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Thermomechanical Mortar contact algor
of nonlinear elasticity. Mortar methods 
the energy transfer between the surface
established numerical techniques for 
performance of the proposed framework
 and their application to NURBS based Iso-geometric Analysis are investigated in the context 
plied to both the mechanical field and the thermal field in order to model frictional contact, 
ell as the frictional heating. A series of simplifications are considered so that a wide range of 
r methods such as segmentation can be transferred to IGA without modification. The 
strated with representative numerical examples.
1. Introduction

In this contribution, we address transient isogeometric thermomechanical contact and impact problems in the context of
nonlinear elasticity. Thermoelastic material models have been investigated in detail over the past two decades, see Reese and
Govindjee [32], Miehe [25] and Holzapfel and Simo [15] among many others. Corresponding formulations for thermomechan-
ical frictional contact and impact interfaces have also been investigated and analysed in, e.g., Zavarise et al. [42], Strömberg
et al. [35], Saracibar [6] and Laursen [18]. Based on the first and second laws, the thermodynamic foundations of frictional
interfaces govern the formulation of appropriate constitutive laws and additionally play a major role in the construction of
the accompanying numerical schemes. The emphasis of the present contribution will be on the numerical aspects.

The spatial discretisation of the bodies in contact will be carried out in the context of NURBS based Isogeometric Analysis
(IGA), see Cottrell et al. [4] for a comprehensive review. Contact problems for IGA have been addressed in a series of papers
throughout the past years, see De Lorenzis et al. [20,21] and Temizer et al. [38,36,39]. In these works, a Knot-to-Surface (KTS)
method has been developed and extended to Mortar based contact formulations. Recently, Matzen et al. [24] have proposed
a collocation based approach, analogous to the well-known Node-to-Surface (NTS) method. See also Kim and Youn [17] for a
Mortar approach and Lu [22] for an alternative contact treatment.

Mortar formulations in the context of IGA domain decomposition problems have been presented in Hesch and Betsch
[14]. In the present contribution, we extend the ideas developed therein to thermomechanical contact in order to achieve
a variationally consistent Mortar formulation for the discrete contact interface. In particular, the Mortar projections will
be calculated via a newly developed segmentation procedure of the surface intersections, see Puso et al. [31] for a discussion



about different spatial integration schemes. For the thermal contributions, the Mortar concept will be applied by introducing
triple Mortar integrals to accurately capture the frictional dissipation contribution to the contact heat flux and to establish a
correct thermal interaction among the contacting surfaces. See also Hüeber and Wohlmuth [16] for Mortar methods applied
to thermoelasticity.

For transient impact problems, the bodies will be discretised in time using structure preserving integration schemes, fol-
lowing the approach in Hesch and Betsch [10]. This allows us to investigate the effect of different integration schemes for the
contact contributions, following Franke et al. [8] in the context of purely mechanical NTS methods. Specifically, we will de-
vote particular attention to the conservation of angular momentum and its possible violation.

An outline of the paper is as follows. The underlying thermomechanical framework for the bodies and the frictional con-
tact interface is presented in Section 2. The spatial discretisation using IGA as well as the Mortar formulation for the semi-
discrete system is developed in Section 3. The temporal discretisation is outlined in Section 4, followed by representative
numerical examples in Section 5 and conclusive remarks in Section 6.

2. Governing equations

In this section we summarize the variational form of the thermomechanical theory along with a most general description
of frictional contact contributions, embedded within the thermomechanical framework. In particular, we consider Lipschitz
bounded domains B

ðiÞ
0 � Rn;n 2 ½2; 3� in their reference configuration, where the upper index ðiÞ will denote the respective

body in the remainder of this article.1 Furthermore, we introduce the mapping
1 If co
indices.
uðX; tÞ : B0 � I ! Rn; ð1Þ
to characterise the time dependent deformation along with the absolute temperature
hðX; tÞ : B0 � I ! R ð2Þ
for the time interval t 2 I ¼ ½0; T� elapsed during the motion. Here, X 2 B0 labels material points in the reference configura-
tion and both fields are assumed to be sufficiently smooth.

2.1. Finite strain thermoelastodynamics

In a first step we postulate that the material behaviour is governed by a Helmholtz energy density function WðC; hÞ, where
C ¼ FT F denotes the right Cauchy–Green tensor and F : B0 � I ! Rn�n; F ¼ Du the deformation gradient. Accordingly, we de-
fine the local constitutive relations
R ¼ 2
@W
@C

; ð3Þ

g ¼ � @W
@h

: ð4Þ
Therein, R represents the second Piola–Kirchhoff stress tensor and g the local entropy density. A third constitutive relation is
required to account for the heat transfer
Q ¼ �K̂ðC; hÞrXðhÞ; ð5Þ
known as Duhamel’s law of heat conduction, where K̂ðC; hÞ is the material thermal conductivity tensor. Introducing the space
of virtual or admissible test functions for the deformation as well as for the absolute temperature
Vu ¼ du 2 H1ðB0Þjdu ¼ 0 on @B
u
0

� �
; ð6Þ

Vh ¼ dh 2 H1ðB0Þjdh ¼ 0 on @Bh
0

� �
; ð7Þ
where H1 denotes the Sobolev functional space of square integrable functions and derivatives, the weak form of the balance
of linear momentum and the energy balance equation reads
Gu :¼
Z
B0

q0du � €uþ R : FTrXðduÞdV �
Z
B0

du � �BdV �
Z
@Br

0

du � �T dA ¼ 0; ð8Þ

Gh :¼
Z
B0

dhh _g� Q � GradðdhÞdV �
Z
B0

dh ~RdV �
Z
@BQ

0

dh~Q dA ¼ 0: ð9Þ
Note that _gðC; hÞ can be decomposed into components denoted as heat capacity and latent heat, where the latter one is
responsible for the Gough–Joule effect. The external contributions at the boundary are specified by Dirichlet and Neumann
boundary conditions on the mechanical and thermal field, respectively
nvenient and unique the superscript index will be omitted for the ease of exposition. Moreover, we make use of the summation convention for repeated
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2 Not
pulled b
u ¼ �u on @Bu
0 � ½0; T�; h ¼ ~h on @Bh

0 � ½0; T�;
PN ¼ �T on @Br

0 � ½0; T�; Q � N ¼ �~Q on @BQ
0 � ½0; T�;

ð10Þ
whereas �B and ~R represents the material descriptions of prescribed body force and heat supply per unit volume. To complete
the set of equations for the initial boundary value problem (IBVP), initial conditions in B0 at time t ¼ 0 are specified by
uðX; 0Þ ¼ u0; _uðX;0Þ ¼ v0; hðX;0Þ ¼ h0 in B0: ð11Þ
The IBVP defined above has to be thermodynamical consistent, i.e. the IBVP has to obey the fundamental first and second law
of thermodynamics. The second law is of constitutive nature and is consistently represented in the definitions of (3)–(5), i.e.
we will not enforce the second law explicitly throughout this paper. The first law postulates the validity of the global energy
balance. To prove this for the problem at hand, we introduce suitable substitutions of the variations du ¼ _u in (8) and obtain
Z

B0

d
dt

1
2
q0 _u � _u

� �
þ _WðC;gÞ � @W

@h
_hdV ¼

Z
B0

_u � �BdV þ
Z
@Br

0

_u � �T dA: ð12Þ
A Legendre transformation is applied next to recast the system in terms of the inner energy density eðC; hÞ ¼ WðC; hÞ þ gh,
such that
d
dt

T þ
Z
B0

_e� _ghdV ¼ Pext; ð13Þ
where T denotes the kinetic energy and Pext the power of the external mechanical contributions. Substituting dh ¼ l in (9),
where l 2 R is arbitrary and constant, gives
Z

B0

h _gdV ¼
Z
B0

~RdV �
Z
@BQ

0

Q � N dA: ð14Þ
Insertion in (13) yields the global energy balance equation
d
dt
½T þ E� ¼ Pext þ Q ; ð15Þ
where Q is the total net heating of the continuum body and E ¼
R
B0

edV . The last equation represents the fundamental first
law of thermodynamics for the coupled thermomechanical system.

2.2. Contact formulation

Assuming two bodies ðiÞ 2 ½1; 2� in a contact situation, the boundaries are further subdivided and satisfy
@B
ðiÞ;c
0 [ @BðiÞ;u0 [ @BðiÞ;r0 ¼ @BðiÞ;c0 [ @BðiÞ;h0 [ @BðiÞ;Q0 ¼ @BðiÞ0 ð16Þ
and
@B
ðiÞ;c
0 \ @BðiÞ;u0 ¼ @BðiÞ;u0 \ @BðiÞ;r0 ¼ @BðiÞ;r0 \ @BðiÞ;c0 ¼ ;;

@B
ðiÞ;c
0 \ @BðiÞ;h0 ¼ @BðiÞ;h0 \ @BðiÞ;Q0 ¼ @BðiÞ;Q0 \ @BðiÞ;c0 ¼ ;:

ð17Þ
In this connection, @BðiÞ;c0 represents the potential contact area on surface ðiÞ. Assuming that the local linear momentum bal-
ance equation across the contact interface
tð1Þ dA ¼ �tð2ÞdA; ð18Þ
where tðiÞ denote the Piola tractions2 associated with surface @Bð1Þ;c0 , is valid, the global variational statements (8) and (9) can be
augmented as follows
Gu þ Gc
u ¼ 0; ð19Þ

Gh þ Gc
h ¼ 0; ð20Þ
where the contact contributions are given by
Gc
u ¼

Z
@B
ð1Þ;c
0

tð1Þ � ðduð1Þ � duð2ÞÞdA; ð21Þ

Gc
h ¼ �

Z
@B
ð1Þ;c
0

dhð1ÞQ ð1Þc þ dhð2ÞQ ð2Þc dA: ð22Þ
e that the traction tðiÞ as well as the heat flux Q ðiÞc can be considered as Cauchy traction and flux associated with the actual surfaces @Bð2Þ;c ¼ @Bð1Þ;c and
ack onto @B

ð1Þ;c
0 .
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Here, Q ðiÞc represent the heat supply at the respective contact interface ðiÞ. To account for different contact reactions in normal
and tangential direction, we may decompose the Piola tractions
tð1Þ ¼ tNnþ tT ; tT � n ¼ 0; ð23Þ
where n :¼ nð1Þ denotes the current outward normal vector on @B
ð1Þ;c
0 , and define the local normal and tangential gap

functions
gN ¼ n � ðuð1Þ �uð2ÞÞ; gT ¼ ðI � n� nÞ � ðuð1Þ �uð2ÞÞ; ð24Þ
see Puso & Laursen [30]. Note that the components of the tangential tractions and the tangential gap function can be written
in terms of co-/contravariant basis vectors
tT ¼ tT;aaa; gT ¼ ga
T aa; ð25Þ
which is often useful for the definition of the constitutive frictional law.

2.3. Constitutive equations for contact

The contact reactions are in general characterised by constitutive laws for the mechanical as well as for the thermal field.
In particular, Coulomb’s friction law is imposed on the mechanical side, whereas a local dissipation potential is introduced to
account for the contact heat flux.

Normal contact
Standard Karush–Kuhn–Tucker conditions are employed in normal directions
gN 6 0; tN P 0; tNgN ¼ 0; ð26Þ
to enforce the non-penetration condition. Further constitutive relations to account for, e.g., adhesion effects, can be embed-
ded without changing the considered framework.

Friction law
Given the definitions above and following standard arguments as outlined, for example, in Yang & Laursen [41] and in

Puso & Laursen [30], Coulomb’s friction law can be written as
/̂c :¼ ktTk � ljtNj 6 0; ð27Þ
_f P 0; ð28Þ
/̂c

_f ¼ 0: ð29Þ
Here, l :¼ lðh1; h2Þ denote the friction coefficient, depending on the temperatures at the contact interface and _f a consis-
tency parameter, where _f ¼ 0 represents stick and _f > 0 slip, in analogy to the plastic multiplier in plasticity. Now, the
Lie derivative LtT ¼ _tT;aaa of the frictional tractions reads
LtT ¼ �T _gs
T � _f

tT

ktTk

� �
; ð30Þ
where �T is a tangential penalty parameter. Note that the subsequently used additive split of the tangential gap into a revers-
ible (elastic) part ge

T and an irreversible (inelastic) part gs
T follows from the penalisation of the stick condition.

Remark 1. In contrast to the normal contributions, where we enforce a geometrical non-penetration condition via Lagrange
multipliers, the constitutive relations in tangential direction are enforced via a penalty method. Other choices are possible
and can be applied without changing the proposed framework.
Thermal contact interface
The thermodynamic analysis [35,6] of the deformed contact interface suggests an additive decomposition
qðiÞc ¼ qðiÞf þ qðiÞt ; ð31Þ
of the contact heat flux qðiÞc on @BðiÞ;c into frictional dissipation (qðiÞf ) and thermal interaction (qðiÞt ) contributions. In particular,
qð1Þf þ qð2Þf ¼ F ð32Þ
and
qð1Þt þ qð2Þt ¼ 0 ð33Þ
4



are admitted. Here, F is the frictional dissipation such that F da ¼ F o dA with F o ¼ tT � _gs
T ¼ l tNk _gs

Tk. The constitutive mod-
eling of qðiÞf is based on a phenomenological partitioning
qðiÞf ¼ cðiÞF ; ð34Þ
of F , which implies Q ðiÞf ¼ cðiÞF o, where the relative effusivities cðiÞ P 0 satisfy cð1Þ þ cð2Þ ¼ 1. The relative effusivities are
interface constitutive parameters that could depend on a number of variables, including the temperature and the pressure.
Presently, they will be assumed to be constants.

The constitutive modeling of qð1Þt ¼ �qð2Þt must be based on the consideration of various heat exchange mechanisms across
surfaces in vicinity [23,2,27]. In a continuum setting, primarily three mechanisms are of concern: conduction, convection and
radiation. Among these, conduction is a contact interaction due to the temperature jump #c ¼ hð1Þc � hð2Þc across the contact
interface whereas the latter two are of non-contact type. The radiation contribution is often negligible unless the tempera-
tures involved are too high. Macroscopically contacting surfaces, on the other hand, may simultaneously involve the remain-
ing two mechanisms due to inherent roughness since the microscopic interface topography not only has contacting
asperities but also gaps containing an interstitial material which serves as a medium for convection. Moreover, in view of
the multiscale nature of roughness, the thermal interaction of the contacting asperities is also governed by both mecha-
nisms. Due to the small length scales associated with the gaps, the convective mechanism degenerates into conduction
through the interstitial medium. Consequently, the overall heat exchange across the contact interface can be modeled as
a function of #c. Finally, an increasing contact pressure leads to higher microscopic conformity among the contacting surfaces
such that the macroscopic interface resistance decreases. In order to reflect this effect, constitutive models for the overall
heat exchange across the contact interface typically admit a nonlinear dependence on the contact pressure in the small
deformation regime. In the present work where large deformations are of concern [9,3], the constitutive choice is based
on referential quantities in the simplified form
Q ð1Þt ¼ �Q ð2Þt ¼ �khjtNj#c; ð35Þ
where kh is assumed to be a constant. Such a formulation may alternatively be written in terms of a dissipation potential
H ¼ �khjtNj#2

c=2 such that Q ð1Þt ¼ @H=@#c , which can assist in the derivation of alternative algorithms that are suitable for
the modeling and simulation of microscale contact. Combining all contributions, the final expressions for the contact heat
fluxes qðiÞc pulled back onto @Bð1Þ;co are
Q ð1Þc ¼ cð1ÞF o � khjtNj#c; Q ð2Þc ¼ cð2ÞF o þ khjtN j#c: ð36Þ
Thermodynamical consistency
Assuming that the first and second law of thermodynamics holds for the contact interface as well, we introduce a local

boundary Helmholtz energy density function Wc :¼ Wcðu; hÞ and state the global balance equations across the interface
Z
@B
ð1Þ;c
0

duWc dA ¼ �
Z
@B
ð1Þ;c
0

tð1Þ � ðduð1Þ � duð2ÞÞdA; ð37Þ
Z
@B
ð1Þ;c
0

dhhc _gc dA ¼
Z
@B
ð1Þ;c
0

dhð1ÞQ ð1Þc þ dhð2ÞQ ð2Þc dA: ð38Þ
Note that we do not account for the heat capacity of the contact interface, although this can be included in the left hand side
of (38). Substituting du ¼ _u, we obtain for the contact interface
Z

@B
ð1Þ;c
0

_Wc þ gc
_hc dA ¼ �

Z
@B
ð1Þ;c
0

tN _gN þ tT � ð _ge
T þ _gs

TÞdA: ð39Þ
Applying again a Legendre transformation _Wc þ gc
_hc ¼ _ec � _gchc , substituting dh ¼ l;l 2 R in (38) and subsequent insertion

yields the local energy balance contributions of the contact boundary
Z
@B
ðiÞ;c
0

_ec dA ¼
Z
@B
ðiÞ;c
0

�tN _gN � tT � _ge
T þ _gs

T

� �
þ Q ð1Þc þ Q ð2Þc dA: ð40Þ
Here, _ec is the stored energy per unit area on the contact interface. An important issue has been shown here: Since
c1 þ c2 ¼ 1 the dissipative energy tT � _gs

T drops out of the last equation and the mechanical energy is directly dissipated into
the thermal field without changing the inner energy. By enforcing (26) exactly, we can state that the time derivative _g van-
ishes as well. Following additionally the arguments in Oancea & Laursen [26], stating that the elastic part of the tangential
gap is small enough to be neglected, we obtain
Z

@B
ðiÞ;c
0

_ec dA ¼ 0; ð41Þ
which is the expected result if the heat capacity of the interface is omitted. With regard to (38), the local entropy production
rate at the interface can be written as follows
5



Table 1
Weak form of the coupled thermomechanical contact problem.

(1) Mechanical field

X2

i¼1

Z
B
ðiÞ
0

q0du � €uþ R : FTrXðduÞdV �
Z
B
ðiÞ
0

du � �BdV �
Z
@B
ðiÞ;r
0

du � �T dA

 !
þ
Z
@B
ð1Þ;c
0

tNdgN þ tT � ðdge
T þ dgs

T ÞdA ¼ 0

(43)

(2) Thermal field

X2

i¼1

Z
B
ðiÞ
0

dhh _g� Q � GradðdhÞdV �
Z
B
ðiÞ
0

dh ~RdV �
Z
@B
ðiÞ;Q
0

dh~Q dA

 !
�
Z
@B
ð1Þ;c
0

dhð1ÞQ ð1Þc þ dhð2ÞQ ð2Þc dA ¼ 0

(44)

(3) Interface conditions
	 Normal contact

gN 6 0; tN P 0; tNgN ¼ 0

(45)

	 Tangential contact

�/c :¼ ktTk � ljtN j 6 0; _f P 0; �/c
_f ¼ 0; _gs

T ¼ _f
tT

ktTk

(46)

	 Thermal contact

Q ð1Þc ¼ cð1ÞtT � _gs
T � khjtN j#c ; Q ð2Þc ¼ cð2ÞtT � _gs

T þ khjtN j#c

(47)
_gc ¼
Q ð1Þc

hð1Þc

þ Q ð2Þc

hð2Þc

P 0: ð42Þ
Assuming that the tangential penalty parameter �T is high enough, we can insert (30) into (36). Taking additionally (28) into
account gives immediately _cktTkP 0 for the mechanical dissipation of energy into the thermal field. Insertion of the remain-
ing parts of (36) into (42) shows after some straightforward calculations, that the second law of thermodynamics is valid for
the thermomechanical contact problem at hand. The resulting weak forms and the constitutive contact laws are summarised
in Table 1.

3. Isogeometric discretisation

To perform the spatial discretisation for the numerical solution of the variational formulation in (43) and (44), each do-
main is subdivided into a finite set of non-overlapping elements e 2 E
B0 � Bh
0 ¼

[
e

B0;e; 8e 2 E: ð48Þ
For the numerical solution of the coupled problem, a finite element framework is considered. Therefore, we introduce finite
dimensional approximations of the deformation and its variation, such that
uh ¼
X
A2x

RAqA; duh ¼
X
A2x

RAdqA: ð49Þ
Here, A 2 x ¼ f1; . . . ; nnodeg and RAðXÞ : B0 ! R are global shape functions. In particular, we make use of NURBS based shape
functions
RA ¼ Ri;j;k
p;q;rðnÞ ¼

Ni;pðnÞMj;qðgÞLk;rðfÞwi;j;kPn
�i¼1

Pm
�j¼1

Pl
�k¼1N î;pðnÞM ĵ;qðgÞLk̂;rðfÞw�i;�j;�k

; ð50Þ
where n;m; l denote the number of control points along each parametric direction. In addition, p; q; r denotes the order of the
non-rational B-Splines N;M and L, recursively defined as follows
Ni;p ¼
n� ni

niþp � ni

Ni;p�1ðnÞ þ
niþpþ1 � n

niþpþ1 � niþ1
Niþ1;p�1ðnÞ; ð51Þ
6



beginning with
Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

�
: ð52Þ
The definition for M and L follows analogously. Furthermore, wi;j;k are NURBS weights, for details see Piegl & Tiller [28]. The
shape functions are associated with a net of control points qA, such that a geometrical map F : �B0 ! B0 can be defined to link
the parameter and the physical space
uh :¼ FðnÞ ¼ Ri;j;k
p;q;rðnÞqi;j;k; ð53Þ
see da Veiga et al. [5]. The finite element mesh is now defined via knot vectors, which subdivide the parameter space into
elements.

The discretisation of the thermal field is given as follows
hh ¼
X
A2x

RAHA; dhh ¼
X
A2x

RAdHA; ð54Þ
such that we obtain a conforming discretisation of both fields.

3.1. Semi-discrete formulation of the coupled problem

For the ease of exposition, we discretise first the weak form in (8) as well as in (9) and add the contact contributions later
on. The semi-discrete balance of linear momentum reads
dqA � MAB€qB þ
Z
B0

SAB dVqB

	 

¼ dqA � FA;ext

h i
; ð55Þ
whereas the semi-discrete energy balance equation is given by
dHA CABHB �
Z
B0

KAB dVHB

	 

¼ dHA Q A;ext

h i
: ð56Þ
Here, the consistent mass matrix
MAB ¼
Z
B0

q0RARB dV ; ð57Þ
as well as the internal and external contributions
Z
B0

SAB dV ¼
Z
B0

rXðRAÞ � ShrXðRBÞdV ; ð58Þ

FA;ext ¼
Z
B0

RA �BdV þ
Z
@Br

0

RA �T dA ð59Þ
are defined in the usual way. Note that the semi-discrete second Piola–Kirchhoff stress tensor is defined by
Sh ¼ 2@WðCh; hhÞ=@Ch where Ch ¼ qA � qBrXðRAÞ � rXðRBÞ. Analogously, we obtain for the thermal contributions
CAB ¼
Z
B0

_ghRARB dV ; ð60Þ
where the discrete entropy is given by gh ¼ �@WðCh; hhÞ=@hh. Furthermore, the second term in (56) reads
Z
B0

KAB dV ¼
Z
B0

rXðRAÞ � K̂ðCh; hhÞrXðRBÞdV ð61Þ
and the corresponding right hand side is given by
QA;ext ¼
Z
B0

RA~RdV þ
Z
@BQ

0

RA ~Q dA: ð62Þ
3.2. Mortar method

To construct a Mortar based approach for the thermomechanical contact interface, the variational statements in (21) and
(22) have to be discretised as well. Therefore, the space of admissible test functions for the discrete Lagrange multiplier field
is introduced as
Mh ¼ dtð1Þ;h 2 L2 @B
ð1Þ;c
0 \ @Bð2Þ;c0

� �n o
: ð63Þ
7



To deal with non-conforming discretisations and NURBS of arbitrary order, we evaluate the geometrical map FðnÞ at the
boundary of the parameter space, corresponding to the contact boundary in physical space to obtain a set of nodes
~xð1Þ ¼ ½~q1; . . . ; ~qnsurf

� on surface ð1Þ, where nsurf corresponds to the number of physical nodes on the surface geometry of
Bð1Þ. As shown in Hesch & Betsch [14], a linear interpolation of the Lagrange multipliers and their variations
tð1Þ;h ¼
X

A2 ~xð1Þ
NA

kA; dtð1Þ;h ¼
X

A2 ~xð1Þ
NAdkA; ð64Þ
where NA : @B
ð1Þ;c
0 ! R are ðn� 1Þ dimensional linear Lagrangian shape functions associated with nodes A 2 ~xð1Þ in physical

space, is sufficient. Note that this last statement holds even if we evaluate the nodal contributions kA via penalty methods.
Again, decomposing the tractions kA into normal kN;A and tangential kT;A components and subsequently inserting them in the
contact contributions within (43) yields
Gc;h
u ¼ kN;An � nABdqð1ÞB � nACdqð2ÞC

h i
þ kT;A � ðI � n� nÞ nABdqð1ÞB � nACdqð2ÞC

h i
; ð65Þ
whereas the discrete contact contributions in (44) reads
Gc;h
h ¼ �dHð1ÞA c1kT;B � ðI � n� nÞ mABC _qð1Þ;sC �mABD _qð2Þ;sD

h i
� khjkN;Bj mABCHð1ÞC �mABDHð2ÞD

h in o
� dHð2ÞA c2kT;B � ðI � n� nÞ �mABC _qð1Þ;sC � �mABD _qð2Þ;sD

h i
þ khjkN;Bj �mABCHð1ÞC � �mABDHð2ÞD

h in o
: ð66Þ
Here, the Mortar integrals are defined as follows
nAB ¼
Z
@B
ð1Þ;c
0

NAðnð1ÞÞRBðnð1ÞÞdA;

nAC ¼
Z
@B
ð1Þ;c
0

NAðnð1ÞÞRCðnð2ÞÞdA
ð67Þ
and the triple Mortar integrals are given by
mABC ¼
Z
@B
ð1Þ;c
0

RAðnð1ÞÞNBðnð1ÞÞRCðnð1ÞÞdA;

mABD ¼
Z
@B
ð1Þ;c
0

RAðnð1ÞÞNBðnð1ÞÞRDðnð2ÞÞdA:
ð68Þ
The evaluation of the triple Mortar integrals �m follows analogously using RAðnð2ÞÞ as first shape function in (68). The contact
conditions required for the evaluation of the corresponding contact forces and the heat transfer of the semidiscrete system
are summarised in Table 2.

For the numerical evaluation of the mortar integrals, a suitable segmentation process is necessary, subdividing the surface
of the parameter space on both sides in triangles. We focus on the evaluation of the standard Mortar integrals, since the triple
Mortar integrals follows analogously, extended by additional shape functions RA. The main goal of this construction is to pro-
vide a common parametrisation of both surfaces to apply a Gauss quadrature. Therefore, a linear transformation based on
bilinear, triangular shape functions MK is introduced
nðiÞ;hðgÞ ¼
X3

K¼1

MKðgÞnðiÞK ; ð69Þ
such that we obtain the segment contributions of the Mortar integrals
njb ¼
Z
M

Njðnð1Þ;hðgÞÞRbðnð1Þ;hðgÞÞJseg dg;

njf ¼
Z
M

Njðnð1Þ;hðgÞÞRfðnð2Þ;hðgÞÞJseg dg;
ð70Þ
which have to be assembled into the global system, see Hesch & Betsch [11,13] and the references therein. Note that the
triangle symbols in Eq. (70) represent the triangle reference element. Finally, the Jacobian of each segment is required
Jseg ¼ kA1ðnð1Þ;hðgÞÞ � A2ðnð1Þ;hðgÞÞkdetðDnðgÞÞ; ð71Þ
where AaðnÞ ¼ RA
;aðnÞqA denote the tangential vectors in the reference configuration.

To construct the segments by calculating the nodes n
ðiÞ
K within the parameter space, a stable, but tedious method has been

proposed in Hesch & Betsch [14]. Here, we propose a major simplification of the segmentation algorithm for isogeometric
discretised bodies, which allows the usage of standard segmentation libraries. Therefore, we reuse the already introduced
set of nodes ~xð1Þ on the physical contact boundary of Bð1Þ and apply a linear Lagrangian discretisation in analogy to the linear
interpolation of the Lagrange multiplier field in (64). Based on this artificially discretised, virtual surface and a corresponding
8



Table 2
Semi-discrete form of the coupled thermomechanical contact problem.

(1) Mechanical field

X2

i¼1

dqðiÞA � MAB €qðiÞB þ
Z
B0

SAB dVqðiÞB � FðiÞ;A;ext
	 
� �

þ kN;An � nABdqð1ÞB � nACdqð2ÞC

h i
þ kT;A � ðI � n� nÞ nABdqð1ÞB � nACdqð2ÞC

h i
¼ 0

(72)

(2) Thermal field

X2

i¼1

dHðiÞA CABHðiÞB �
Z
B0

KAB dVHðiÞB � Q ðiÞ;A;ext
	 
� �

� dHð1ÞA c1kT;B � ðI � n� nÞ mABC _qð1Þ;sC �mABD _qð2Þ;sD

h i
� khjkN;Bj mABCHð1ÞC �mABDHð2ÞD

h in o

� dHð2ÞA c2kT ;B � ðI � n� nÞ �mABC _qð1Þ;sC � �mABD _qð2Þ;sD

h i
þ kh jkN;Bj �mABCHð1ÞC � �mABDHð2ÞD

h in o
¼ 0

(73)

(3) Semi-discrete contact conditions
	 Normal contact

gA
N 6 0; kN;A P 0; kN;AgA

N ¼ 0; gA
N ¼ n � nABqð1ÞB � nAC qð2ÞC

h i (74)

	 Tangential contact

�/c;A :¼ kkT;Ak � ljkN;Aj 6 0; _fA P 0; �/c;A
_fA ¼ 0; _gs;A

T ¼ _fA kT;A

kkT;Ak

(75)

with

_gs;A
T ¼ ðI � n� nÞ nAB _qð1Þ;sB � nAC _qð2Þ;sC

h i (76)

Fig. 1. Virtual segmentation surface (yellow) on an arbitrary curved NURBS geometry (blue). (For interpretation of the references to colour in this figure
caption, the reader is referred to the web version of this article.)
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virtual discretisation of contact boundary of Bð2Þ, we execute the standard segmentation procedure, see Fig. 1 for a virtual
segmentation surface on an arbitrary curved NURBS surface.

Remark 2. We use this simplification only for the segmentation process, i.e. for the calculation of the local coordinates n
ðiÞ
K

and not for the evaluation of the Mortar integrals. The speed up is tremendous, furthermore, the definition of the segment
corners is not as strict as the definition of the closest point projection used within the KTS method, see Temizer [38]. More
importantly, the proposed method yields a set of valid, non-overlapping segments, we only shift small area contributions
from one segment to the next.
Remark 3. Due to the presence of potentially higher order NURBS, the chosen Gauss quadrature has to be adjusted carefully.
A standard 4 point integration is not sufficient for e.g. quadratic NURBS, especially for the evaluation of the triple Mortar
integrals.
Remark 4. The variation of the normal gap dgN for an initially curved surface may include additionally the variation of the
normal vector, which is dropped for convenience in Eq. (65) and the following. This is sometimes done in computational con-
tact mechanics based on the mortar method (see e.g. Laursen et al. [19]). In contrast to NTS and KTS methods, where the
variation of the normal vector drops out (see e.g. Wriggers [40]), the normal components for Mortar methods are assembled
from all involved segments, such that the corresponding variation does not vanish in all situations. Leaving the variation out
of the balance equation may have considerable impact to the angular momentum at the contact interface. This has already
been observed in Puso and Laursen [29, footnote p. 606] and Puso and Laursen [30, footNote 1 and 2 p. 4896].
4. Temporal discretisation

In a final step, the semi-discrete equations of motion have to be discretised in time in order to obtain a set of non-linear
algebraic equations to be solved via a Newton method. Consider a sequence of times t0; . . . ; tn; tnþ1; . . . ; T , where ð	Þn and
ð	Þnþ1 denote the value of a given physical quantity at time tn and tnþ1, respectively. Assume the state variables at tn, given
by ðqA;n;HA;nÞ are known and the time step size Dt ¼ tnþ1 � tn is given. Then, the algorithmic approximation to the weak form
(55) is defined by
dqA �
2

Dt2 MABðqB;nþ1 � qB;n � DtvB;nÞ þ
Z
B0

rXðRAÞ � Sh
n;nþ1rXðRBÞdVqB

	 

¼ dqA � FA;ext

nþ1=2

h i
; ð77Þ
whereas the approximation of (56) is given by
dHA CAB
n;nþ1HB;nþ1=2 �

Z
B0

KAB
n;nþ1 dVHB;nþ1=2

	 

¼ dHA Q A;ext

nþ1=2

h i
: ð78Þ
Here, CAB
n;nþ1 and KAB

n;nþ1 are standard mid-point approximations of (60) and (61), cf. Hesch & Betsch [12] for details. Moreover,
the algorithmic version of the second Piola–Kirchhoff stress tensor reads
Sh
n;nþ1 ¼ 2

@W Ch
nþ1=2;H

h
nþ1=2

� �
@Ch

; Ch
nþ1=2 ¼

1
2

Ch
nþ1 þ Ch

n

� �
: ð79Þ
The used evaluation of the right Cauchy–Green tensor Ch
nþ1=2 is equivalent to the energy–momentum method proposed by

Simo and Tarnow [34], if applied to a St.Venant–Kirchhoff material. This approach is easy to implement and remarkably sta-
ble for multi-field problems.

Normal contact conditions

Following the approach outlined in Hesch & Betsch [13], we evaluate the mortar integrals at time tn, whereas the La-
grange multipliers kN;A;nþ1 remain constant throughout the time step. The Karush–Kuhn–Tucker conditions (74) are imple-
mented via an active set strategy and the weak form reads
Gu;h
c;N ¼ kN;A;nþ1nnþ1=2 � nAB

n dqð1ÞB � nAC
n dqð2ÞC

h i
: ð80Þ
Note that we evaluate the corresponding constraints at time tnþ1.

Tangential contact conditions

The tangential contributions to the weak form follow analogously
Gu;h
c;T ¼ kT;A;nþ1=2 � ðI � nnþ1=2 � nnþ1=2Þ nAB

n dqð1ÞB � nAC
n dqð2ÞC

h i
: ð81Þ
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In particular, we employ a trial state-return map strategy to determine the Coulomb frictional traction. The trial state is gi-
ven by
ktrial
T;A;nþ1 ¼ kT;A;n þ �TðI � nnþ1=2 � nnþ1=2Þ nAB

n Dqð1ÞB � nAC
n Dqð2ÞC

h i
: ð82Þ
Here, Dqð1ÞB ¼ qð1ÞB;nþ1 � qð1ÞB;n and Dqð2ÞC ¼ qð2ÞC;nþ1 � qð2ÞC;n. To prevent large errors in angular momentum, a modification of the form
ktrial
T;A;nþ1 ¼ kT;A;n þ �TðI � nnþ1=2 � nnþ1=2Þ nAB

nþ1 � nAB
n

� �
qð1ÞB;nþ1=2 � nAC

nþ1 � nAC
n

� �
qð2ÞC;nþ1=2

h i
ð83Þ
is often used. For both approaches, the slip function can be obtained for each node A separately
/̂c;A;nþ1 ¼ ktrial
T;A;nþ1

 � ljkN;A;nþ1j ð84Þ
and we obtain the frictional tractions
kT;A;nþ1 ¼
ktrial

T;A;nþ1; if /̂c;A;nþ1 6 0;

ljkN;A;nþ1j
ktrial

T;A;nþ1

ktrial
T;A;nþ1k k ; elseif /̂c;A;nþ1 > 0:

8><
>: ð85Þ
Once the frictional tractions at time tnþ1 are calculated, the corresponding midpoint approximation reads
kT;A;nþ1=2 ¼
1
2
ðkT;A;nþ1 þ kT;A;nÞ; ð86Þ
where we follow the arguments outlined in Armero & Petöcz [1].

Thermal contact conditions

Eventually, the thermal contributions to the weak form are given by
Gh;h
c ¼ �dHð1ÞA c1kT;B;nþ1 � ðI � nnþ1=2 � nnþ1=2Þ mABC

n
Dqð1Þ;sC

Dt
�mABD

n
Dqð2Þ;sD

Dt

" #
� khjkN;B;nþ1j mABC

n Hð1ÞC;nþ1=2 �mABD
n Hð2ÞD;nþ1=2

h i( )

� dHð2ÞA c2kT;B;nþ1 � ðI � nnþ1=2 � nnþ1=2Þ �mABC
n

Dqð1Þ;sC

Dt
� �mABD

n
Dqð2Þ;sD

Dt

" #
þ khjkN;B;nþ1j �mABC

n Hð1ÞC;nþ1=2 � �mABD
n Hð2ÞD;nþ1=2

h i( )
:

ð87Þ
assuming that (82) is used. The modified form in (83) can be applied using DmABC

Dt and DmABD

Dt instead of Dqð1Þ;s
C
Dt and Dqð2Þ;sD

Dt within the
last expression.

Remark. The proposed second order accurate time integration scheme with stabilisation via a modified evaluation of the
second Piola–Kirchhoff stress tensor can be replaced by a more simple implicit Euler approach, to which we refer to as
endpoint rule. Therefore, we evaluate all corresponding terms at tnþ1, which will be used in the subsequent section for
comparison.
5. Numerical examples

To demonstrate the accuracy and performance of the proposed methodology we investigate several quasi-static and tran-
sient numerical examples. In particular, we investigate first a modified patch test to outline the capabilities of the thermo-
mechanical Mortar method for NURBS. In the second example, we focus our investigation on the frictional response, whereas
our primary interest in the third example relies on the thermal response, although all example utilise the fully coupled Mor-
tar method. Finally, a transient impact simulation demonstrates the accuracy of the frictional Mortar contact algorithms in
terms of the first and second law of thermodynamics.

A non-linear and fully coupled Ogden material model with the associated strain energy density function
W k1; k2; k3; hð Þ ¼
X3

A¼1

X3

p¼1

lp h0ð Þ h
h0

ap

~kap

A � 1
� �

þ j h0ð Þ
h
h0

b�2 b lnðJÞ þ J�b � 1
� �

� 3a0 j h0ð Þc�1 Jc � 1
� �

h� h0ð Þ

þ c0 h� h0 � h ln h=h0ð Þð Þ; ð88Þ
(see Table 3 for the material data and Holzapfel and Simo [15] for details on the function), as well as a thermomechanical
Neo-Hookean material model, defined as
WðC; hÞ ¼
�l
2
ðtrðCÞ � 3� 2 lnðJÞÞ þ k

2
½ln2ðJÞ þ ðJ � 1Þ2� � 3a0kðh� h0ÞðJ�1 lnðJÞ þ J�1Þ þ c0 h� h0 � h ln h=h0ð Þð Þ ð89Þ
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Table 3
Material properties.

Ogden model l1 ¼ 6:30 � 105 a1 ¼ 1:3

l2 ¼ 0:012 � 105 a2 ¼ 5:0

l3 ¼ �0:10 � 105 a3 ¼ �2:0

Heat capacity c0 ¼ 1830
Density q0 ¼ 950
Linear expansion coefficient a0 ¼ 22:333 � 10�5

Bulk modulus jðh0Þ ¼ 2:0 � 108

Empirical coefficients b ¼ 9:0; c ¼ 2:50
Thermal conductivity K0ðh0Þ ¼ 0:15
Softening parameter xK ¼ 0:004
are used in the examples. The strain energy density function in (88) is written in terms of principal stretches kA, where
~kA ¼ J�1=3kA with J ¼ k1k2k3. Furthermore, the thermal conductivity tensor within the Duhamel’s law (5) is set to
K̂ðC; hÞ ¼ K0ðhÞC�1; ð90Þ
with
K0ðhÞ ¼ K0ðh0Þ½1�xkðh� h0Þ�: ð91Þ
5.1. Patch test

First, we investigate a modified patch test with flat as well as curved interfaces using the Ogden material model. As shown
in Fig. 2, two independently meshed blocks are tied together via the proposed Mortar method, assuming that both bodies
remain in contact without tangential sliding and without thermal resistance at the interface. A Neumann boundary is applied
to the top surface, whereas the bottom surface is clamped, such that the body can expand in tangential direction. The upper
block consists of 3� 3� 3 quadratic NURBS elements while the lower block comprises of 8 elements, using quadratic NURBS
as well. Thus, altogether 189 nodes with 756 unknowns controls the discrete geometry as well as the thermal fields To obtain
a quasi-static solution, the density is set to zero, i.e. only CAB within the thermal field depends on the differentiation with
respect to time. Fig. 3 (left) shows the von Mises stress distribution of the solution for a uniform pressure field of
r ¼ 106, applied to the upper block. The initial temperature is set to 293:15. Due to the applied linear expansion coefficient,
the body heats up, as shown in Fig. 3 (right). The solution shows a nearly perfect and uniform temperature distribution for
the proposed linear approximation of the Lagrange multiplier field.

For further investigations, a highly curved interface is applied. Note that quadratic NURBS are able to represent the geom-
etry exactly, independent of the chosen number of elements, such that both interfaces are geometrically conform and errors
we obtain are discretisation errors of the Mortar interface. Again, a uniform stress field with r ¼ 2:5� 105 has been applied
to the top surface. The error in the stress field decreases and converges to the correct, uniform solution with higher element
numbers at the interface, see Fig. 4. As already shown in Hesch and Betsch [11], the results of the Mortar method for the
given curved interface are in general superior to results of collocation type methods.
Fig. 2. Reference configuration with flat (left) and curved (right) interface.
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Fig. 3. Stress distribution (left) and temperature distribution (right).
Since we assume that the error in the stress field is of geometrical nature, we investigate the scalar valued thermal field
again. Therefore, Neumann boundary condition as well as the thermal resistance within the interface are set to zero. A uni-
form, stressfree configuration with initial temperature of h0 ¼ 323:15 is predefined for the upper block, whereas an initial
temperature of h0 ¼ 293:15 is applied to the lower block. The temperature fields at the top and bottom surfaces are fixed.
Fig. 5 (left) shows the solution after a single time step with Dt ¼ 0:05. Due to the given heat capacity and the thermal con-
ductivity, heat flows across the interface, until the solution converges to the static solution, as shown in Fig. 5 (right) after a
total simulation time of t ¼ 104.
5.2. Rotating contact of two elastic bodies

The next example consists of an intender and a block. For both bodies the material behavior is assumed to be governed by
the afore introduced Neo-Hookean model with Lamé parameters corresponding to a Young’s Moduls of E ¼ 10 and a Pois-
son’s ratio of m ¼ 0:3. Furthermore, the heat capacity is c0 ¼ 300 and the expansion coefficient a0 ¼ 0:05 and the reference
temperatures of both bodies are set to 293:15. For the contact interface, the friction coefficient is set to l ¼ 0:5, the effusiv-
ities to c1 ¼ c2 ¼ 0:5, the tangential penalty parameter �T ¼ 2� 103 and the constant heat exchange parameter to kh ¼ 0:2.

The system itself remains quasistatic, i.e. the density of the bodies in contact is again set to zero. The initial configuration
consists of 8� 8� 8 elements for the upper and 9� 9� 9 elements for the lower block, see Fig. 6. The bottom surface of the
lower block is fixed in space. The top surface of the intender (upper block) moves downwards and starts afterwards with a
Fig. 4. Stress distribution for different discretisations.
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Fig. 5. Thermal distribution after the first step (left) and converged quasi-static solution (right).
rotational movement. The problem is similar to the one shown in Temizer et al. [39,37]. In Fig. 7 the deformed configuration
after the first phase of the movement is shown along with the segmentation of both surfaces.

Overall 4 quasi-static time steps of size 0:05 for the first phase and 40 time steps of size 0:02 have been used for the sec-
ond phase. In Fig. 8 the side and top view after the rotational movement with a frictional coefficient of l ¼ 0:5 is shown.

Next, different friction coefficients with l 2 ½0:25; 0:5; 1� are applied and the resulting twisting angular momentum act-
ing on the upper, twisted body is plotted over time, see Fig. 9.

At last in Fig. 10 a cut through both blocks after the rotational movement with l ¼ 0:5 is shown. Note that the temper-
ature distribution depends in this particular example mainly on the linear expansion coeficient. The different contributions
will be shown in detail in the subsequent example.

5.3. Ironing

In this third example, we focus on the thermal contributions at the interface, using a setup similar to the ironing problem
described in Puso and Laursen [30]. The geometry in its reference configuration is as shown in Fig. 11, where the upper block
of size 1� 1� 1 consists of 27 quadratic NURBS elements and the lower block of size 9� 4� 3 consists of 1680 quadratic
Fig. 6. Reference configuration of the rotating problem.
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Fig. 7. Deformed configuration and segmentation.

Fig. 8. Final deformed configuration, side and top view.
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Fig. 9. Twisting momentum plotted over time for different friction coefficients.
NURBS elements. The material behaviour is again assumed to be governed by a Neo-Hookean model, using
�l ¼ 5000=13; k ¼ 7500=13 as Lamé parameters for the upper block and �l ¼ 50=13; k ¼ 75=13 for the lower block. The values
correspond to a Young’s modulus of E ¼ 10 and E ¼ 1000, respectively and to a Poisson’s ratio of m ¼ 0:3 for both blocks.

The setup of the thermal field is given as follows: The initial temperature of the upper block is set to h0 ¼ 298:15 and the
heat capacity to c0 ¼ 1:83 � 104 in order to avoid a fast cool-down, while the corresponding settings for the lower block are
given by h0 ¼ 293:15 and c0 ¼ 1:83 � 103. The thermal conductivity K0 ¼ 0:55 and the expansion coefficient
a0 ¼ 22:333 � 10�5 are set for both blocks.

For the contact interface, the effusivities are c1 ¼ c2 ¼ 0:5, the heat exchange coefficient is kh ¼ 3000 and the friction coef-
ficient is l ¼ 0:2. Accordingly, frictional dissipation is taken into account.

The lower surface of the lower block is fixed, whereas the movement of the upper surface of the upper block is predefined.
In particular, the block is first moved downwards and pressed into the lower block and then moved sidewards, such that it
slides over the upper surface of the lower block. In Fig. 12, the temperature distribution at t ¼ 12 is shown. On the right, a cut
at the symmetry plane of both blocks is shown along with the marking of a specific node. The temperature at this marked
position on the mesh is plotted over time in Fig. 13.
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Fig. 10. Temperature distribution after the rotational movement.

Fig. 11. Reference configuration of the ironing example.
Due to the frictional contact forces, a small bow wave is running at the front of the upper block with a compression and an
expansion part. In connection with the expansion coefficient, this leads to the small temperature wave between t ¼ 8 and
t ¼ 10. Afterwards, the marked node on the mesh gets in contact with the upper block, which leads to a drastic temperature
increase. Note that this example is quite difficult, since we obtain high stresses at the corners of the block and, furthermore,
high curvatures for the given coarse mesh.

In the final setup for this problem, we focus on the frictional contributions. Therefore, the thermal expansion coefficient is
set to zero and the initial temperature at 293.15 is assumed to be equal for both bodies, i.e. the only heat source is the fric-
tional dissipation, see Fig. 14 for the resulting temperature distribution.
5.4. Impact problem

This last example deals with a fully coupled, transient thermoelastic impact problem. The reference configuration is
shown in Fig. 15. Quadratic NURBS are used for the discretisation of both bodies in contact. The lower, larger body of size
2� 2� 1 consists of 125 elements, whereas the upper, smaller body of size 1� 1� 1 consists of 27 elements. The previously
introduced Ogden model has been modified as follows: The density of the smaller body is set to 100 such that the body re-
bound from the lower body whereas the initial velocity is set to ½3; 3; �2�. Furthermore, the linear expansion coefficient has
been set to zero for both bodies, such that we can investigate effects of the thermomechanical contact interface in detail.

The friction coefficient is set to l ¼ 0:5, the effusivities to c1 ¼ c2 ¼ 0:5, the tangential penalty parameter �T ¼ 108 and
the constant heat exchange parameter to kh ¼ 0:2. The initial temperature of the lower block is 293:15, whereas the
16



Fig. 12. Temperature distribution at t ¼ 12.
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Fig. 13. Temperature at the marked position over time.

Fig. 14. Temperature distribution at time t ¼ 9 for frictional sliding.
temperature of the upper block is 343:15. In Fig. 16 the configurations at time t ¼ 0:05 and t ¼ 0:2 are depicted. Due to the
frictional impact, the upper body starts to rotate.

The von Mises stresses and temperature distribution at the bottom surface of the upper block just after the initial
impact at time t ¼ 0:02 is given in Fig. 17. Note that the upper block cools down at its bottom surface due to the contact
17



Fig. 15. Reference configuration of the thermoelastic impact problem.

Fig. 16. Configuration at time t ¼ 0:05 (left) and at time t ¼ 0:2 (right).

Fig. 17. Von Mises stresses (left) and temperature (right) distribution.
with the lower body, which has a significantly lower initial temperature. This effect exceeds the amount of heat gener-
ated by the frictional dissipation. Furthermore, the stress field has its maximum values at the front of the contact sur-
face, which is correctly represented in the temperature distribution, since the heat exchange across the interface
18
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Fig. 18. Different energies for midpoint and endpoint rule plotted over time.
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Fig. 19. Changes in total energy for the midpoint and endpoint rule plotted over time.
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Fig. 20. Changes in the first component in total angular momentum plotted over time.
depends directly on the contact forces, see (35). Within the initial impact phase after the first few time steps both sur-
faces are geometrically in a perfect flat contact situation, such that for a frictionless scheme the stress distribution would
be uniform.
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Fig. 21. Convergence plot, avarage of the absolute change in total energy plotted over the time step size.
Next, the inner energy, the mechanical energy (i.e. the kinetic plus the Helmholtz energy) as well as the total energy (i.e.
the kinetic plus the inner energy) are plotted over time for both, the proposed midpoint type scheme as well as an endpoint
scheme, see Fig. 18. In contrast to the endpoint rule, the proposed midpoint type scheme conserves the total energy very
well. For details on a logarithmic scale, see Fig. 19, where the black line represents the Newton tolerance. The difference be-
tween the mechanical and the total energy represents the dissipated energy, transferred to the thermal field. Furthermore, as
requested by the second law of thermodynamics, dissipation is always non-negative.

The changes of the first component in total angular momentum are plotted over time in Fig. 20. As shown, the midpoint
type approximation conserves angular momentum algorithmically, except for the impact phase. During impact, the changes
in angular momentum are considerably smaller compared with the implicit Euler scheme. As before, the black line repre-
sents the Newton tolerance. Additionally, results for the proposed midpoint evaluation without the variation of the normal
vector (see Remark 3 in Section 3) are plotted, labelled as Midpoint 2 in Fig. 20. As can be seen, the differences are marginal.

A constant time step size of Dt ¼ 0:0005 has been applied for the shown diagrams. In Fig. 21 a convergence plot for dif-
ferent time step sizes is depicted. Accordingly, the average of the absolute change in total energy has been plotted over the
time step size. As can be seen, the endpoint rule is first, the proposed midpoint approximation second order accurate.

6. Conclusions

The proposed linear approximation of the Lagrange multiplier field delivers a flexible framework for the construction of
Mortar contact algorithms for Isogeometric Analysis (IGA) with NURBS. It was demonstrated that this flexibility is preserved
even for complex frictional impact problems. The IGA framework additionally benefits from a simplified Mortar segmenta-
tion procedure, leading to significantly higher computational efficiency while maintaining satisfactory accuracy for contact
problems.

The extension to thermomechanical contact problems follows in a straightforward manner through the introduction of
triple Mortar integrals. This novel formulation allows for modeling the energy transfer between the contact surfaces and
helps incorporate the effect of the frictional dissipation on the thermal field, leading to a fully coupled thermomechanically
consistent frictional Mortar contact formulation for NURBS of arbitrary order. In this formulation, the IGA surface geometry
is endowed with a contact discretisation through an interface formulation which constitutes a link to established numerical
techniques for Mortar methods. The flexibility of this formulation renders it a convenient starting point for the construction
of similar thermomechanical Mortar contact algorithms for advanced IGA discretisations based on hierarchical refinement
[33] and T-splines [7].
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