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Energy localization effects within a reverberation
chamber and their reduction in chaotic geometries

K. Selemani, E. Richalot, O. Legrand, O. Picon, F. Mortessagne

Abstract—A method of studying energy localization effects in
a reverberation chamber is proposed and applied to simulation
results. Its application to field spatial distributions of a classical
reverberation chamber equipped with a mode stirrer shows a
strong energy localization phenomenon of damaging effect on
the field homogeneity. From the energy distributions it appears
that this phenomenon is principally related to energy localization
around the mode stirrer. To avoid the presence of a mode stirrer
causing this phenomenon, an alternative shape of reverberation
chamber, inspired from geometries of chaotic cavities, is pro-
posed. The results obtained with this new cavity configuration
show that the strong energy localizations are avoided and the
resonant modes better contribute to the field uniformity and
isotropy within the working volume.

Index Terms—Chaotic cavity, field homogeneity, field localiza-
tion, reverberation chamber, statistical distribution.

I. INTRODUCTION

IN electromagnetic compatibility (EMC) tests using a re-
verberation chamber (RC), the device under test (DUT) is

placed within the so-called working volume [1], situated in the
cavity central volume, in which a uniform and isotropic field
distribution is required. Since only the field in the working
volume is useful to illuminate the DUT, it is important to
optimize the power transmission towards this area, in particular
when high field levels are required to test the device immunity.
The understanding of wave function structure in complex
geometries where the ray dynamics is nonintegrable has been
a major interest of Wave Chaos research. Very early, the
existence of large fluctuations in wave function intensity, with
a large excess of intensity near the short unstable periodic
orbits, was observed [2] [3] [4] and coined scarring. In chaotic
cavities, this phenomenon was clearly identified as the main
nonrandom features of chaotic wave functions. In systems
where the dynamics of rays are not fully chaotic, wavefunc-
tions may display localization effects related to trapping on
regular islands [5].

Due to the strongly scattering nature of a classical mode
stirrer and the multiple scattering environment created by
the resonant cavity, such a phenomenon is likely to appear
in an RC. The large dimensions of the stirrer in terms of
the wavelengths under consideration precludes the appearance
of strong localization effects, but a weak field enhancement
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can be envisaged. In this case, the field would no longer be
homogeneous over the whole cavity, even if the homogeneity
could still be observed in a restricted zone. For this reason,
we investigate in this paper the field localization within an
RC equipped with a mode stirrer, and propose a new cavity
shape designed to avoid such a phenomenon, where the key
ingredient is to replace the classical stirrer by a moving
metallic hemisphere. The local field enhancement phenomenon
is brought to light in two ways. Our first approach consists
in calculating an indicator of the existence of an electric or
magnetic energy enhancement area in the total volume of both
cavities; it is called the Inverse Partition Ratio and has been
widely used to quantify wave function localization either in
chaotic or disordered wave systems [6] [7] [8]. In our second
approach, dedicated to the research of the field enhancement
areas, we divide each cavity into sub-volumes, and compare
the mean energies in the different sub-volumes. We will see
that the localization effect is principally due to the presence
of the mode stirrer and restricted to its vicinities, and is
drastically reduced in our proposed alternative RC shape. Both
approaches are applied at a fixed position of the stirrer and
hemipshere as well as for different positions of them over a
whole rotation.

It will be shown how such a field localization phenomenon
affects the field statistical uniformity and isotropy. As a con-
sequence, an improvement of the field properties is obtained
when this phenomenon is avoided.

The improvement of the RC behavior with the suggested
cavity shape modifications is finally shown with regard to
standardized criteria from the norm governing EMC test in
reverberation chambers [1].

II. STUDIED MICROWAVE CAVITIES

In order to illustrate simply the appearance of a localization
phenomenon of electric or magnetic energy in a reverberant
room, we consider in the first instance a 2D rectangular cavity
provided with a metallic mode stirrer of complex shape (Fig.
1). The cavity is of length 756 mm and width 456 mm, walls
and stirrer are of perfect metal. Using HFSS software for
electromagnetic simulations, the eigenmodes of the cavity have
been determined. Fig.1 shows the distribution of electric and
magnetic field amplitudes for the 53rd eigenmode at 2.3873
GHz. We observe higher energy densities in the central area
of the cavity (the useful zone), wherein the DUT could be
placed. Thus this mode will contribute to achieve the required
energy level in the working area. Indeed, the mean electric
and magnetic energies calculated within the working area are
higher than the ones calculated in the rest of the cavity volume:
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(a) Electric field amplitude (b) Magnetic field amplitude
Fig. 1. Normalized amplitudes of electric and magnetic fields at f =
2.3873GHz for a 2D cavity with a metallic stirrer (in red). The red line
indicates the working area situated at a quarter-wavelength from the walls
and stirrer.

the ratio of the mean energies calculated in the working
volume and outside is of 3.42 for the electric field and 3.03
for the magnetic one.

(a) Electric field amplitude (b) Magnetic field amplitude
Fig. 2. Normalized electric and magnetic field amplitudes at f =
2.2087GHz for a 2D cavity with a metallic stirrer (in red).

A different behavior is observed with the 44th eigenmode
at 2.2087GHz depicted in Fig.2. In this case, the electric
and magnetic energy densities are higher in the area situated
between the mode stirrer and one of the closest walls, so that
the effect of this mode in the working area is reduced. In this
case, the ratio of the mean energies calculated in the working
volume and outside is of 0.655 for the electric field and 0.608
for the magnetic one.

This simple case highlights an energy localization phe-
nomenon in a reverberation cavity disturbed by a mode stirrer.
To examine its effect on the functioning of a reverberation
chamber, this phenomenon will now be examined in 3D
cavities and the effect of the mode stirrer displacement will
be taken into acount.

Two parallelepipedic cavities of dimensions W = 0.785 m
along (Ox), L = 0.985 m along (Oy) and H = 0.995 m along
(Oz) are considered (Fig.3). The classical RC (C1, Fig.3a)
consists of a parallelepipedic cavity equipped with a mode
stirrer. The shape and location of the latter conform to an
industrial RC, except for a global scaling factor. The metallic
paddles are 3 mm thick whereas the vertical circular rod at
the panels rotation axis has a diameter of 8 mm. All surfaces
are considered as perfectly conducting.

(a) Classical RC (C1) (b) Chaotic cavity (C2)
Fig. 3. Chaotic and classical cavities with 8 points sources Si.

The previous 2D example suggests that the presence of a
mode stirrer within the cavity volume could induce a field
localization in its vicinity. Therefore we propose an alternative
RC geometry with a hemispheric mode stirrer located on a
cavity wall (C2, Fig.3b). Apart from avoiding localization
effects, the chosen geometry also has to lead to field uniformity
and isotropy. As in chaotic cavities most of the resonant modes
present uniform and isotropic field distributions [9] [10] [11],
we draw inspiration from an already studied 2D chaotic cavity
[12] to propose a new 3D RC geometry. It consists of a
parallelepipedic cavity provided with two metallic spherical
caps and one metallic spherical hemisphere on its walls and
in electrical contact with them, a spherical cap being a portion
of a sphere cut off by a plane and whose height is, in our case,
less than the sphere radius for a cap or equal for a hemisphere.
In previous works we already studied this resonant cavity
and showed its chaotic behaviour (with spatial and spectral
statistics in agreement with those predicted by Random Matrix
Theory [13]) as well as the improvement of the field properties
with regard to the EMC standards in comparison to a classical
RC [9] [14] [15]. The hemisphere has a radius of 15 cm and
caps of 45 cm and 50 cm. The highest penetration depth of
the caps within the cavity is of 15 cm. Whereas the two caps
are fixed, the stirring process is ensured by the translation of
the hemisphere. Its center rotates on the x=W plane along a
circle of radius 27.85 cm and centered at (W; L/2.1; H/2). The
initial position of the hemisphere center, used in the following
while studying the cavity in a fixed configuration, is (W; 25.5
cm; 32 cm).

The two cavities are simulated, without considering any
excitation antenna, by using the eigenmode solver of HFSS
software. Simulations are performed without considering any
losses in the cavity, so that the electric field components are
real. For both cavities, simulations are first of all performed
for a fixed position of the stirrer/hemisphere, then for a whole
stirrer/hemisphere rotation.

III. EIGENMODES PROPERTIES

A. For a fixed stirrer position

Originally proposed in quantum mechanics to distinguish
the energy regions of localized states of a particle [16] [17], the
Inverse Partition Ratio (IPR) has also been used in microwave
cavities to evaluate the degree of localization of the electric
field [18]. This indicator is calculated as :

LAk =

∫∫∫
V
|Ak| 4 dv[∫∫∫

V
|Ak| 2 dv

]2 · V (1)

with k = x, y or z, A is the complex amplitude of electric or
magnetic field.
For a real field component following a normal distribution
this indicator is equal to 3 (4.77 dB), whereas it increases
with a localization phenomenon. A global indicator of the field
localization is calculated as the quadratic mean of the three
IPR related to field components :

L
(E,H)
tot =

√
(L

(E,H)
x )2 + (L

(E,H)
y )2 + (L

(E,H)
z )2

3
(2)
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Figure 4 shows the IPR of three rectangular electric field
components as well as the global ones for the 330 first
eigenmodes respectively in the chaotic cavity and in the
classical cavity. We observe much higher IPR values attained
in the classical RC compared to the chaotic one, the IPR values
remaining close to the ideal value in the latter. It indicates a
strong localization of the electric energy for many eigenmodes
in C1. IPR values are particularly high at low frequencies, with
numerous peaks above 20 dB below 0.564 GHz (corresponding
to the 42nd mode), but the localization effect remains at high
frequencies with peaks above 15dB even after the 300th mode
(1.08 GHz). In the chaotic cavity (Fig.4b), the maximal total
IPR value is of 10 dB (only attained once) and IPR values
remain below 6 dB after the 32nd mode (0.541 GHz). As a
comparison, the global IPR index exceeds 10 dB for 86 modes
in the classical cavity.
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Fig. 4. Electric field localization index (dB), (a) in the classical RC, (b) in the
chaotic cavity (blue for x-, red for y- and green for z-component and black
for LE

tot).

Thus it clearly appears that numerous modes of the clas-
sical RC undergo a strong electric energy localization; these
eigenmodes present a heterogeneous distribution. In order to
better quantify this phenomenon, Table I presents the means
and standard deviations over the whole studied frequency
band of the four examined indicators calculated from electric
field distribution in each cavity. Due to the improvement of
the energy uniformity with the frequency, these quantities
are given while considering the 330 first modes then after
excluding the first 30 and 60 ones. The resonant frequencies
of the 30th and 60th modes are of 0.507 GHz and 0.632 GHz
in C1, and 0.527 GHz and 0.666 GHz in C2.

TABLE I
LE
k LE

x LE
y LE

z LE
tot

µ σ µ σ µ σ µ σ
C1 9.41 17.6 11.95 30.19 18.15 53.61 16.67 35.69
C2 3.87 0.58 3.9 0.73 3.89 0.87 3.91 0.59

without the first 30 modes
C1 7.27 7.70 9.34 25.06 8.84 29.37 10.11 22.07
C2 3.83 0.47 3.82 0.47 3.79 0.41 3.82 0.30

without the first 60 modes
C1 6.62 6.79 7.29 6.80 5.97 7.02 7.41 6.21
C2 3.82 0.45 3.80 0.45 3.75 0.35 3.80 0.26

Means and standard deviations of the IPR.

Table I confirms the previous observations. The mean IPR
values close to the ideal one combined to their low frequential
variation in the case of the chaotic cavity indicate a spatial
and spectral uniformity of the electric field distribution. The
much higher values of the means and standard deviations in
the classical RC reflect the strong localization phenomenon
suffered by numerous modes. By suppressing the first 30 then
60 modes, the standard deviations decrease in the chaotic

cavity, whereas the means and standard deviations improve
in the classical cavity. The performances of the chaotic cavity
still remain far better than these of the classical RC.

So far, only the electric energy distribution has been con-
sidered. To verify that the observation of the magnetic energy
distribution would lead to the same conclusions, the same
indicators have been calculated using the IPR definition based
on the magnetic field component amplitudes (Eq.1). A similar
variation of both indicators, based on electric or magnetic
fields, is observed. This similar behavior will allow us later
on to restrict our study to the electric field distribution.

(a) (b)

Fig. 5. Integration volumes (a) within the classical RC : volumes Vb and Vz ,
and (b) within the chaotic cavity: peripheral volumes (V1, V2, V3, V4) and
central volume Vc.

We have highlighted a localization phenomenon in the
classical RC, but IPR index doesn’t indicate the region of
higher energy density. To answer this question, we divide the
studied cavities into several non-overlapping sub-volumes and
compare their energy densities. In the classical RC (Fig.5a), a
volume is defined around the stirrer (of size 27.2 cm×32.2 cm
along x- and y-axes) and another in the central area (at 50mm
from the cavity walls). The chaotic cavity is subdivided into
four peripheral domains and a central one (at 50mm from
the cavity walls and caps) (Fig.5b). We then evaluate the ratio
between the mean electric or magnetic energy densities within
the volume around the stirrer Vb and the central volume Vc in
the classical cavity and the ratios between the mean energy
densities within each peripheral volume Vi and the central
volume Vc in the chaotic cavity.

RAi =

∫∫∫
Vi
|A|2dv
Vi

· Vc∫∫∫
Vc
|A|2dv

(3)

with Vi the peripheral volume (Vb in the conventional RC), Vc
the central volume, and A the vectorial complex amplitude
of electric or magnetic field. A uniform field distribution
corresponds to a unit energy ratio, whereas a deviation from
unity indicates a higher energy concentration in one of the
defined volumes.

Fig. 6a representing the ratio of the mean energy around the
stirrer and the one in the central volume of the conventional
cavity shows a wide discrepancy with the ideal value, with
numerous high ratio values (57 peaks of REb among 475 over
2). In contrast, in Fig. 6b, showing the ratios of mean electric
energies in the four peripheral volumes of the chaotic cavity
and the one in the central volume, all the curves remain close
to unity on the whole frequency band, with only three peaks
over 2; it indicates a uniform energy distribution between the
five defined sub-domains.
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Fig. 6. Mean electric energy ratios for RE
i in (a) C1, (b) C2.

As already observed with the IPR index, the comparison of
the ratios calculated using the electric and magnetic energies
(Fig. 6a) shows similar behaviors, so that the study can be
restricted to the observation of only one of them. We have
chosen to focus on the electric energy distribution.

TABLE II

Cavities
Classical

RC Chaotic RC

Ratios Rb R1 R2 R3 R4

〈RE
i 〉 1.24 0.836 0.902 0.936 0.905

σ(RE
i ) 2.60 0.221 0.213 0.264 0.264

without the first 30 modes
〈RE

i 〉 1.10 0.845 0.915 0.947 0.918
σ(RE

i ) 0.533 0.193 0.206 0.243 0.200
without the first 60 modes

〈RE
i 〉 1.08 0.853 0.923 0.952 0.922

σ(RE
i ) 0.457 0.187 0.199 0.219 0.194

Means and standard deviations of electric energy ratios in both cavities.

Table II summarizes the properties of the mean electric
energy ratios in both cavities, either giving their mean and
standard deviations on the whole frequency band or by ex-
cluding 30 and 60 modes. Whereas the means of the ratios
are close to unity in the chaotic cavity, they are higher in
the classical RC indicating an energy localization around the
stirrer at the expense of the energy level required for EMC tests
in the working area. In the chaotic cavity the ratios display low
variation versus frequency, thus most of the modes ensure a
uniform energy distribution between the five sub-volumes. On
the contrary, the higher values of the ratio standard deviations
in the conventional RC denote the spectral variability of the
field spatial distribution properties.

As expected, all the mean values come closer to one and
all the standard deviations decrease when the first 30 then 60
modes are excluded, but the performances of the chaotic RC
remain better than those of the conventional RC.

To illustrate this phenomenon of energy localization around
the mode stirrer, Fig. 7 depicts electric field amplitudes
of a localized mode, namely the 205th one (956 MHz,
LEtot = 16.238, LHtot = 22.211, REb = 2.847, RHb = 3.119).
The localization of the electric energies around the mode
stirrer is obvious. The field amplitudes are low within the
cavity working volume, so that this mode contributes very
little to the illumination of the DUT. It is also to notice that
IPR and energy ratios are in agreement with field distributions,
as they all indicate that energies are localized.

Fig. 7. Electric field amplitude of the 205th mode (f=908 MHz) represented
by iso-amplitude surfaces. Only the amplitudes above an arbitrarily fixed limit
are represented.

The comparison of IPR and energy ratios for all the modes
of the conventional RC shows that over the 21 modes pre-
senting LEtot value larger than 12dB, only 4 are associated to
REb ratio less than 1 (or 0dB). It shows the strong energy
localization mainly occurs in the stirrer area.

B. Effect of the stirrer rotation

In this section, we evaluate the previously introduced indi-
cators of localization in the two cavities for different positions
of the stirrer and the hemisphere. This study aims to verify
that the localization phenomenon observed for fixed cavity
geometries is not bounded to a specific configuration but
occurs at several stirrer or hemisphere positions.
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Fig. 8. Global LE
tot (in dB) versus stirrer/hemisphere position (whole rotation

with 1◦ step) in conventional (a-c) and chaotic (d-f) cavities, (a)&(d) 15
modes above 700 MHz, (b)&(e) 10 modes above 800 MHz and (c)&(f) 6
modes above 1.2 GHz.

This study has been carried out on three frequency ranges
above the 60th mode while considering 15 modes above 700
MHz, 10 modes above 800 MHz and 6 modes above 1.2
GHz. As we already mentioned the similar behaviors of the
indicators based on electric and magnetic fields, only the
electric energy distribution will be considered here for 360
positions of the stirrer and of the hemisphere on a whole
rotation (for a rotation angular step of 1◦).

For each considered mode of the classical RC, Fig.8 in-
dicates the variation of the related global IPR indicator LEtot
versus the stirrer (Fig.8a-c) or hemisphere position (Fig.8d-
f). Its mean and standard deviation over all the stirrer\
hemisphere angular positions are indicated in Fig.9.
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Fig. 9 shows a decrease with the frequency range of LEtot
mean values over the stirrer or hemisphere rotation, corre-
sponding to a weakening of the localization phenomenon.
For the chaotic cavity, mean values close to the ideal value
(3 in linear or 4.77 dB) are obtained on the two highest
frequency bands. The decrease of LEtot standard deviations
with the frequency is also obvious; thus fewer modes suffer
from high localization effect. However, even if the same trends
are observed for both cavities, on a given frequency band the
performances of the chaotic cavity are always better than those
of the classical RC, with mean values of LEtot closer to 3
and lower standard deviations. Thus, in the chaotic cavity, the
eigenfield distributions are more uniform and less sensitive to
the stirring object position than in the classical RC.
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Fig. 9. Means (blue) and standard deviations (green) over stirrer/hemisphere
rotation of the global LE

tot (linear scale), in conventional (a-c) and chaotic
(d-f) cavities, (a)&(d) 15 modes above 700 MHz, (b)&(e) 10 modes above
800 MHz and (c)&(f) 6 modes above 1.2 GHz. The values for each mode are
indicated at its resonant frequency at the initial stirrer/hemisphere position.

From LEtot mean values over the stirrer rotation calculated
for the different modes of each frequency band, a mean value
over the modes is calculated. In order to quantify the behavior
differences between the modes of a given frequency band, the
standard deviation of the same ensemble LEtot mean values
is also determined over the modes of each studied frequency
band. The obtained means and standard deviations are given
in Tab.III.

TABLE III

700MHz 800MHz 1.2GHz

〈〈LE
tot〉pos〉f µ σ µ σ µ σ

C1 9.08 2.20 6.35 0.50 4.12 0.06
C2 3.95 0.15 3.82 0.08 3.00 0.03

Means and standard deviations of 〈LE
tot〉pos on the three frequency bands.

These results highlight the better field uniformity in the
chaotic cavity with mean values on the three frequency bands
lower than the one attained on the highest frequency band
in the conventional RC. Moreover, the much lower standard
deviations indicate a better spectral uniformity obtained in this
alternative RC. The improvement of the cavity properties while
increasing the frequency is also noticeable with these results.
In particular, the mean value attains the ideal one (namely 3)
in the highest frequency band for the chaotic cavity.

IV. TOTAL FIELD PROPERTIES

A. Field reconstruction

Uniformity and anisotropy coefficients have been defined in
the norm [1] to be applied to measurement results. They are
calculated from the electric field within the excited RC and not
the previously examined eigenmodes. Before applying them in
order to compare the performances of both cavities regarding
standardized criteria, the excited field has to be rebuilt from the
numerically determined eigenmodes. As the eigenmodes have
been numerically determined without considering any losses,
this approach is approximate but can be considered as valid
for low losses.

For a cavity excited at the angular frequency ω, the electric
field at the same frequency can be expanded on the cavity
eigenmodes as [19]:

−→
E (ω) = −

ωµ

V

∞∑
m=1

1

k2m − k2

(∫
V
~J(~r0) · ~em(~r0) dv∫
V
|~em|2 dv

)
· ~em

(4)
where k2 = k20 [1− (−1 + ) · ωm/ (Qmω)], with Qm the

quality factor of the mth eigenmode. ~em is the mth eigenmode
field whose mean of the square electric field amplitude on the
whole cavity volume V is normalized to one. km is related to
the mth resonant angular frequency ωm by km = ωm/c, with
c the speed of light in vacuum. The current ~J represents the
source and ~r0 its location in the cavity.

The quality factors Qm are calculated by considering the
effects of the Joule losses on the cavity walls and of the cavity
loading by an antenna, according to (Qm)−1 = (QJoulem )−1+
(Qantm )−1. The QJoulem and Qantm are calculated in the high
frequency approximation [20] [21] (Eq. 5).

QJoulem =
3V

2S δ
and Qantm = 16π2 V

(
f

c

)3

(5)

with S the total surface area of the cavity walls and δ the wall
skin depth.

In order to ensure the obtained results are not specific to
a given excitation location, eight pointlike current sources
are considered within both cavity volumes (Fig.3), these unit
current sources having an amplitude of 1/

√
3 along each axis

of the Cartesian coordinate system in order to excite similarly
the three field components.

B. Impact of the localization to the eigenmodes contributions

The previous study of the eigenmodes properties showed
that in the classical RC numerous modes have their energy
highly concentrated around the stirrer to the detriment of the
energy in the working area. According to Eq.4, the electric
field within the working area is the sum of the contribution
of each eigenmode; if an eigenfield is mostly concentrated
around the stirrer, its contribution to the total field within
the working volume will be reduced. To show the impact
of the eigenfield localization outside the useful area on its
contribution to the total field in the useful volume, we define
the modal contribution Em of the mth mode as the excited
electric field obtained while considering only the mth mode,
without the contribution of the other modes. Derived from
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Eq.4, the modal contribution Em of the mth mode can be
written :
−→
Em(ωm) = −

ωµ

V (k2m − k2)

(∫
V
~J(~r0) · ~em(~r0) dv∫
V
|~em|2 dv

)
·~em (6)

and its amplitude is maximal at the mth mode resonant angular
frequency ωm.

From the extraction of the three electric field components
of the mth eigenmode at the center of the working volume,
we calculate the contribution at this central point of the first
10 eigenmodes above 700 MHz (Fig.10.a for the conventional
RC and Fig.10.c for the chaotic one) while considering the S1

excitation location in both cavities. The total electric field due
to the contribution of these 10 modes and calculated using
Eq. 4 is presented in Fig.10.b for the conventional RC and
Fig.10.d for the chaotic one.

In Fig.10.a, representing the evolution of the modal fre-
quency weight |Em(ω)| of 10 modes of the classical RC, one
distinguishes only 6 peaks, 4 invisible peaks corresponding
to maximum amplitudes |Em(ωm)| below 0.4V/m or 2.6% of
the largest peak (of 15.2V/m); these low weight modes weakly
contribute to the total field and modal overlap (Fig.10.b). For
the chaotic cavity in contrast, the lowest peak amplitude is
of 1.34V/m or 8.1% of the largest peak (of 16.5V/m). Thus
all peaks are visible in Fig.10.c and the contribution of the
10 modes is found on the total field (Fig.10.d). The greatest
disparity between the peak amplitudes for the different modes
in the conventional cavity results in a normalized standard
deviation between the amplitudes of 1.25 against 0.69 in the
chaotic cavity.
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Fig. 10. Amplitude of the modal contribution |Em(ω)| at the center of
working volume for the eigenmodes mi ((a) for classical cavity and (c)
for chaotic cavity); and amplitude of the total electric field induced by their
contribution ((b) for classical cavity and (d) for chaotic cavity).

Let us now relate these modal contributions and localization
indicators previously calculated. For the 10 modes considered,
the mean values and standard deviations of LEtot are 14.6
and 17.12 in the conventional cavity against 3.95 and 0.25
in the chaotic cavity. Indeed, no mode presents a high energy
localization in the chaotic cavity, contrary to the conventional
cavity. In the latter, the most important localization effect is
obtained for the 7th mode (Rb = 3.05, LEtot = 61.31) associated
with an invisible amplitude peak (0.147 V/m). In contrast, the
highest amplitude peak of the modal contributions (15.2 V/m

for mode 3) is associated with parameters (Rb = 0.43, LEtot =
4.34) indicating no energy localization around the stirrer. This
shows the negative impact of energy localization patterns on
spectral uniformity of the total field and on the modal overlap,
the latter playing an important role in obtaining a uniform and
homogeneous field in the RC [22].

C. Field homogeneity and isotropy

According to Eq.4, the spectral bandwidth of each resonance
frequency is non zero. As a consequence, the eigenmodes are
not only excited at their resonance frequency, and even if
their weight rapidly decreases outside the resonance width,
modal overlap occurs. It implies that the properties of the
excited field are not strictly equivalent to those of the isolated
eigenmodes, and that the rebuilt field of Eq.4 has to be used to
apply uniformity and anisotropy standardized criteria. In the
following, the rebuilt field is calculated for frequency steps
chosen equal to the third of the smallest frequential mode
bandwidth in each frequency band, respectively of 14.67 kHz,
12.22 kHz and 5.91 kHz for the chaotic cavity and 13.74
kHz, 11.01 kHz and 5.45 kHz for the classical RC.

To characterize the field uniformity, four standard deviations
are used. Three of them, associated to the orthogonal field
components Ei (i = x, y or z in our case), are calculated as
[1]

σi,dB = 20 · log
(
1 +

σi
〈Eimax〉

)
(7)

where the standard deviation σi and mean value 〈Eimax〉 are
calculated from the maximal field amplitudes attained over a
stirrer or hemisphere rotation at each of the eight vertices of
the working volume, the latter one being chosen to present the
same volume in both cavities. A global uniformity indicator
σtot is also calculated using the maximal field amplitudes
obtained by considering the three field components. Only
independent stirrer/hemisphere positions are considered, i. e.
20, 22 and 32 positions on the three frequency bands for the
chaotic cavity, and 18, 20 and 25 positions in the classical one,
as indicated by correlation coefficients between normalized
eigenfields.

Fig. 11 shows the four standard deviations obtained in three
bandwidths for both cavities while considering the excitation
S1 (indicated in Fig.3). The standard deviations are lower in
the chaotic cavity and seldom reach 3 dB. According to the
norm, the total standard deviation has to be below 3 dB with a
tolerance of a maximum of three peaks above 3 dB per octave.
In the chaotic cavity, the standard deviations stay below the
3dB limit in the two higher frequency bands, whereas it is
only respected in the highest band in the classical RC.

The frequential averages of the four curves of Fig.11 are
given in Tab.IV. They highlight the lower standard deviations
in the chaotic cavity, as all the average values are lower in this
cavity; it indicates that a better field uniformity is obtained. We
also notice in this cavity lower differences between the mean
standard deviations related to the three field components; it
shows a better field isotropy. These mean values also confirm
the decrease of the standard deviations with the frequency, but
the properties of C2 always stay better than those of C1.
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Fig. 11. Standard deviations of the three Cartesian field components and
total one (blue for σx, red for σy , green for σz , and black for σtot) for
(a1 , a2 , a3) cavity C1 and (b1 , b2 , b3) cavity C2 in the three frequency
bands for a source located in (S1).

TABLE IV
〈σx〉 〈σy〉 〈σz〉 〈σtot〉 δσk

700MHz
C1 2.99 2.57 2.90 3.61 0.42
C2 1.98 2.05 2.15 2.37 0.17

800MHz
C1 2.18 2.99 2.64 3.32 0.81
C2 1.76 1.69 1.89 1.90 0.20

1200MHz
C1 1.90 1.63 1.58 1.94 0.32
C2 1.48 1.57 1.54 1.63 0.09

Frequency means on the three frequency bands of the four standard
deviations and maximal difference between the three ones related to field

components for both cavities, source at S1.

Using the same procedure for the field reconstruction at the
eight vertices of the working volume and the stirring process,
we also determined the field anisotropy coefficients (Aαβ)
given by [1]:

Aαβ =
|Eα|2 − |Eβ |2

|Eα|2 + |Eβ |2
(8)

where α and β indicate directions of mutually orthogonal
Cartesian components, and the average is performed firstly
on the hemipshere or stirrer positions then on the eight
field extraction points. From these three partial anisotropy
coefficients, a global anisotropy indicator Atot can also be
calculated using :

Atot =
√[

A2
xy +A2

yz +A2
zx

]
/3 (9)

Fig.12 shows the amplitude of these four electric field
anisotropy coefficients on the three frequency bands in both
cavities.

First we note that the anisotropy coefficients decrease
with frequency in both cavities. In all frequency bands, the
anisotropy coefficients are lower in the chaotic cavity, indicat-
ing a better electric field isotropy. According to the standard
[1], with a number of independent positions between 10 and
30 as in our case, a good stirring quality is characterized
by a total anisotropy coefficient less than or equal to -5 dB,
whereas a medium stirring quality is associated to the limit
-2.5 dB. In the chaotic cavity, the total anisotropy coefficient
remains lower than -2.5 dB in the three frequency bands and
decreases with frequency, whereas in the cavity with a stirrer
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Fig. 12. Amplitude of the field anisotropy coefficients (in dB) versus
frequency (blue for Axy , red for Ayz , green for Azx, and black for Atot) for
(α1 , α2 , α3) cavity C1 and (β1 , β2 , β3) cavity C2, source location (S1)
in the three frequency bands.

this criterion is only respected in the band above 1.2 GHz.
However, the standard is respected below the -2.5 dB limit, and
this is achieved on the highest frequency band for both cavities.
Based on these values and according to the norm [1], the
chaotic cavity permits to obtain a good stirring quality (total
anisotropy coefficient below -5dB) whereas the conventionnal
RC can only provide a medium stirring quality.

To confirm these remarks, the amplitudes of the four
anisotropy coefficients have been averaged on each frequency
band (Tab.V). We notice the decrease of these values with the
frequency, and the best performances of the chaotic cavity,
with lower mean values.

TABLE V
〈Axy〉 〈Ayz〉 〈Azx〉 〈Atot〉

700MHz
C1 -2.44 -2.40 -2.54 -2.67
C2 -3.23 -3.44 -3.26 -3.31

800MHz
C1 -3.05 -2.96 -2.90 -2.97
C2 -4.28 -4.29 -4.24 -4.27

1200MHz
C1 -4.88 -4.94 -4.81 -4.88
C2 -6.03 -6.13 -6.24 -6.13

Frequency means of anisotropy coefficient amplitudes (in dB), source at S1.

We have shown that, for a point like source located at S1,
the electric field over a stirrer or hemisphere rotation is more
uniform and isotropic in the chaotic cavity. We will now verify
that this conclusion is independent of the excitation location.

Tab.VI shows the frequency means on the three frequency
bands of the total standard deviation σtot and the total
anisotropy coefficient Atot for the seven other source locations
Si presented in Fig.3. Similar results are obtained at all the
source locations, and the conclusions drawn at the first source
location remain valid: the electric field is always more uniform
and isotropic in the chaotic cavity and its properties improve
in both cavities with frequency increasing. The latter results
allow us to confirm the better properties of the chaotic cavity
regardless of the source position.

V. CONCLUSION

It has been demonstrated that an energy localization phe-
nomenon appears around the mode stirrer of a classical RC
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TABLE VI
700MHz 800MHz 1200MHz

C1 C2 C1 C2 C1 C2

S2
〈σtot〉 3.693 2.209 3.344 1.837 2.448 1.651
〈Atot〉 -2.323 -3.261 -3.065 -4.280 -4.693 -6.051

S3
〈σtot〉 3.315 2.251 3.246 1.983 2.107 1.662
〈Atot〉 -2.525 -3.286 -3.047 -4.253 -4.828 -6.089

S4
〈σtot〉 3.744 2.255 3.158 1.881 2.074 1.675
〈Atot〉 -2.459 -3.262 -3.071 -4.300 -4.872 -6.068

S5
〈σtot〉 3.386 2.218 3.150 1.901 2.215 1.562
〈Atot〉 -2.601 -3.281 -3.168 -4.302 -4.852 -6.033

S6
〈σtot〉 3.501 2.344 3.221 1.994 2.044 1.611
〈Atot〉 -2.496 -3.275 -3.102 -4.250 -4.793 -6.033

S7
〈σtot〉 3.451 2.269 3.265 1.889 1.929 1.566
〈Atot〉 -2.410 -3.262 -3.019 -4.291 -4.834 -6.072

S8
〈σtot〉 3.608 2.396 3.134 1.986 2.125 1.604
〈Atot〉 -2.462 -3.269 -3.067 -4.251 -4.804 -6.052

Frequency means on the three frequency bands of the total standard
deviation σtot and the total anisotropy coefficient Atot for 7 different

source locations Si.

even at high frequencies. As the resonant modes undergoing
this localization weakly contribute to the total field within
the working volume, it degrades the spatial and spectral
properties of the field in this useful area. To overcome this
problem, a new RC shape has been proposed, that has been
obtained through simple modifications of the conventional
RC. The localization phenomenon is avoided in this case,
so that the energy distribution is more uniform within the
whole cavity and the modes contribution to the field within
the working volume is stronger and less frequency dependent.
The resulting improvements of the field properties are clear by
considering standard uniformity and isotropy criteria, as the
well operating indicators move below the required threshold
at lower frequency and, on a given frequency band, always
indicate a better operating of the chaotic cavity. The proposed
simple and low-cost modifications of classical RC could thus
permit to improve the field properties within a classical RC
and also to decrease its Lowest Useable Frequency.
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