 3 

𝐹+u = 𝜙+u(𝑥k, 𝑦k) (7) 

To determine the forced response of the system we choose to express the 4 

problem in the system basis. Using Eq. (5), the generalized matrix problem Eq. (4) 5 

with the second member becomes diagonal: 6 

−𝜔3𝑀*+𝑏(𝜔) + 𝑗𝜔𝐶𝑏(𝜔) + 𝐾*+𝑏(𝜔) = 𝑇D𝐹nk] (8) 

With 𝑀*+ = 𝑇D 𝑀+ijDk + 𝑀&+lm]n&	 𝑇	and	𝐾*+ = 𝑇D 𝐾+ijDk + 𝐾&+lm]n&	 𝑇. 7 

The modal damping matrix 𝐶 is also introduced. The structure is considered as a 8 

weakly dissipative system for which the equations of generalized displacements 9 

are uncoupled [64]–[66] so the matrix 𝐶 is also diagonal and defined by: 10 

𝐶 =
⋱

𝜂m𝑚m𝜔m
⋱

 (9) 

With 𝑚m, 𝜔m	and	𝜂m  being the modal mass, angular frequency and damping loss 11 

factor of the ith system mode. 12 

In the case of a piano soundboard, the modal loss factor was evaluated between 13 

1% and 3%, depending on the modes in our frequency range of interest [67]. In the 14 

following, the modal loss factors of all the soundboard modes are fixed at 2%. 15 
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II.B. SPRING CALIBRATION  1 

Minimal spring rigidity and spacing are necessary to block transverse displacement. 2 

For the frequency range of interest 0; 3000 	Hz , the spacing between springs 3 

depends on the smallest wavelength in the plate. The latter is in the direction of the 4 

weak Young’s modulus [67]: 5 

𝜆 =
2𝜋
𝑓

𝐷:
𝜌ℎ

7/<

 (10) 

A criterion of 𝜆 10 is chosen to overestimate the number of springs. In the present 6 

case, it leads us to a minimal distance between the springs of around 7.3 mm (for f = 7 

3 kHz). 8 

Minimal spring rigidity is also important: the ratio between the rigidity of the spring 9 

and that of the plate must be sufficiently high. When the rigidity is insufficient, 10 

vibrations appear at high frequencies in the “blocked” area (where the springs are 11 

localized). 12 

We define the ratio between the average quadratic velocity in the free area and the 13 

whole plate as a criterion in order to validate sufficient spring rigidity: 14 

𝐿�	ratio = 10	𝑙𝑜𝑔
𝑣(𝑥, 𝑦) 3����

𝑑𝑆

𝑣(𝑥, 𝑦) 3����
𝑑𝑆

 (11) 

For a sufficient value of spring rigidity the velocity on the blocked area will tend to 15 

zero and thus this ratio will also tend to zero. 16 
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Fig. 4-a presents this ratio for two spring rigidities. In both cases, the truncation order 1 

is fixed at 𝑃, 𝑄 = (82,63) for which the convergence of the solution is guaranteed. 2 

The excitation point is arbitrarily chosen near an edge. 3 

	4 
Fig.	4	-	(Color	online)	Influence	of	spring	rigidity.	5 

a)	Average	quadratic	velocity	ratio	for	two	spring	rigidities.	Solid	line:	sufficient	rigidity;	dashed	line:	insufficient	6 
rigidity.	The	excitation	is	placed	at	(xe,ye)=(1.26,0.76).		7 

b)	Modal	density	per	octave	for	two	spring	rigidities	and	analytical	plot	from	[11],	[17],	[67]	Eq.	(A.13):		circle	8 
markers:	sufficient	spring	rigidity;	square	markers:	insufficient	spring	rigidity;	solid	line:	analytical	expression.	9 

When the springs are strong enough compared to the plate, the ratio is lower than 10 

0.06 dB for the entire frequency range (solid line in Fig. 4-a). On the contrary, 11 

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

Frequency [Hz]

L
v
 r

a
ti
o

 =
 1

0
*
lo

g
 (

<
v

to
t>

2
/<

v
in

t>
2
) 

[d
B

]

Sufficient spring rigidity (k=2,5E6)

Insufficient spring rigidity (k=2,5E4)

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Frequency [Hz]

n
(f

) 
[m

o
d

e
s
.H

z
−1

]

Analytical modal density of a clamped plate

with an angle of orthotropy of −34.804 °
Sufficient spring rigidity (k=2.5E6)

Insufficient spring rigidity (k=2.5E4)

a)

b)



 B. Trévisan , K. Ege and B. Laulagnet 

 14 

insufficient springs imply a higher velocity ratio (dashed line in Fig. 4-a) from 1 kHz 1 

with a peak around 3.2 dB at 2.5 kHz in the present case. This lack of rigidity can 2 

also be detected on the modal density (Fig. 4-b); see next paragraph. 3 

Fig. 5 (on the left and center) presents modal shapes for these two cases. The modal 4 

shapes are similar at low frequency. See top left and center of Fig. 5. Indeed, at low 5 

frequency the ratios are equivalent. We can also note a small frequency difference. 6 

From 1 kHz, three kinds of modes exist if the rigidity is insufficient: internal modes (in 7 

the free area), external modes (in the density of springs) and hybrid modes (in the 8 

two areas). The bottom left of Fig. 5 shows one of these undesired modes. On the 9 

other hand, sufficient rigidity ensures only one kind of mode: the internal mode 10 

(bottom center, Fig. 5). 11 

As mentioned previously, the coexistence of these multi-type modes can also be 12 

detected on the modal density. Fig. 4-b shows a comparison between the modal 13 

density of the two cases of spring rigidity and the analytical formulation from [17], 14 

[67]. This comparison shows good agreement of the modal density with the 15 

theoretical plot (solid line in Fig. 4-b) when the rigidity is sufficient (circle markers in 16 

Fig. 4-b) and tends toward the same value. On the contrary, when the spring rigidity 17 

is insufficient, the presence of external modes implies a considerable increase of 18 

modal density (square markers in Fig. 4-b). This effect is very interesting and 19 

appears even if the order of truncation is not adapted. It can facilitate the detection of 20 

external modes by solving only the eigenvalue problem. 21 
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	1 
Fig.	5	-	(Color	online)	Modal	shapes	of	a	clamped	non-rectangular	plate	with	an	angle	of	orthotropy	of	2 

34.8°.	Left:	insufficient	spring	rigidity;	Center:	sufficient	spring	rigidity;	Right:	FEM-NASTRAN	with	a	3 

mesh	of	5mm.	4 

We also compared our modelling with a NASTRAN FEM model. This is a 2D model 5 

with a non-rectangular clamped plate meshed with orthotropic PSHELL elements. 6 

The size of the elements is around 5mm to ensure the convergence of the 7 

calculations for the whole frequency range of interest [0;3000] Hz. 8 

The comparison between our analytical model (Fig. 5, center) and numerical FEM 9 

(Fig. 5, right) shows that our solution is relevant. Indeed, the clamped boundary 10 

conditions, frequencies and modal shapes are well-described by our method: the 11 

MAC criterion is 0.9997 and 0.948 for the modes presented in Fig. 5, respectively the 12 

first modes around 30 Hz and another around 1.8 kHz. Concerning the frequencies 13 

the difference is less than 4%, which is perfectly acceptable.  14 
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III. MODELING AN UPRIGHT PIANO SOUNDBOARD1 

In the following, we focus on the upright piano soundboard of a Pleyel P131. This 2 

soundboard is made of spruce stiffened on one face by ten ribs also made of spruce 3 

placed in the direction of the weak Young’s modulus and on the other face by a bass 4 

bridge and a main bridge (medium and high pitched notes), made of beech, placed in a 5 

direction nearly parallel to the strong Young’s modulus (wood fibers). There are also two 6 

“cut-off” corners delimited by two beams made of beech. See Fig. 1. 7 

III.A. SUPERSTRUCTURES: RIBS AND BRIDGES 8 

The model of the superstructures is an extension of the model presented in [60]. 9 

Indeed, it now allows having linear superstructures of different lengths in addition to 10 

different materials, widths, heights and offsets from the middle plane of the plate. Fig. 11 

6 describes the geometry modeled. 12 
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	1 
Fig.	6	-	(Color	online)	Geometry	modelled	for	the	Pleyel	P131.	2 

The model developed allows having only linear superstructures parallel to the entire 3 

plate edges, i.e. in the direction of the wood fibers or perpendicular to them. Taking 4 

into account a curved main bridge or a stiffener that is not parallel to an extended 5 

plate edge will imply expressing variable 𝑥  as a function of 𝑦  and vice-versa. 6 

Therefore it will be impossible to carry out simplifications useful for maintaining an 7 

analytical approach as long as possible. Thus the bridges and “cut-off” corner beams 8 

become exactly parallel to the strongest Young’s modulus Ex. The main bridge is cut 9 

into two parts and shifted between ribs 3 and 4. Each has a constant height and 10 

width. They are placed at position yc in the coordinates of the extended rectangular 11 

plate. All the dimensions were measured on a real Pleyel P131 piano soundboard. 12 

Table 2 gives the dimensions and properties of the superstructures. 13 

The ribs are oriented perpendicular to the direction of the wood fibers and 14 

perpendicular to the bridges to compensate for the weakness of the wood (weak 15 
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Young’s modulus Ey). Thus  the ribs have a predominantly static effect. Their heights 1 

are not constant along their lengths. Indeed, they are tapered at their extremities to 2 

obtain flexibility near the edges of the soundboard. See Fig. 7-a. 3 

	4 
Fig.	7	-	(Color	online)	Rib	geometry.	a)	Section	view	of	a	real	soundboard	rib.	b)	Simplified	rib	in	the	5 

present	model.	c)	Partial	front	view	of	the	soundboard.	6 

In our model, this progressive decrease of height is simplified. We consider a sudden 7 

change of the height, as shown in Fig. 7-b. All the ribs have a height of 5mm at their 8 

extremities. Table 3 gives the dimensions and properties of the ribs. 9 

The boundary conditions are applied to the middle plane of the plate. The ribs and 10 

bridges are bound to it through a double continuity in displacement and rotation at 11 

each interface. Moreover, their heights are sufficiently low to neglect the warping 12 

phenomenon. Consequently, the plate controls the global motion of the whole system 13 

and its motion field can be extended to the superstructures. In addition to the 14 

continuity at the interface, the motion fields in the plate / stiffener sections are 15 

considered linear [60]. We also take into account bending and torsion phenomena. 16 

This leads us to express the Hamiltonians of each superstructure (for more 17 

information on this calculations, see Appendix A). We give the Hamiltonian for the 18 

middle part of a rib (in direction 𝑦) and of a bridge (in direction 𝑥): 19 

(c)

(b)

(a)
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1
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DE

DF
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˙
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(12) 
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− 𝐺�𝐼n�𝑤,8;3 ] 𝛿(𝑦 − 𝑦�) 𝑑𝑥𝑑𝑦𝑑𝑡 

(13) 

Table 4 summarizes all the constants used in the previous equations. As in Eq. (1), 1 

the entire Hamiltonian for the whole system (with Nr being the number of ribs and 2 

extremities and Nb the number of bridges, for which all the constants and positions 3 

are different) becomes: 4 

𝐻&*�]��*jl� = 𝐻*+ + 𝐻lm�
(l)

J�

l@7

+ 𝐻�lm�nk
(�)

J�

�@7

 (14) 

and the eigenvalue matrix problem as described in section II.A.2: 5 

𝑀
𝑝𝑙𝑎𝑡𝑒

+𝑀
𝑠𝑝𝑟𝑖𝑛𝑔𝑠

+ 𝑀lm�& + 𝑀�lm�nk& 𝑎 + 𝐾
𝑝𝑙𝑎𝑡𝑒

+ 𝐾
𝑠𝑝𝑟𝑖𝑛𝑔𝑠

+ 𝐾lm�& + 𝐾�lm�nk&	 𝑎 = 0 (15) 

Therefore we determine the new transfer matrix 𝑇  of the Pleyel P131 and the 6 

generalized matrix formulation with a second member on the basis of the piano 7 

modes: 8 

−𝜔3𝑀&*�]��*jl�𝑏(𝜔) + 𝑗𝜔𝐶𝑏(𝜔) + 𝐾&*�]��*jl�𝑏(𝜔) = 𝑇D𝐹nk] (16) 
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With 𝑀&*�]��*jl� = 𝑇D 𝑀+ijDk + 𝑀&+lm]n& + 𝑀
𝑟𝑖𝑏𝑠

+ 𝑀
𝑏𝑟𝑖𝑑𝑔𝑒𝑠	 𝑇 and 𝐾&*�]��*jl� =1 

𝑇D 𝐾+ijDk + 𝐾&+lm]n& + 𝐾
𝑟𝑖𝑏𝑠

+ 𝐾
𝑏𝑟𝑖𝑑𝑔𝑒𝑠	 𝑇 . Damping matrix 𝐶  is the same as that 2 

presented in Sec. II.A.3. 3 

III.B. ACOUSTIC RADIATION OF A NON-RECTANGULAR RIBBED STRUCTURE 4 

The method we propose for acoustic radiation is an alternative to a purely numerical 5 

method such as the finite element boundary method, Rayleigh integral or Perfectly 6 

Matched Layers. Thus we calculate the acoustic radiation of the structure using the 7 

radiation impedances of the extended rectangular un-ribbed plate, which has been 8 

studied several times by Wallace, Maidanik and Stepanishen [34], [31], [30], for 9 

example. This approach is currently limited to a rectangular ribbed plate [63] but we 10 

propose to extend it to the case of a non-rectangular structure. In addition, this 11 

approach allows comparing the radiation modal impedances of a non-rectangular 12 

ribbed structure to those of an equivalent simple plate, as was done in our previous 13 

article [60]. This could be particularly interesting in the frequency range where the 14 

modes are similar to un-ribbed plate modes (i.e. at low frequencies). 15 

We can consider that the piano case is an obstacle to acoustic short circuiting past 16 

the first modes. At low frequency, this results in a decrease of radiation [26], [32]. On 17 

the contrary, when focusing on frequencies higher than the first octave, as will be the 18 

case in the following, the wavelengths quickly become small enough to consider a 19 

baffled hypothesis. Note that this hypothesis does not change the tendencies of the 20 

results and has no repercussion on the parametric studies. 21 
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The light fluid assumption is also made as it implies omitting inter-modal coupling 1 

brought by the action of a fluid on the structure. Several authors have shown that 2 

these couplings are negligible at the first order [31], [68], [29] or do not change the 3 

general tendencies [69], [41], [54]. However, other authors have shown that some 4 

changes can occur in the case of heterogeneous boundary conditions, high 5 

superstructures or at resonances [70], [71]. We assume that they are neglected and 6 

thus assign the acoustic radiated power 𝑊 𝜔  of the piano soundboard in the 7 

frequency domain as [60], [29]: 8 

𝑊 𝜔 =
𝜔3

2 𝑏
D
∗𝑇D𝑅(𝜔)𝑇𝑏 (17) 

with 𝑅 𝜔  being the real part of the inter-modal acoustical impedance matrix. 9 

Due to the light fluid assumption this matrix is diagonal, i.e. inter-modal couplings are 10 

neglected. Thus the diagonal terms are calculated numerically and defined as [26], 11 

[29]: 12 

𝑅\]\](𝜔) =
𝜌A𝜔
𝜋3

|𝜙\](𝑘8, 𝑘;)|3

𝑘3 − 𝑘83 − 𝑘;3
¨

A
𝑑𝑘8𝑑𝑘; (18) 

where 𝜙\](𝑘8, 𝑘;)  refers to the bi-dimensional Fourier transform of a simply 13 

supported rectangular baffled plate mode. 14 

III.C. NUMERICAL RESULTS OF THE PLEYEL P131 MODEL 15 

The vibro-acoustical behavior of the piano soundboard can be split into different 16 

frequency ranges in which the vibration and radiation are different, due to the design 17 
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of the instrument. In the following, we will first focus on the modal aspects of the 1 

instrument and then on the vibro-acoustical response of the soundboard. 2 

To ensure the convergence of the calculations, the truncation order on the modal 3 

basis is overestimated and, as with the unribbed plate, fixed at (M,N)=(82,63). 4 

Moreover in order to validate the blocking condition along the non-rectangular 5 

contours, the same studies as shown in Figs 4 and 5 were performed (spring rigidity 6 

and number). 7 

III.C.1. SAMPLES OF UPRIGHT PIANO SOUNDBOARD MODES 8 

In terms of modal shapes, many phenomena appear as a function of the frequency 9 

range considered. Indeed, the more the frequency increases, the higher the rigidity 10 

of the superstructures is. Therefore the superstructures will strongly limit the 11 

transverse displacement of the soundboard when the frequency increases. This 12 

begins with the strongest of superstructures, i.e. the bridges, and then the ribs. 13 

Some studies have also shown that the vibration is localized in certain frequency 14 

ranges. Waveguide effects occur when the wavelengths reach the same order of 15 

magnitude as the inter-rib spaces  [17], [18]. Fig. 8 shows a classification of modal 16 

shapes for the 200 first modes (below 3 kHz). We define four families of modes: 17 

• “Similar” to plate modes, i.e. unribbed modes that can be named with the 18 

number of half wavelengths in the different directions (mode (3,1) for 19 

example); 20 

• Blocking bridges only, when the two bridges strongly minimize the plate 21 

transverse displacement; 22 
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• Blocking bridges and ribs, when all the superstructures strongly minimize 1 

the plate transverse displacement; 2 

• Localized vibrations, when the vibration is localized in a small area 3 

delimited by the superstructures. 4 

	5 
Fig.	8	-	(Color	online)	Classification	of	the	first	200	modes	of	a	Pleyel	P131	soundboard.		6 

To classify the modal shapes into these different families, we use an average 7 

quadratic linear velocity to evaluate numerically when the vibration is reduced at 8 

the stiffener locations. This allows determining the points at which the transverse 9 

displacement is strongly limited. To do this, we define a velocity threshold that 10 

allows separating a sample of modes classified visually previously (around 20 11 

modes). Regarding the “localized vibrations” family, which is a sub-family of 12 

“blocking bridges and ribs”, a criterion of spatial distribution is added. We first 13 

detect the maximum velocity magnitude of the structure and then compare the 14 

entire space average quadratic velocity with the space average quadratic velocity 15 
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on a smaller surface around the maximum magnitude determined previously. We 1 

gradually increase the surface so that the local average velocity becomes higher 2 

than a certain percentage of the entire space average velocity. Similarly, this 3 

percentage is determined with a sample of modal shapes classified visually. In this 4 

way, we can classify around 73% of the modal shapes that are checked visually as 5 

a final control. The unclassified modes are determined visually and we finally 6 

classify 96% of the modes into the four families. 7 

We can see that the ratios between them are very different. Indeed, for a large 8 

majority of modes all the superstructures strongly minimize the transverse 9 

displacement (sum of triangle markers around 90%), whereas the modes “blind” to 10 

the superstructures amount to only around 3% (see the square markers on Fig. 8). 11 

They match with low frequencies when the wavelengths are high compared to the 12 

dimensions of the soundboard. Fig. 9 shows two examples of these low frequency 13 

modes, with one of them similar to mode (1,1) and the second similar to mode 14 

(3,1). This phenomenon is limited to the five first modes of the soundboard. 15 

	16 
Fig.	9	-	(Color	online)	Low	frequency	modes	similar	to	unribbed	plate	modes.	17 

A second family can be associated with the frequency range 300; 900  Hz when 18 

the bridges (the strongest superstructures) strongly minimize the transverse 19 

98,6 Hz 243,3 Hz 
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displacement of the plate. This family is illustrated in Fig. 10 and matches with the 1 

circle markers in Fig. 8. 2 

	3 
Fig.	10	-	(Color	online)	Modes	where	the	transverse	displacement	is	strongly	minimized	by	the	4 

bridges.	5 

For the majority of modes (higher than 1 kHz), all the superstructures strongly 6 

minimize the transverse displacement. For around 66% of them, the vibrations are 7 

spread over the whole plate or at least over a large area (see the triangle markers 8 

pointing to the right in Fig. 8). Fig. 11 shows two of these modes, the first around 1 9 

kHz and the second around 3 kHz: the location of the superstructures can be 10 

easily guessed. 11 

	12 
Fig.	11	-	(Color	online)	Modes	where	the	transverse	displacement	is	strongly	minimized	by	all	the	13 

superstructures.	14 

In addition, the vibrations are also localized in areas delimited by superstructures 15 

for the last 24%. It is important to split these 24% into two sub-parts: 10% of “cut-16 

off” corner modes (upward triangle markers in Fig. 8) and 14% of vibrations 17 

401,9 Hz 790,3 Hz 

1133,3 Hz 2987,4 Hz 
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localized between the ribs (downwards triangle markers in Fig. 8). Fig. 12 shows 1 

two examples of this 14% of modes. 2 

	3 
Fig.	12	-	(Color	online)	Modes	where	the	vibrations	are	localized	into	areas	delimited	by	4 

superstructures.	5 

This phenomenon of localization between the ribs seems to begin at around 1600 6 

Hz, thus when the wavelengths are around the same order of magnitude as the 7 

inter-rib spaces [17], [18]. But as shown in Fig. 12, the percentage of this family is 8 

quiet low compared to the “blocked modes” (only 14% vs. 67%): the wavelength 9 

condition seems to be a necessary but not sufficient to localize the vibrations in a 10 

reduced area of the soundboard. 11 

Finally, the last 4% are unclassified modes: the bridges begin to minimize the 12 

transverse displacement but not completely. 13 

III.C.2. MOBILITY, SPACE AVERAGE QUADRATIC VELOCITY AND 14 

ACOUSTIC RADIATED POWER ALONG THE BRIDGE 15 

The mechanical mobility at the bridge is an essential quantity in musical acoustics 16 

because it characterizes the transfer between the source and the radiator. Several 17 

piano soundboard studies exist on the subject [11], [18]. In the case of a harp 18 

soundboard, maps of mobility along the soundboard (where the points chosen for 19 

2913 Hz 1607,3 Hz 



 B. Trévisan , K. Ege and B. Laulagnet 

 27 

the excitation correspond to the coupling points between the soundboard and the 1 

strings) as function of the frequency have been performed by [61], [62]. 2 

However, the utility of mobility is limited to the local vibration at the excitation point. 3 

In addition, we think it is worthwhile completing the analysis with other indicators, 4 

such as space average quadratic velocity and acoustic radiated power, which take 5 

into account the entire vibration of the soundboard. In this way, we consider an 6 

excitation located on different points of the main bridge, corresponding to the string 7 

coupling points ranging from note 32 (E3 with a fundamental frequencyof  f0=164.8 8 

Hz) to 76 (C7 with f0=2093 Hz), so from the left to the right of the entire main 9 

bridge (parts 1 and 2) in Fig. 6. 10 

Fig. 13 shows, from top to bottom: the mobility, the space average quadratic 11 

velocity and the acoustic radiated power. Each of them is expressed in dB scale, 12 

plotted with the same dynamic of 60 dB. 13 

Note that in the case of a harmonic problem when considering the modal 14 

decomposition Eq. (2) and the relation between the initial and piano basis Eq. (5), 15 

the space average quadratic velocity in the soundboard area is given by the 16 

following expression [29]: 17 

𝑣3(𝜔) =
𝐿8𝐿;
𝑆m]D

𝜔3

8 𝑎\] 𝜔 3
J

]@7

_

\@7

=
𝐿8𝐿;
𝑆m]D

𝜔3

8 𝑏
D
∗(𝜔)𝑇D𝑇𝑏(𝜔) (19) 

where t refers to the transpose matrix or vector and * to the complex conjugate. Sint 18 

is the surface of the soundboard, i.e. the unblocked surface. Regarding the 19 

radiated acoustic power, its expression was given in Eq. (17). 20 
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	1 
Fig.	13	-	(Color	online)	Evolution	of	local	and	general	indicators	at	string/main	bridge	coupling	points:	2 

Top:	mobility;	Center:		space	average	quadratic	velocity;	Bottom:	Acoustic	radiated	power.	3 

Globally, the three indicators follow the same trends. Firstly, dB levels tend to 4 

decrease when the frequency increases. Moreover, the strings coupled near the 5 

extremity and near the cut-off of the main bridge are sensitive to the local and 6 

sudden change of the bridge height. Thus, there is an increase of mobility, space 7 

average quadratic velocity and acoustic radiated power around 0.3 m and 1.2 m in 8 

Fig. 13, i.e. near the beginning of the bridge and near its break. 9 

Secondly, in the frequency range [400;3000] Hz the dynamic level is around 1/3 10 

lower than 400 Hz. This becomes more apparent at high frequency when the 11 

modal overlap masks the mode resonances. 12 
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However, the dynamic level of the mobility is higher than the others, regardless of 1 

the frequency range (see Fig. 13). This is consistent because mobility is a local 2 

indicator whereas the others take into account the entire behavior of the 3 

soundboard. Below 400 Hz, the mobility fluctuates around 65 dB whereas the 4 

space average quadratic velocity and the radiated power only around 40 dB, so 5 

around 1/3 lower. Above 400 Hz, the ratio is around the same order of magnitude. 6 

III.C.3. MOBILITY AND ACOUSTIC RADIATED POWER FROM THE MUSICAL 7 

VIEWPOINT  8 

From the musical viewpoint, the large quantity of information in this kind of 9 

presentation makes it difficult to interpret the results. Indeed, the response of an 10 

instrument is not continuous in frequency but discrete, in addition to the discrete 11 

variation of the excitation position. In the case of a harp soundboard, [61], [62] 12 

focused on admittance at discrete frequencies corresponding to string 13 

fundamentals. These authors also did the same for the first and the second 14 

partials, neglecting the inharmonicity brought about by mobility, i.e. by simply 15 

multiplying the fundamental frequencies. In the following, we extend this idea to 16 

the acoustic radiated power. This study is limited to partials due to string 17 

transverse waves below 3 kHz. We present the average values of each indicator 18 

and the gradients between successive notes (in absolute values) from the 32th to 19 

76th. All the partials have the same magnitudes. We give the following expressions 20 

for the average values of mobility and acoustic radiated power: 21 
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𝐿_ 𝑘𝑒𝑦 = 20	𝑙𝑜𝑔
1
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𝐿® 𝑘𝑒𝑦 = 10	𝑙𝑜𝑔
1

𝑁+jlDmji&
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Obviously, we are still far from a realistic force because the different partials do not 1 

have the same amplitudes in reality. However, the advantage of these indicators is 2 

that they present “pictures” of pianos, making it possible to compare different 3 

instrument designs. 4 

In all the following figures, the X-axis limits are the same but the labels are 5 

different. That of the radiated power corresponds to the note numbers with the 6 

related note names whereas that of the mobility corresponds to the fundamental 7 

frequencies of each note. Moreover, all these figures are plotted with the same 8 

dynamic in order to compare the variation of each indicator. 9 



 B. Trévisan , K. Ege and B. Laulagnet 

 31 

	1 
Fig.	14	-	(Color	online)	Evolution	of	mobility	(top)	and	acoustic	radiated	power	(bottom)	of	a	P131	2 

soundboard.	Left:	dB	values	of	indicators;	Right:	gradients	(absolute	values)	between	two	successive	3 

notes	in	dB.	4 

Up to now, we have only focused on the results relating to the P131 soundboard 5 

(Fig. 14). A major tendency is the inhomogeneity of mobility and power levels 6 

along the bridge (left Fig. 14), particularly at the bridge break between notes 58 7 

and 59, where both increase considerably. The same applies for the notes near 8 

the beginning of the main bridge (near notes 32) where dB levels have the same 9 

orders of magnitude as at the break. 10 

The inhomogeneity of the response along the bridge is not limited to its beginning 11 

and break. Regardless of the indicators, focusing on discrete frequencies also 12 

shows that the higher variations appear after the bridge break, which is not 13 

obvious on the mobility map view in Fig. 13. Above note 59, the wavelengths 14 

become small and the waves no longer pass through the bridge break, contrary to 15 

waves with lower frequencies. Therefore the second part of the main bridge 16 
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(almost half the size of the first part of the main bridge, see Fig. 6) cannot 1 

distribute the vibration over the whole soundboard. 2 

Moreover, the latter notes suffer from poor harmonic richness that maximizes the 3 

variations. Indeed, in the case of the first notes, the large number of harmonics will 4 

average the soundboard response, partly masking this phenomenon. Thus our 5 

model shows that the higher the order of notes is, the greater the variability may 6 

be. 7 

This raises the question of the “killer-octave” which is, according to piano makers, 8 

around the penultimate octave (C6 to C7). Fandrich [72] describes it as a region in 9 

the fifth to sixth octave (C5 to C6) of the keyboard. In both cases, it is 10 

characterized by low sustain and is present in most pianos regardless of 11 

construction method or soundboard design. Our results show two areas that could 12 

correspond to this phenomenon: the first with a large increase of the mobility and 13 

the acoustic radiated power; the second their decrease. 14 

Focusing only on the average values would lead to an incomplete study. Indeed, in 15 

a playing situation, a major variation between two consecutive notes implies 16 

considerable perceptive inhomogeneity for the pianist and the listener. With this in 17 

mind, the gradients between successive notes provide much interesting 18 

information (right, Fig. 14). They show considerable variability between two 19 

successive notes and thus heterogeneous playing: the average mobility and 20 

acoustic radiated power gradients are around 1.33 and 1.23 dB, respectively. 21 
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The soundboard response can also be split into two ranges of notes. For the third 1 

and fourth octaves, the note-to-note gradients are low and the responses are 2 

globally homogeneous, which is also the case for both the mobility and the 3 

acoustic radiated power. Above the beginning of the fifth octave at around 659 Hz, 4 

the gradients increase, with higher values of around 4 dB. Thus, for high-pitched 5 

notes, it is common to have a perceived acoustic power division or multiplication 6 

by 2.5 compared to the previous notes. The same effect occurs near the beginning 7 

of the bridge but to a lesser extent. Note that a significant  mobility gradient does 8 

not systematically mean the same for the acoustic radiated power and vice-versa. 9 

Moreover, we do not find a regular relationship between a decrease of the 10 

indicators and the location of the ribs (represented by dashed lines in Fig. 14): 11 

sometimes a coupling close to a rib tends to decrease the three indicators and 12 

sometimes it tends to increase them. 13 

To review, the behavior can be split into two main ranges: after the bridge break, 14 

where the note–to-note gradients are higher and where there are major global 15 

variations of mobility and acoustic radiated power; before the bridge break where 16 

global variations of mobility and radiated power also exist but are lower. High-17 

pitched notes (and the first notes) seem to be particularly difficult to control by 18 

piano makers, contrary to medium notes. 19 

Applying a force at the bridge tends to distribute the force over the entire plate and 20 

thus homogenize the piano soundboard response. In the case of discontinuities, 21 

this distribution effect is broken if the discontinuity is significant enough compared 22 
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to the wavelength of the wave propagated: at low frequencies, the wavelengths 1 

are long and the discontinuity has no impact on the propagation; at high 2 

frequencies, the wavelengths are short and a discontinuity will be an obstacle to 3 

the propagation of waves. 4 

Finally, as with all string instruments, piano strings have multiple modal 5 

frequencies called partials or harmonics. For 32th note, there are 18 frequencies 6 

below 3 kHz, whereas there is only one for the last note studied, number 76. Thus 7 

a discontinuity could have a higher influence on high-pitched notes and on the high 8 

order harmonics of the first notes. Consequently, it seems that if a bridge break is 9 

necessary in the design of the instrument it could be placed at low frequency to 10 

minimize its effect. On the contrary, the removal of any break at the bridge would 11 

homogenize the response of the instrument. 12 

III.D. EXPERIMENTAL AND NUMERICAL COMPARISONS 13 

To confirm the hypothesis made in our model, some comparisons were made with 14 

the Nastran FEM method and experimental results. The measurements were 15 

performed in the framework of an internship Master degree [73]. We present several 16 

results in this paper to validate the hypothesis made in our model. The Pleyel P131 17 

soundboard used was separated from the case and clamped to a solid wall made of 18 

concrete to recreate baffled conditions. The structure was excited at the bridge in the 19 

treble zone with a white noise and the vibration measured on the rib side with a 20 

POLYTEC PSV-400 vibrometer laser with a mesh of 4600 points. Despite the 21 

geometrical simplifications in our model, the experimental results showed good 22 
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agreement between the modal shapes and those of our model, as shown by the 1 

images in the top row in Fig. 15, for low frequency modes. In addition, the lower 2 

images in Fig. 15 give examples of high order modes around 2 kHz, where the 3 

superstructures strongly minimize the vibrations. 4 

	5 
Fig.	15	-	(Color	online)	Comparison	of	Pleyel	P131	modal	shapes	between	our	analytical	modelling	6 

and	experimental	results.	7 

However the first eigen-frequencies were higher in our model: the experimental 8 

eigen-frequency was around 66 Hz whereas that of the analytical model was around 9 

100 Hz. Therefore the acoustic radiation was overestimated around the first modes 10 

without, however, changing the general trends. These differences highlight that the 11 

structure in our model was too rigid. This was not due to geometrical simplifications 12 

(superstructures parallel to plate edges, rib heights, etc.) since the spatial aspects 13 

(modal shapes) were well-described and compared with the measurements. 14 

Experimental resultsAnalytical modelling
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However, membrane effects may have had an impact on the eigen-frequencies of the 1 

first modes and quickly disappeared. To determine whether this was the case, we 2 

compared the experimental and our own results with a Nastran FEM model with the 3 

same geometrical simplifications. In order to confirm the geometrical simplifications, 4 

they were also simulated in the FEM model. The plate was meshed with PSHELL 5 

elements and the superstructures with PBEAM elements deported on each face. The 6 

FEM model is shown in Fig. 16 in which we consider two cases: the first with a 7 

blocked membrane imposing no displacements of the plate elements; the second 8 

with a membrane effect. 9 

	10 
Fig.	16	-	(Color	online)	Nastran	FEM	model	of	Pleyel	P131	soundboard	with	the	same	geometrical	11 

simplifications	as	in	our	model.	a)	and	c)	view	of	ribs	view	with	cut-off	corner	beams;	b)	and	d)	bridge	12 

view.	13 

To ensure the convergence of the calculations, the size of the finite elements must be 14 

at least 1mm due to the addition of stiffeners (see Fig. 17). On the contrary, the same 15 

figure shows that it is not useful to increase the order of truncation in our model even 16 

a) b)

c) d)
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if it slightly increases the precision of our calculations. This result also shows that 1 

both models converge to the same solution via two different paths: our model 2 

converged from the top (increasing the order of truncation provides flexibility) 3 

whereas the FEM model converged from the bottom. 4 

	5 
Fig.	17	-	(Color	online)	Eigen-frequency	convergences	for	our	model	and	the	Nastran	FEM	model	6 

(without	membrane)	as	a	function	of	truncation	order	and	the	mesh	size.	7 

The comparison of the three modelling and experimental results shows that the 8 

modal shapes are very similar, as shown in Fig. 18. This main result confirms the 9 

geometrical simplifications made in our model. On the contrary, the frequencies are 10 

different and also confirm our hypothesis relating to the membrane effect. Indeed, the 11 

frequencies of the FEM model without membrane were close to the frequencies of 12 

our model, whereas those of the FEM with membrane were close the experimental 13 

frequencies. 14 

These comparisons show that the geometrical simplifications were relevant. 15 

Membrane effects have an influence on the first eigen-frequencies and thus imply an 16 

overestimation of the acoustic radiation at low frequencies. However, it is important to 17 

keep in mind that the aim of this model is to perform parametrical studies. Therefore, 18 

even if the first frequencies were higher than those of the real soundboard, the 19 
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membrane effects do not change the conclusions resulting from the comparison 1 

made with our model. 2 

	3 
Fig.	18	-	(Color	online)	Comparison	of	numerical	and	experimental	modal	shapes	using	four	methods.	4 

From	left	to	right:	analytical	modelling,	Nastran	FEM	without	membrane,	Nastran	FEM	with	5 

membrane	and	experimental	results.	6 

Obviously, these comparisons assume a flat soundboard and not one in a playing 7 

situation. In practice the soundboard is manufactured with an initial crown in order to 8 
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ensure the contact between the strings and the bridges. Applying and tuning the 1 

strings have two consequences: the initial crown lowers and compression stresses 2 

are applied to the plate edges. This phenomenon is known as “downbearing” and 3 

implies an increase of the first eigen-frequencies, as was shown in [74] and [67] 4 

where we can find crossed comparisons of [4], [8], [74]–[77].  5 

However, simple reasoning leads to conclusions to the contrary. Indeed, lowering the 6 

crown implies decreasing the eigen-frequencies [78]. The same effect occurs when 7 

compression stresses are applied to the plate [79], [64]–[66]. In both cases, it quickly 8 

becomes negligible when the frequency increases. To explain this, it seems that the 9 

initial crown produced by manufacturing implies a non-linear evolution of the first 10 

eigen-frequencies of the soundboard. Thus the latter can increase or decrease 11 

depending on the initial crown: the consequences depend on the soundboard [80]. 12 

Nevertheless, neglecting downbearing effects does hinder parametrical studies in the 13 

same as membrane effects: the frequency shift will be around the same order of 14 

magnitude in all the following studies. 15 

IV. SENSITIVITY TO STRUCTURAL CHANGES 16 

From subsection III.C.3, we know that structural heterogeneities imply variations of the 17 

piano soundboard response, probably leading to a discontinuous timbre or perceived 18 

sound, which is a difficulty expressed by piano makers. Although the components of the 19 

force injected at the coupling point with the bridge do not have the same magnitudes, 20 

we think that ensuring a linear or progressive evolution of each indicator presented in 21 

III.C.3 will be interesting from the musical viewpoint. At least, their variations and 22 



 B. Trévisan , K. Ege and B. Laulagnet 

 40 

especially the gradients should be greatly reduced in order to obtain more 1 

homogeneous playing. 2 

Therefore we wanted to see how the vibro-acoustic behavior is modified through 3 

structural changes. Hence we now consider two additional cases illustrated in Fig. 19: 4 

Pleyel P131 soundboard with a continuous main bridge; P131 soundboard with ribs 1 5 

and 2 removed. These cases are compared to the reference case presented previously 6 

in III.C.3. In order to simplify the reading, solid lines are used instead of markers 7 

although we continue to focus on a spectrum of discrete frequencies. 8 

	9 
Fig.	19	-	(Color	online)	Different	sets	of	upright	piano	soundboards	based	on	the	Pleyel	P131	10 

configuration.	a)	Reference	case:	Pleyel	P131;	b)	Continuous	main	bridge;	c)	Removal	of	ribs	for	high-11 

pitched	notes.	12 

IV.A. CONTINUOUS MAIN BRIDGE 13 

Obviously, a continuous main bridge implies eliminating the defect between note 14 

numbers 58 and 59 because there is no longer any abrupt and local change of 15 

stiffness (Fig. 20, left). Moreover, the waves are better spread all over the 16 

soundboard because small wavelengths are no longer blocked by the bridge break. 17 
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Thus the global variations above note 56 are now lower than in the reference case 1 

(left Fig. 14), regardless of the indicators. 2 

	3 
Fig.	20	-	(Color	online)	Comparison	between	the	P131	soundboard	analyzed	in	III.C.3	and	the	P131	4 

soundboard	with	a	continuous	main	bridge.	5 

Concerning the note-to-note gradients, their average values are lower than in the 6 

reference case, especially that of mobility (see average values in Fig. 20, right). 7 

However, we can see that the gradients of high-pitched notes are lower but still 8 

remain high for both indicators. In the case of the acoustic radiated power, it leads to 9 

a perceived division or multiplication of this power by two from the previous notes (3 10 

dB). For the notes originally placed before the bridge break, few changes can be 11 

noted on the mobility gradients. On the contrary, a continuous bridge increases the 12 

acoustic radiated power gradients in the frequency band [165;650] Hz. Therefore, as 13 

the average radiated power gradients are around the same order of magnitude for 14 

both cases, it appears that it is to the detriment of mid-frequency notes (fundamental 15 
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frequency lower than 650 Hz) and to the advantage of notes with a fundamental 1 

frequency higher than 650 Hz. 2 

IV.B. REMOVAL OF RIBS IN THE TREBLE ZONE 3 

Contrary to the previous case, the removal of two ribs has no effect on the first part of 4 

the main bridge (below note number 56 in Fig. 21). In this range, the changes are 5 

negligible for both indicators, as much for the average values as for the gradients. 6 

Obviously, the effect of the main bridge break remains, with a pronounced increase 7 

of the two indicators around note number 58 (Fig. 21, left), and also significant local 8 

gradients (Fig. 21, right). For high-pitched notes, the two indicators do not follow the 9 

same trends, contrary to the previous cases. For high-pitched notes, the mobility 10 

level increases because the stiffness becomes lower locally due to the removal of the 11 

stiffeners (top left Fig. 21). The loss of mobility from notes 62 to 67 in the reference 12 

case (900 to 1250 Hz) has now been eliminated. At higher frequencies, mobility 13 

increases until note number 71 (1550 Hz) and finally decreases. Thus the removal of 14 

ribs will lead to a lower sustain due to the quicker injection of string energies in high-15 

pitched notes. 16 

However, this solution presents the advantage of substantially decreasing the 17 

gradient between notes: globally the ratio of average gradients is around 3/4 between 18 

the two cases (Fig. 21, top right). Focusing above note number 62, this ratio falls to 19 

around 1/2 with average gradients of 1.5 dB and 0.8 dB, respectively, for the 20 

reference case and the P131 soundboard without two ribs. 21 
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	1 
Fig.	21	-	(Color	online)	Comparison	between	the	P131	soundboard	analyzed	in	III.C.3	and	the	P131	2 

soundboard	with	ribs	1	and	2	removed.	3 

As for the mobility, the acoustic radiated power is impacted after the bridge break and 4 

seems to approximately follow a decreasing linear tendency, passing in the middle of 5 

the reference case (Fig. 21, bottom right). However, some variations of radiated 6 

power moving to high frequency remain. Consequently, the maximum gradient is only 7 

slightly lower but its average gradient is the same. 8 

Finally, for the high-pitched notes, removing the ribs implies higher mobility and thus 9 

a lower sustain. By way of compensation, the variations of the two indicators are 10 

lower than in the reference case. From the musical viewpoint, removing the ribs 11 

allows more homogeneous playing with lower variations between consecutive notes 12 

for this frequency range. 13 

These parametrical studies show the difficulty of controlling the piano soundboard 14 

response, particularly in the treble zone, which can be considered as a sensitive 15 

range. For these notes, a structural change has a considerable effect on their 16 
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behavior, as shown in this article. Moreover, the bridge break homogenizes the 1 

behavior of the third and fourth octaves. Regarding the bridge length, it could be 2 

interesting to increase it at the beginning without changing the string coupling points, 3 

in order to homogenize the behavior of the first notes. We also suggest several 4 

improvements in order to reduce global and note-to-note variations in the ranges 5 

where the response is inhomogeneous. 6 

Considering the design constraints (addition of stiffeners over the whole soundboard 7 

due to the stress applied by the strings and breaking the bridge to let the cast iron 8 

plate pass through), the reference case demonstrates the skill and knowledge of 9 

piano makers. Indeed, their empirical method of design allows them to control the 10 

sound produced without scientific prediction tools. 11 

V. CONCLUSION 12 

This article presented how to model the piano soundboard, that is to say a complex 13 

structure with non-rectangular contours, composed of a material with an angle of 14 

orthotropy and several stiffeners in positioned in different direction. Here, we limited our 15 

study to the case of an upright piano soundboard in the frequency domain [0;3000] Hz. 16 

The model developed allowed us to calculate the modes of this complex ribbed 17 

structure and classify them into different families: those for which modal shapes are 18 

similar to unribbed plate modes, those for which only strong superstructures inhibit the 19 

vibration, those for which all superstructures block vibrations, and those for which 20 

vibration is localized in different areas of the soundboard. It was shown that these 21 

families depend on the frequency ranges and the wavelengths of modes. 22 
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Moreover, we also presented maps of the mobility, the space average quadratic velocity 1 

and the acoustic radiated power as a function of the excitation points (string coupling 2 

positions). Moreover, we showed that focusing on these maps is not fully relevant and 3 

introduced indicators that are more accurate from the musical standpoint. 4 

We highlighted a frequency range that seems to be difficult to control for piano makers, 5 

due to high global and note-to-note variability (high-pitched notes), whereas the low and 6 

mid-range frequencies are well mastered by them. Mainly guided by technical 7 

constraints, the traditional design appears to be a good solution considering that piano 8 

makers do not necessarily use scientific prediction tools. 9 

To conclude, although the model presented in this paper suffers from limitations 10 

(membrane effects, downbearing and geometrical simplifications), and so does not 11 

describe a soundboard in a playing situation, it appears that these limitations do not 12 

affect the general trends, meaning that the method is relevant to parametrical studies. 13 

Some of the proposals, such as a continuous main bridge and removing ribs for high-14 

pitched notes, provide paths of improvement to make playing more homogenous. 15 

However, they imply changing the design of the instrument to make it possible. 16 
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Appendix A Hamiltonian calculations of a superstructure 1 

In this appendix, we give the main steps of the calculations for expressing the 2 

Hamiltonian of an arbitrary superstructure. To make reading simpler, we have chosen a 3 

bridge. At the end of the appendix, we give the function for a rib including the change of 4 

height. 5 

The partial Hamiltonian is defined as: 6 

H = 𝐸� − 𝐸� 𝑑𝑡

DE

DF

 (A.1) 

Where 𝐸� refers to kinetic energy and 𝐸� refers to strain energy. 𝑡A; 𝑡7  is an arbitrary 7 

time interval. 8 

We first begin by defining the displacement field of the superstructure in direction 𝑥 at 9 

position y=yc: 10 

𝑢� 𝑥, 𝑧, 𝑡 = −𝑧𝑤,8(𝑥, 𝑦�, 𝑡)

𝑣� 𝑥, 𝑧, 𝑡 = −𝑧𝑤,;(𝑥, 𝑦�, 𝑡)

𝑤� 𝑥, 𝑦, 𝑡 = 𝑤 𝑥, 𝑦�, 𝑡 + 𝑦 − 𝑦� 𝑤,;(𝑥, 𝑦�, 𝑡)

 (A.2) 

Where 𝑦 ∈ 𝑦� − 𝑏� 2 ; 𝑦� + 𝑏� 2  and 𝑧 ∈ ℎ 2 ; ℎ 2 + 𝐻�  where ℎ  and 𝐻  are 11 

respectively the plate thickness and the rib height. 12 

The kinetic and strain energies are calculated on the entire bridge volume placed at 13 

y=yc. The superstructure is defined for 𝑥 ∈ 𝑥m]m; 𝑥�m] . Let the kinetic energy be: 14 
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E² =
1
2 𝜌� 𝑢�3 + 𝑣�3 + 𝑤�3

³ 3�´µ

¶@³ 3

𝑑𝑥

8���

8@8���

𝑑𝑦𝑑𝑧

�µ 3

;@·�µ 3

 (A.3) 

By replacing 𝑢�3,	𝑣�3	and	𝑤�3 by their expression from A.2 and after making the integrals of 1 

variables y and z, we obtain: 2 

E² =
1
2𝜌� 𝑏�𝐻�𝑤3 + 𝐼��𝑤,83 + 𝐼n�𝑤,;3 𝑑𝑥

8���

8@8���

 (A.4) 

Where the bending inertia is equal to 𝐼�� =
�µ
:

ℎ 2 + 𝐻� : − ℎ 2 :  and torsion inertia 3 

is 𝐼n� = 𝐼�� +
´µ�µS

73
. 4 

For the strain energy, we must calculate the small deformation tensor 𝝐 = 7
3
𝑔𝑟𝑎𝑑 𝑼 +5 

𝑔𝑟𝑎𝑑 𝑼 D  and the strain tensor 𝝐 = 𝑀&𝝈 (inverse Hook law). We find the following small 6 

deformation tensor in its vector form: 7 

𝝐 =
1
2

−2𝑧𝑤,88(𝑥, 𝑦�, 𝑡)
0
0

−𝑧𝑤,8;(𝑥, 𝑦�, 𝑡)
𝑦𝑤,8;(𝑥, 𝑦�, 𝑡)

0

 (A.5) 

The strains are linked to deformation through a flexibility matrix. The matrix 𝑀& for an 8 

orthotropic material is: 9 
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𝑀& =

1
𝐸8

−
𝜈8;
𝐸8

−
𝜈8¶
𝐸8

−
𝜈;8
𝐸;

1
𝐸;

−
𝜈;¶
𝐸;

−
𝜈¶8
𝐸¶

−
𝜈¶;
𝐸¶

1
𝐸¶

(0)

(0)

1
2𝐺8;

1
2𝐺8¶

1
2𝐺;¶

 (A.6) 

Thus, we determine the strain in the bridge: 1 

𝜎88 = −𝑧𝐸8𝑤,88(𝑥, 𝑦�, 𝑡)

𝜎8; = −𝑧𝐺8;𝑤,8;(𝑥, 𝑦�, 𝑡)

𝜎8¶ = 𝑦𝐺8¶𝑤,8;(𝑥, 𝑦�, 𝑡)

 (A.7) 

After which we calculate the strain energy, let: 2 

E¼ =
1
2 𝐸8𝐼��𝑤,883 𝑥, 𝑦�, 𝑡 + 𝐷n𝑤,8;3 (𝑥, 𝑦�, 𝑡) 𝑑𝑥

8���

8@8���

 (A.8) 

With 𝐷n = 𝐺8;𝐼�� + 𝐺8¶
´µ�µ
73
	 that we define as the torsion dynamic rigidity of an 3 

orthotropic beam in the plane 𝑦, 𝑧 . 4 

For the sake of simplicity, we consider the beam as isotropic in the following. 𝐷n 5 

becomes 𝐷n = 𝐺�𝐼n�  and we define 𝐸�  as the Young modulus of the bridge. Thus we 6 

express the Hamiltonian of the bridge: 7 
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H½¾¿¼ÀÁ =
1
2

𝜌� 𝑏�𝐻�𝑤3 𝑥, 𝑦�, 𝑡 + 𝐼��𝑤,83 𝑥, 𝑦�, 𝑡 + 𝐼n�𝑤,;3 𝑥, 𝑦�, 𝑡

8���

8@8���

DE

DF

− 𝐸�𝐼��𝑤,883 𝑥, 𝑦�, 𝑡 + 𝐷n𝑤,8;3 (𝑥, 𝑦�, 𝑡) 𝑑𝑥 𝑑𝑡 

(A.9) 

That we gather on a line at y=yc: 1 

H½¾¿¼ÀÁ =
1
2

𝜌� 𝑏�𝐻�𝑤3(𝑥, 𝑦, 𝑡) + 𝐼��𝑤,83(𝑥, 𝑦, 𝑡) + 𝐼n�𝑤,;3 (𝑥, 𝑦, 𝑡)

>?

;@A

8���

8@8���

DE

DF

− 𝐸�𝐼��𝑤,883 𝑥, 𝑦, 𝑡 + 𝐺�𝐼n�𝑤,8;3 𝑥, 𝑦, 𝑡 𝛿(𝑦 − 𝑦�)𝑑𝑥𝑑𝑦 𝑑𝑡 

(A.10) 

The same approach is followed for the ribs. Beyond the change of orientation, the only 2 

change is that the height of the ribs is different at the extremities (around 5mm). See 3 

Fig. 7-b. Thus the integral along the direction of the rib can be split: the two extremities 4 

with a height of 5mm and the middle part with a height of H. Finally, we consider a 5 

number of rib N¾ equal to the sum of ribs and extremities. Thus we give the expression 6 

of the Hamiltonian of rib: 7 

H¾¿½ =
1
2

𝜌l 𝑏𝐻𝑤3 𝑥, 𝑦, 𝑡 + 𝐼�𝑤,;3 𝑥, 𝑦, 𝑡 + 𝐼n𝑤,83 𝑥, 𝑦, 𝑡

;���

;@;���

>B

8@A

DE

DF

− 𝐸l𝐼�𝑤,;;3 𝑥, 𝑦, 𝑡 + 𝐺l𝐼n𝑤,8;3 𝑥, 𝑦, 𝑡 𝛿(𝑥 − 𝑥l)𝑑𝑥𝑑𝑦 𝑑𝑡 

(A.11) 

 8 

  9 
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Table of figures 1 

Fig. 1 - (Color online) Upright piano soundboard of Pleyel P131 with Ex and Ey being the 2 
strong and the weak Young’s moduli of the wood. View from front side (bridge side) 3 
with ribs and cut-off corner beams added in transparency.	4 

Fig. 2 - (Color online) The addition of springs on a rectangular simply supported plate. 5 
On the left: the initial plate with specific orthotropy; on the right: the addition of 6 
springs. The non–rectangular contours and the non-specified angle of orthotropy 7 
are well described.	8 

Fig. 3 - (Color online) Examples of possible geometries with different orthotropy angles 9 
and edges.	10 

Fig. 4 - (Color online) Influence of spring rigidity. a) Average quadratic velocity ratio for 11 
two spring rigidities. Solid line: sufficient rigidity; dashed line: insufficient rigidity. 12 
The excitation is placed at (xe,ye)=(1.26,0.76).  b) Modal density per octave for two 13 
spring rigidities and analytical plot from [11], [17], [67] Eq. (A.13):  circle markers: 14 
sufficient spring rigidity; square markers: insufficient spring rigidity; solid line: 15 
analytical expression.	16 

Fig. 5 - (Color online) Modal shapes of a clamped non-rectangular plate with an angle of 17 
orthotropy of 34.8°. Left: insufficient spring rigidity; Center: sufficient spring rigidity; 18 
Right: FEM-NASTRAN with a mesh of 5mm.	19 

Fig. 6 - (Color online) Geometry modelled for the Pleyel P131.	20 
Fig. 7 - (Color online) Rib geometry. a) Section view of a real soundboard rib. b) 21 

Simplified rib in the present model. c) Partial front view of the soundboard.	22 
Fig. 8 - (Color online) Classification of the first 200 modes of a Pleyel P131 soundboard.	23 
Fig. 9 - (Color online) Low frequency modes similar to unribbed plate modes.	24 
Fig. 10 - (Color online) Modes where the transverse displacement is strongly minimized 25 

by the bridges.	26 
Fig. 11 - (Color online) Modes where the transverse displacement is strongly minimized 27 

by all the superstructures.	28 
Fig. 12 - (Color online) Modes where the vibrations are localized into areas delimited by 29 

superstructures.	30 
Fig. 13 - (Color online) Evolution of local and general indicators at string/main bridge 31 

coupling points: Top: mobility; Center:  space average quadratic velocity; Bottom: 32 
Acoustic radiated power.	33 

Fig. 14 - (Color online) Evolution of mobility (top) and acoustic radiated power (bottom) 34 
of a P131 soundboard. Left: dB values of indicators; Right: gradients (absolute 35 
values) between two successive notes in dB.	36 

Fig. 15 - (Color online) Comparison of Pleyel P131 modal shapes between our 37 
analytical modelling and experimental results.	38 

Fig. 16 - (Color online) Nastran FEM model of Pleyel P131 soundboard with the same 39 
geometrical simplifications as in our model. a) and c) view of ribs view with cut-off 40 
corner beams; b) and d) bridge view.	41 
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Fig. 17 - (Color online) Eigen-frequency convergences for our model and the Nastran 1 
FEM model (without membrane) as a function of truncation order and the mesh 2 
size.	3 

Fig. 18 - (Color online) Comparison of numerical and experimental modal shapes using 4 
four methods. From left to right: analytical modelling, Nastran FEM without 5 
membrane, Nastran FEM with membrane and experimental results.	6 

Fig. 19 - (Color online) Different sets of upright piano soundboards based on the Pleyel 7 
P131 configuration. a) Reference case: Pleyel P131; b) Continuous main bridge; c) 8 
Removal of ribs for high-pitched notes.	9 

Fig. 20 - (Color online) Comparison between the P131 soundboard analyzed in III.C.3 10 
and the P131 soundboard with a continuous main bridge.	11 

Fig. 21 - (Color online) Comparison between the P131 soundboard analyzed in III.C.3 12 
and the P131 soundboard with ribs 1 and 2 removed.	13 
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𝜌	[kg.m-3]	 440	
h	[m]	 0,007	
Lx	[m]	 1,61	
Ly	[m]	 1,56	
Ex	[Pa]	 1,59	E10	
Ey	[Pa]	 6,90	E8	
nuxy	 0,44	
nuyx	 0,019	

Gxy	[Pa]	 6,20E+08	

Table	1	–	Properties	of	the	extended	orthotropic	spruce	plate.	1 

 2 

 
Main	bridge	

part	1	
Main	bridge	

part	2	
Bass	
bridge	

Cut-off	corner	
beam	1	

Cut-off	corner	
beam	2	

𝜌� 	[kg.m-3]	 674	
Hc	[m]	 0.033	 0.038	 0.0185	 0.0192 
bc	[m]	 0.035	 0.0325	 0.0345	
Ec	[Pa]	 1.40E+10 
Gc	[Pa]	 4.70E+008 
yc	[m]	 0.78	 0.72	 0.48	 0.26	 1.27 
L	[m]	 0.88 0.41 0.47 0.51 0.52 

Table	2	-	Dimensions	and	properties	of	bridges	and	“cut-off”	corner	beams.	3 

 4 
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Rib	n°	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	
𝜌l 	[kg.m-3]	 440	

H	[m]	 0.01
5	 0.019	 0.02	 0.02	 0.02	 0.02	 0.02	 0.022	 0.019	 0.016	

b	[m]	 0.025	
Er		[Pa]	 1.59E+10	
Gr	[Pa]	 6.20E+008	
L1	[m]	 0.04	 0.05	 0.07	 0.08	 0.15	 0.16	 0.17	 0.18	 0.18	 0.10	
L2	[m]	 0.21	 0.41	 0.57	 0.69	 0.76	 0.76	 0.65	 0.56	 0.46	 0.31	
L3	[m]	 0.11	 0.16	 0.14	 0.11	 0.08	 0.10	 0.11	 0.10	 0.10	 0.10	

Rib	spacing	[m]	 0.117	 0.123	 0.127	 0.147	 0.143	 0.144	 0.134	 0.132	 0.123	 	

Table	3	-	Dimensions	and	properties	of	ribs.	1 

 Lx Plate length Ly Plate width  

 𝜌 Plate mass density h Plate thickness  

 Di Plate dynamic stiffness 𝜌l Rib mass density  

 Er Rib Young’s modulus H Rib height  

 b Rib width If Rib momentum of bending inertia  

 Gr Rib shear modulus Ig Rib momentum of torsion inertia  

 Ec Bridge Young’s modulus Hc Bridge height  

 bc Bridge width Ifc 
Bridge momentum of bending 

inertia 
 

 Gc Bridge shear modulus Igc 
Bridge momentum of torsion 

inertia 
 

 𝜌� Bridge mass density Hplate Plate Hamiltonian  

 Hrib Rib Hamiltonian Hbridge Bridge Hamiltonian  

Table	4	–	Description	of	the	different	constants	used	in	the	Hamiltonians.	2 


