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Abstract. The intense development of computing techniques and the
increasing volumes of produced data raise many modelling and analysis
challenges. There is a need to represent and analyse information that is:
complex —due to the presence of massive and highly heterogeneous data—,
dynamic —due to interactions, time, external and internal evolutions—,
connected and distributed in networks. We argue in this work that rel-
evant concepts to address these challenges are provided by three ingre-
dients: labelled graphs to represent networks of data or objects; rewrite
rules to deal with concurrent local transformations; strategies to express
control versus autonomy and to focus on points of interests. To illus-
trate the use of these concepts, we choose to focus our interest on social
networks analysis, and more precisely in this paper on random network
generation. Labelled graph strategic rewriting provides a formalism in
which different models can be generated and compared. Conversely, the
study of social networks, with their size and complexity, stimulates the
search for structure and efficiency in graph rewriting. It also motivated
the design of new or more general kinds of graphs, rules and strategies
(for instance, to define positions in graphs), which are illustrated here.
This opens the way to further theoretical and practical questions for the
rewriting community.

1 Introduction

With the intense development of computing techniques, the last decades have
seen an increasing complexity of models needed to study phenomena of the
physical world and, at the same time, increasing volumes of data produced by
observations and computations. New paradigms of data science and data ex-
ploration have emerged and opened the way to analytic approaches, such as
data-driven algorithms, analysis and mining (also called data analytics). Social
and human sciences are also impacted by this evolution and provide interesting
research problems for computer scientists. To illustrate these concepts, we choose
to focus our interest on social networks, which have been intensively studied in
the last years [12,31,36]. The analysis of social networks, used to represent users



and their relations with one another, raises several questions concerning their
possible construction and evolutions. Among these questions, the study of net-
work propagation phenomena has initiated a sustained interest in the research
community, offering applications in various domains, ranging from sociology [23]
to epidemiology [9,17] or even viral marketing and product placement [15]. To
solve these problems we need to model and analyse systems that are complex,
since they involve data that are massive and highly heterogeneous, dynamic, due
to interactions, time, external or internal evolutions, connected and distributed
in networks.

We argue in this paper that relevant concepts to address these challenges
are: Labelled Graphs to represent networks of data or objects, Rules to deal
with concurrent local transformations, and Strategies to express control versus
autonomy and to focus on points of interests. Indeed, modelling social networks
raises many questions we have to address. First, large networks are involved for
which an efficient search of patterns is needed, along with capability of focus-
ing on points of interest and defining appropriate views. Since data are often
corrupted or imprecise, one should also deal with uncertainty, which implies
that we need to address probabilistic or stochastic issues in the models. The dy-
namic evolution of data is generally modelled by simple transformations, applied
in parallel and triggered by events or time. However, such models should also
take into account controlled versus autonomous behaviour. Modelling may reveal
conflicts that have to be detected (for instance through overlapping rules) and
solved (using precedence, choices, i.e., strategic issues). Memory and backtrack-
ing must be provided, through notions of computation history or traces. Last
but not least, visualisation is important at all levels: for data analysis, program
engineering, program debugging, tests and verification (for instance to provide
proof intuition).

In [37], we focused on propagation phenomena and showed how some popular
models can be expressed using labelled graph and rewriting. In the current pa-
per, we use this previous work to illustrate our computing model and introduce a
generative model for social networks. Indeed, many data sets, extracted from var-
ious social networks, are publicly available.* However, in order to demonstrate
the generality of a new approach, or to design and experiment with stochas-
tic algorithms on a sufficiently large sample of network topologies, it is more
convenient to use randomly generated networks. Several generative models of
random networks are available to work with (e.g., [5,8,18,39]). Some, like the
Erdos—Rényi (ER) model [18], do not guarantee any specific property regarding
their final topology, whereas others can be characterised as small-world or scale-
free networks. This paper shows how to generate such models using labelled
graphs, rules and strategies.

Port graph rewriting systems have been used to model systems in a wide va-
riety of domains, such as biochemistry, interaction nets, games or social networks
(e.g., [1,20,21,37]). In the following, we reuse from [19] the formal definitions
of port graphs with attributes, rewrite rule and rewriting step, the concept of

* For instance from http://snap.stanford.edu



strategic graph program, as well as the definition of the strategy language and
its operational semantics, and enrich them in order to achieve a more complete
and generic definition. Most notably, the refined definitions permit the use of ori-
ented edges and conditional existence matching, reminiscent of similar solutions
found in ELAN [10] and GP [35]. We use the PORGY environment which sup-
ports interactive modelling using port graph rewriting; more details concerning
the rewriting platform can be found in [33].

Summarising, our contributions are twofold: we present a general modelling
framework, based on strategic port graph rewriting, that facilitates the analysis
of complex systems, and we illustrate its power by focusing on social networks
(more precisely, their generation). For this application, the visual high-level mod-
elling features of port graph rewriting are particularly relevant. Concepts of port
graphs, rules and strategies are illustrated on this specific domain. Conversely,
the study of social networks, with their size and complexity, stimulates the search
for structure and efficiency in graph rewriting. We identify open problems and
questions that arise when studying social networks.

The paper is organised as follows. Section 2 introduces the modelling concepts
we propose to use: port graphs, morphism, rewriting, derivation tree, strategy
and strategic graph programs are defined in their full generality, while illus-
trated on the special case of social networks. In Section 3, we focus on social
network behaviour simulation, more precisely on social network generation. In
Section 4, we conclude by synthesising the lessons learned from this study and
giving perspectives for future work.

2 Labelled Graph Rewriting

Several definitions of graph rewriting are available, using different kinds of graphs
and rewrite rules (see, for instance, [6,7,16,24,28,34]). In this paper we consider
port graphs with attributes associated with nodes, ports and edges, generalising
the notion of port graph introduced in [2,3]. The following definitions, based

n [19], have been generalised to use indistinctly either directed or undirected
edges. We present first the intuitive ideas, followed by the formal definition of
port graph rewriting.

2.1 Port graphs

Intuitively, a port graph is a graph where nodes have explicit connection points
called ports, to which edges are attached. Nodes, ports and edges are labelled by
records listing their attributes.

A signature V used to label the graph is composed of:

— V., a set of attributes;

— X, a set of attribute variables;
— Vy, a set of values;

— Xy, a set of value variables.



where Vo, Xy, Vo and Xy are pairwise disjoint. V4 contains distinguished
elements Name, (In/Out)Arity, Connect, Attach, Interface. Values in V4 are
assumed to be of basic data types such as strings, int, bool,. .. or to be well-typed
computable expressions built using V and basic types.

Definition 1 (Record). A record r over the signature V is a set of pairs
{(a1,v1),..., (an,vs)}, where

a; € Vg UXy for 1 < i <mn, called attributes; each a; occurs only once in
r, and there is one distinguished attribute Name.

v; € Vy for 1 <i<mn, called values.

The function Atts applies to records and returns all their attributes:

Atts(r) ={a1,...,an}

ifr={(a1,v1),...,(an,vn)}. As usual, r.a; denotes the value v; of the attribute
a; mr.

The attribute Name identifies the record in the following sense: For all rq,
ro, Atts(r1) = Atts(ra) if r1.Name = ro. Name.

Definition 2 ((Directed) Port graph). Given sets A, P, & of nodes, ports
and edges, a port graph over a signature V is a tuple G = (N, P, E, L) where

— N C ¥ is a finite set of nodes; n,n’,ny,... range over nodes.
— P C & is a finite set of ports; p,p’,p1,... range over ports.
— E C & is a finite set of edges between ports; e, €', e1,... range over edges.

FEdges can be directed and two ports may be connected by more than one edge.
L is a labelling function that returns, for each element in NUPUE, a record
such that:

o for each edge e € E, L(e) contains an attribute Connect whose value is
the ordered pair (p1,p2) of ports connected by e.

e for each port p € P, L(p) contains an attribute Attach whose value is
the node n which the port belongs to, and an attribute Arity whose value
is the number of edges connected to this port. When edges are directed,
ports have instead two attributes, InArity and OutArity, whose respective
values are the number of edges directed to and from this port.

e Foreach noden € N, L(n) contains an attribute Interface whose value is
the set of names of ports in the node: {L(p;).Name | L(p;).Attach = n}.
We assume that L satisfies the following constraint:

L(ny1).Name = L(nz2).Name = L(nq).Interface = L(ng).Interface.

By definition 2, nodes with the same name (i.e., the same value for the
attribute Name) have the same set of port names (i.e., the same interface), with
the same attributes but possibly with different values. Variables may be used to
denote any value.

Two nodes n,n’ € N connected by an undirected edge are said to be adjacent
and each other neighbours. However, for a directed edge (n,n’) € E going from



n to n', only n’ is said adjacent to n (not conversely) and is called a neighbour
of n. The set of nodes adjacent to a subgraph F' in G consists of all the nodes in
G outside F' and adjacent to any node in F'. N(n) denotes the set of neighbours
of the node n.

The advantage of using port graphs rather than plain graphs is that they
allow us to express in a more structured and explicit way the properties of
the connections, since ports represent the connecting points between edges and
nodes. However, the counterpart is that the implementation, rules and matching
operations are more complex. So, whenever possible, it is simpler and more
efficient to keep the number of ports for each node to a minimum.

Ezample 1 (Social Network). A social network [11] is commonly described as a
graph G = (N, E) built from a set of nodes (the users) N and a set of edges
E C N x N linking users. Although in most real-world social relations, two
persons relate to each other with a mutual recognition, some social networks
present an asymmetric model of acknowledgement, the most popular of them
being Twitter, classifying one of the users as a follower while the other is a
followee. Such relations can be very simply represented by orienting edges, thus
transforming our initial graph in a directed graph.

In this paper, we model a social network as a port graph, where nodes repre-
sent users and edges are connections between them. Edges are directed to reflect
the relation between users (e.g., follower/followee) and store the attributes of
their relation (e.g., influence level, threshold value...). An alternative solution
would be to use undirected edges and nodes with two ports called “In” and “Out”
for instance, as in [37], to simulate edge direction. In this paper, the nodes rep-
resenting users have only one port gathering directed connections. While this is
sufficient for simple cases, when facing real social networks, multiple ports are
useful, either to connect users according to the nature of their relation (e.g.,
friends, family, co-workers...) or to model situations where a user is connected
to friends via different social networks. The full power of port graphs is indeed
necessary in multi-layer networks [27] where edges are assigned to different layers
and where nodes are shared. In that case, different ports are related to differ-
ent layers, which can improve modularity of design, readability and matching
efficiency through various heuristics. This is however a topic left for future work.

Ezample 2 (Propagation). Propagation in a network can be seen as follows: when
users perform a specific action (announcing an event, spreading a gossip, sharing
a video clip, etc.), they become active. They inform their neighbours of their state
change, giving them the possibility to become active themselves if they perform
the same action. Such process reiterates as the newly active neighbours share
the information with their own neighbours. The activation can thus propagate
from peer to peer across the whole network.

To replicate this phenomena observed in real-world networks, some models
opt for entirely probabilistic activations (e.g., [14,42]) where the presence of
only one active neighbour is enough to allow the propagation to occur. Other
models use threshold values (e.g., [22,26,40]) building up during the propagation.



Such values represent the influence of one user on his neighbours or his tolerance
towards performing a given action (the more solicited a user is, the more inclined
he becomes to either activate or utterly resist).

To express propagation conditions (e.g., a probabilistic model for node acti-
vation, or activation after reaching a predefined threshold), it is natural to make
use of records with expressions, i.e., include specific attributes whose values are
numerical expressions. More specifically:

— Each node n has an attribute Active that indicates whether it contributes to
the propagation or not. It is coupled with the Colour attribute, which takes
accordingly green or red values. The node n has also a Sigma attribute that
measures the maximum influence withstood by n from its active neighbours
at the time being.

— An edge e that connects two ports p’ and p of the respective nodes n’
and n has an attribute Influence which indicates the influence of n’ (i.e.,
L(p').Attach) on n (i.e., L(p).Attach). The edge e has also a Boolean at-
tribute Marked, initially false, which becomes true when n is inactive, n’ is
active and n’ has tried to influence n.

2.2 Rewriting

We see a port graph rewrite rule L = R as a port graph consisting of two
subgraphs L and R together with a special node (called arrow node) that encodes
the correspondence between the ports of L and the ports of R. Each of the ports
attached to the arrow node has an attribute Type € V4, which can have three
different values: bridge, wire and blackhole. The value indicates how a rewriting
step using this rule should affect the edges that connect the redex to the rest of
the graph. We give details below.

Definition 3 (Port graph rewrite rule). A port graph rewrite rule is a port
graph consisting of:

— two port graphs L and R over the signature V, respectively called left-hand
side and right-hand side, such that all the variables in R occur in L, and R
may contain records with expressions;

— an arrow node with a set of edges that each connect a port of the arrow node
to ports in L or R.

The arrow node has for Name =-. Fach port in the arrow node has an attribute
Type, which can be of value: bridge, blackhole or wire, satisfying the following
conditions:

1. A port of type bridge must have edges connecting it to L and to R (one edge
to L and one or more to R).

2. A port of type blackhole must have edges connecting it only to L (at least
one edge).

3. A port of type wire must have exactly two edges connecting to L and no edge
connecting to R.



The arrow node has an optional attribute Where whose value is a Boolean expres-
sion involving the predicate Edge, applied to node and port names, and Boolean
operators.

When modelling rumour propagation, the rules never suppress nor add new
nodes. Moreover, when there is only one port per node, there is no ambiguity on
the rewiring between left and right-hand sides. In that case indeed, the structure
and visualisation of the arrow node is much simpler. However, this only holds
when the network’s structure does not change.

The introduction of the Where attribute is inspired from the GP program-
ming system [35] (and from ELAN [10] with a more general definition), in which
a rule may have a condition introduced by the keyword where. For instance,
a condition where not Edge(n,n’) requires that no edge exists between the
nodes n and n'. This condition is checked at matching time.

Let us first recall the notion of port graph morphism [19]. Let G and H be two
port graphs over the same signature V. A port graph morphism f : G — H maps
nodes, ports and (directed) edges of G to those of H such that the attachment
of ports and the (directed) edges connections are preserved, all attributes and
values are preserved except for variables in G, which must be instantiated in H.
Intuitively, the morphism identifies a subgraph of H that is equal to G except at
positions where G has variables (at those positions, H could have any instance).

Definition 4 (Match). Let L = R be a port graph rewrite rule and G a port
graph. We say a match g(L) of the left-hand side (also called a redex) is found

if:

— There is a port graph morphism g from L to G; hence g(L) is a subgraph of
G.

— If the arrow node has an attribute Where with value C, C' must be true of
g(L).

— For each port in L that is not connected to the arrow node, its corresponding
port in g(L) must not be an extremity in the set of edges of G — g(L).

This last point ensures that ports in L that are not connected to the arrow
node are mapped to ports in g(L) that have no edges connecting them with
ports outside the redex, to avoid dangling edges in rewriting steps.

Several injective morphisms ¢ from L to G may exist (leading to different
rewriting steps); they are computed as solutions of a matching problem from L
to (a subgraph of) G.

Definition 5 (Rewriting step). According to [19], a rewriting step on G us-
ing a rule L = R (where C) and a morphism g : L — G (satisfying C), written
G = _ r G', transforms G into a new graph G’ obtained from G by performing
the following operations in three phases:

— In the build phase, after a redex g(L) is found in G, a copy R. = g(R) (i.e.,
an instantiated copy of the port graph R) is added to G.



— The rewiring phase then redirects edges from G to R. as follows:
For each port p in the arrow node:

e If p is a bridge port and pr, € L is connected to p:
for each port pzé € R connected to p,
find all the ports p’é in G that are connected to g(pr) and are not in
g(L), and redirect each edge connecting p, and g(pr,) to connect pf, and
PR,

e If p is a wire port connected to two ports p1 and ps in L, then take all
the ports outside g(L) that are connected to g(p1) in G and connect each
of them to each port outside g(L) connected by an edge to g(pz).

e If p is a blackhole: for each port pr, € L connected to p, destroy all the
edges connected to g(pr) in G.

— The deletion phase simply deletes g(L). This creates the final graph G'.

Ezample 3 (Propagation). Figure 1 shows two rules used for propagation. Active
nodes are depicted in green and visited nodes in purple. Red nodes are in an
inactive state (however, they may have been visited already). Rule R1 in Fig-
ure 1(a) indicates that when an activated node n is connected to an inactive node
7, it tries to influence it. If it succeeds, a second rule, Rule R2 in Figure 1(b),
makes this node active.

In a social network G = (N, E), let n and @ be two nodes (n,m € N)
connected via an edge e = (n,m) € E. The node’s attribute £(7).Sigma, giving
the influence withstood by 7 and initially set to 0, is updated such as:

L(e). Influence

L(m).Sigma = max ( .

, L'(n).Sigma)

where r is a random number between 0 and 1 and L(e).Influence is the influence
of n on m. The formula is stored as a node attribute in the right-hand side of
Rule R1 in Figure 1(a) and each corresponding rewriting performs the update.
More details are given in [37].

Given a finite set R of rules, a port graph G rewrites to G’, denoted by G —x
G', if there is a rule 7 in R and a morphism g such that G —9 G’. This induces
a reflexive and transitive relation on port graphs, called the rewriting relation,
denoted by —%. A port graph on which no rule is applicable is irreducible.

A derivation, or computation, is a sequence G —% G’ of rewriting steps.
Each rewriting step involves the application of a rule at a specific position in
the graph. A derivation tree from G represents all possible computations (with
possibly infinite ones) and strategies are used to specify the rewriting steps of
interest, by selecting branches in the derivation tree.

2.3 Strategic graph programs

In this section, we recall the concept of strategic graph program, consisting of a
located graph (a port graph with two distinguished subgraphs that specify the
locations where rewriting is enabled/disabled), a set of rewriting rules, and a



(a) RI: Influence trial. An active (b) R2: Node activation. A visited

neighbour (green) influences an inac- node (blue) sufficiently influenced is
tive node (red) by visiting it (transfor- activated (transformation into a green
mation into a blue node). node).

Fig. 1. Rules used to express a propagation model. For both rules, we use two specific
node’s attributes —active and visited— to manage the matching performed, the different
colours being visual cues helping users identifying the node state at a glance. Green
nodes, or active nodes, must have their attributes active equal to 1 and visited equal to
0; red nodes, or inactive nodes, must have their attributes active equal to 0 and visited
equal to 0; finally, blue nodes, or visited nodes, must have their attributes active equal
to 0 and wisited equal to 1.

strategy expression. We then recall the strategy language presented in [19] to
define strategy expressions. In addition to the well-known constructs to select
rewrite rules, the strategy language provides position primitives to select or ban
specific positions in the graph for rewriting. The latter is useful to program
graph traversals in a concise and natural way, and is a distinctive feature of
the language. In the context of social networks, the position primitives are also
convenient to restrict the application of rules to specific parts of the graph.

Located graphs and rewrite rules First, we recall that, in graph theory, a
subgraph of a graph G = (Ng, E¢) is a graph H = (Ny, Ey) contained in G,
that is, Ny C Ng and Ey C Eg. The definition extends to directed port graphs
in the natural way: let G = (Ng, Pg, Eq,Lg) and H = (Ng, Py, En, L) be
port graphs over the signature V. H is a subgraph of G if Ny C Ng, Py C Pg,
Ey C Eg, Ly = Lg|NgupPyuEsy, that is, Ly is the restriction to H of the
labelling function of G.

Definition 6 (Located graph). According to [19], a located graph G]Cg. con-
sists of a port graph G and two distinguished subgraphs P and Q of G, called
respectively the position subgraph, or simply position, and the banned subgraph.

In a located graph Gg, P represents the subgraph of G where rewriting
steps may take place (i.e., P is the focus of the rewriting) and @) represents the
subgraph of G where rewriting steps are forbidden. We give a precise definition



below; the intuition is that subgraphs of G that overlap with P may be rewritten,
if they are outside Q.

When applying a port graph rewrite rule, not only the underlying graph G
but also the position and banned subgraphs may change. A located rewrite rule,
defined below, specifies two disjoint subgraphs M and M’ of the right-hand side
R that are respectively used to update the position and banned subgraphs. If
M (resp. M) is not specified, R (resp. the empty graph ) is used as default.
Below, we use the operators U, N, \ to denote union, intersection and complement
of port graphs. These operators are defined in the natural way on port graphs
considered as sets of nodes, ports and edges.

Definition 7 (Located rewrite rule). A located rewrite rule is given by a port
graph rewrite rule L = R, and, optionally, a subgraph W of L and two disjoint
subgraphs M and M’ of R. It is denoted Ly = RYY. We write Gg —>‘Z

wiR%,
G’g: and say that the located graph G% rewrites to G'g: using Ly = R%/ at
position P avoiding Q, if G =g G’ with a morphism g such that g(L)N P =
g(W) or simply g(L) NP # 0 if W is not provided, and g(L) N Q = 0. The new
position subgraph P’ and banned subgraph Q' are defined as P' = (P \ g(L)) U
g(M), Q' = QUg(M'); if M (resp. M') are not provided then we assume M = R
(resp. M' =10).

In general, for a given located rule Ly, = R%/ and located graph Gg, more
than one morphism g, such that g(L) N P = g(W) and g(L) N Q is empty, may
exist (i.e., several rewriting steps at P avoiding () may be possible). Thus, the
application of the rule at P avoiding () produces a set of located graphs.

Example 4. In influence propagation, banned subgraphs are used to avoid sev-
eral activations of the same neighbours. Another usage is to select a specific
community in the social network where the propagation should take place.

2.4 Strategies

To control the application of the rules, a strategy language is presented in [19].
We recall it in Table 1, including some additional constructs that are needed to
deal with directed edges.

Strateqy expressions are generated by the grammar rules from the non-
terminal S. A strategy expression combines applications of located rewrite rules,
generated by the non-terminal A, and position updates, generated by the non-
terminal U, using focusing expressions, generated by F. Subgraphs of a given
graph can be defined by specifying simple properties, expressed with attributes
of nodes, edges and ports. The strategy constructs, generated by S, are used to
compose strategies and are strongly inspired from term rewriting languages such
as ELAN [10], Stratego [38] and Tom [4].

We briefly explain below the constructs used in this paper. A full description
of the language can be found in [19].



Let L, R be port graphs; M, M’ subgraphs of R; W a subgraph of L;
keN; mi=1..x €[0,1]; zk: m; = 1; let attribute be an attribute label in V g;
i=1
v € V a valid expression without variables;
z|(Transformations) T = Lw = RY (T T)
E | ppick(T1, 71, ... Tk, Tk)
(Applications) A = all(T) | one(T)
(Focusing) F ::= crtGraph | crtPos | crtBan
é | FUF|FOF|F\F|(F)|0
-‘g | ppick(Fi,m1,. .., Fg, k)
~ | property(F, p) | ngb(F, p)
| ngb0ut(F, p) | ngbIn(F,p)
(Determine) D ::=all(F) | one(F)
(Update) U ::= setPos(D) | setBan(D)
| update( function{parameters_list})
. (Properties) p = Elem, Expr
-é) Elem :=node | edge | port
qé Expr := attribute Relop v | true
£ Relop === | 1= | > | <
|>= | <= | =~
2 (Comparison) Cu=F=F|F!= F|FCF|isEmpty(F)
:é | match(T)
é (Strategies) Su=id|fail | A|U|C|S;S
g | i£(S)then(S)else(S) | (S)orelse(S)
~ | zepeat(S)[(k)] | while(S)[(k)}do(S)
| ppick(S1,71,..., Sk, k)
| try(S) | not(S)

Table 1. Syntax of the Strategy Language.

The primary construct is a located rule, which can only be applied to a
located graph Gg if at least a part of the redex is in P, and does not involve
Q. When probabilities 71, ..., 7 € [0,1] are associated to rules T7,..., Ty such
that 71 + --- + 7 = 1, the strategy ppick(Ty, 71, ..., Tk, mx) picks one of the
rules for application, according to the given probabilities.

all(7T) denotes all possible applications of the transformation 7" on the lo-
cated graph at the current position, creating a new located graph for each appli-
cation. In the derivation tree, this creates as many children as there are possible
applications.



one(T) computes only one of the possible applications of the transformation
and ignores the others; more precisely, it makes an equiprobable choice between
all possible applications.

Similar constructs exist for positions focusing: one(F') returns one node in F'
and all(F') returns the full F. In the remaining of this paper, when not specified,
F stands for all(F).

Focusing expressions are used to define positions for rewriting in a graph, or
to define positions where rewriting is not allowed. They denote functions used
in strategy expressions to change the positions P and @ in the current located
graph. In this paper, we use:

crtGraph, crtPos and crtBan, applied to a located graph Gg, return re-

spectively the whole graph G, P and Q.

— property(F, p) is used to select elements of a given graph that satisfy a
certain property, specified by p. It can be seen as a filtering construct: if
the expression F' generates a subgraph G’ then property(F, p) returns only
the nodes and/or edges from G that satisfy the decidable property p =
Elem, Expr. Depending on the value of Elem, the property is evaluated on
nodes, ports, or edges.

— ngb(F, p) returns a subset of the neighbours (i.e., adjacent nodes) of F ac-
cording to p. Note that the direction of the edge is taken into account; to
emphasise it, we introduce ngbOut(F, p) and its counterpart ngbIn(F, p). If
edge is used, i.e., if we write ngb(F, edge, Expr), it returns all the neighbours
of F' connected to F' via edges which satisfy the expression Exzpr.

— setPos(D) (resp. setBan(D)) sets the position subgraph P (resp. Q) to be

the graph resulting from the expression D. It always succeeds (i.e., returns

id).
The following constructs are also used:

— 55’ represents sequential application of S followed by S’.

— repeat(S)[max n] simply iterates the application of S until it fails, but, if
max n is specified, then the number of repetitions cannot exceed n.

— (S)orelse(S’) applies S if possible, otherwise applies S’. It fails if both S
and S’ fail.

— When probabilities 71, ..., 7 € [0,1] are associated to strategies S, ..., Sk
such that w1 + - - - + 7, = 1, the strategy ppick(S1,m1,..., Sk, Tk) picks one
of the strategies for application, according to the given probabilities. This
construct generalises the probabilistic constructs on rules and positions.

Ezample 5 (Propagation). (Example 3 cont’d) To illustrate the strategy lan-
guage, let us come back to the propagation model in social networks and to the
two rules described in Figure 1. When Rule R1 in Figure 1(a) is applied on a pair
of nodes active(n)/non active(m) (green/red): a) we generate a random number
r €]0,1]; b) we store in the attribute £(7).Sigma the new value of Sigma for 7
computed with the previously given formula; and ¢) using the Marked attribute,
we mark the edge e linking n to @ to prevent the selection of this particular



pair configuration in the next pattern matching searches. This ensures that the
active node n will not be able to try to influence the same node 7 over and over.

Once every pair of active/inactive neighbours has been tried, if 7 is suffi-
ciently influenced (i.e., £(7).Sigma > 1), Rule R2 in Figure 1(b) is applied and
7 becomes active. This behaviour is expressed with the following strategy:

Strategy 1: Influence propagation in social network.

1 repeat(R1);
2 setPos(property(crtGraph,node, Sigma > “17));
3 repeat(R2)

This example illustrates how record expressions may be used to compute
attribute values and how they are updated through application of rules.

Probabilistic features of the PORGY strategy language, through the use of
the ppick() construct, are illustrated in Section 3 for social network generation.

A more complete formal definition of strategic graph programs and their se-
mantics can be found in [19]. Correctness and completeness of strategic port
graph rewriting are stated and imply in particular that the derivation tree in
which each rewrite step is performed according to the strategy —let us call it
the strategic derivation tree— is actually a subtree of the derivation tree of the
rewrite system without strategy. The strategic derivation tree is a valuable con-
cept because it records the history of the transformations and provides access
to generated models. It is, by itself, a source of challenging questions, such as
detecting isomorphic models and folding the tree, finding equivalent paths and
defining the “best ones”, abstracting a sequence of steps by a composition strat-
egy, or managing the complexity of the tree and its visualisation.

From now on, the paper focuses on social networks generation using the
introduced labelled graph rewriting concepts and the PORGY environment.

3 Social network generation

We focus in the following on generating graphs with a small-world property as
defined in [41]. Such graphs are characterised by a small diameter —the average
distance between any pair of nodes is short— and strong local clustering —any pair
of connected nodes tend to both be connected to the same neighbour nodes thus
creating densely linked groups of nodes, also called communities. Popularised
by Milgram in [30], small-world graphs are a perfect case study for information
propagation in social networks due to their small diameter allowing a quick and
efficient spreading of information among the users. Furthermore, the graph G =
(N, E) produced by the generation process satisfies the following requirements:
the number of nodes |N| and directed edges |E| are given a priori; G is formed
of a sole connected component thus |E| should at least be equal to |N| — 1;



any ordered pair of nodes (n,n’) can only be linked once, thus maximising the
possible number of edges in G to |E|maz = |N| x (|N| — 1); finally, the definitive
number of communities is left to be randomly decided during the generative
operations.

A few previous works have explored the idea of using rules to generate net-
works. In [25], the authors define and study probabilistic inductive classes of
graphs generated by rules which model spread of knowledge, dynamics of ac-
quaintanceship and emergence of communities. The model presented below fol-
lows a rather similar approach; however, we have adjusted its generative rules to
cope with directed edges and ensure the creation of a graph with a single con-
nected component. This is achieved by performing the generation through local
additive transformations, each only creating new elements connected to the sole
component, thus increasingly making the graph larger, more intricate and more
interesting to study.

Starting from one node, the generation is divided into three phases imitating
the process followed by real-world social networks. Whenever new users first join
the social network, their number of connections is very limited, mostly to the
other users who have introduced them to the social network. Then comes the
second phase where the new users reach the people they already know personally,
thus creating new connections within the network, which may seem random for
any spectator only aware of the present social network. Finally, the new users
start to get to know the people with whom they are sharing friends in the
network, potentially leading to the creation of new connections.

The method presented below can easily be extended to create graphs with
more than one component. One has to use a number of starting nodes equal to
the number of desired connected components and ensure that no edge is created
between nodes from different components. The generative rules and strategies
can then be applied on each component iteratively or in parallel (parallel appli-
cation of rules is possible but beyond the scope of this paper).

The first step (Sect. 3.1) generates a simple directed acyclic graph represent-
ing an initial simple network evolving as new users join it. It is then comple-
mented with additional edges in the second step (Sect. 3.2), as users “import”
their pre-existing connections into the social network. Finally, the third and fi-
nal step (Sect. 3.3) focuses on creating communities as users connect with the
friends of their friends within the network.

3.1 Generation of a directed acyclic graph

The first step toward the construction of the directed graph G = (N, E) uses the
two rules shown in Figures 2(a) and 2(b). Both rewriting operations start with
a single node and transform it to generate a second node linked to the first one
(thus creating a new node and a new edge with each application). The difference
between those two rules lies in the edge orientation as Rule 2(a) creates an
outgoing edge on the initiating node, while Rule 2(b) creates an incoming edge.

‘We can notice the left hand-sides of both rules require the existence of a node
prior to their application, thus imposing the starting graph upon which the rules
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(a) Rule GenerationNodel. (b) Rule GenerationNode2.

Fig. 2. Rules used for generating and re-attaching nodes to the social network. For
both rules, a new node is created in the right-hand side and connected to the pre-
existing node. The main difference between the two rules resides in the generated edge
orientation: going from the pre-existing node (belonging to the social network) to the
newly added node in Rule (a) or oriented in the opposite direction in Rule (b).

will be applied to have at least one node. As we also seek to ensure that only one
connected component exists prior to any transformation, we use a single node
as the starting graph.

Strategy 2: Node generation: Creating a directed acyclic graph of size N

//equiprobabilistic application of the two rules used for generating nodes
repeat(
ppick(one(GenerationNodel), 0.5,
one(GenerationNode2),0.5)
)(|N| —1) // Generation of N nodes

Gk W N

The whole node generation is achieved during this first phase and managed
using Strategy 2. It repeatedly applies the generative rules |[N| — 1 times so
that the graph reaches the appropriate number of nodes. As mentioned earlier,
each rule application also generates a new edge, which means that once exe-
cuted, Strategy 2 produces a graph with exactly |N| nodes and |N| — 1 edges.
The orientation of each edge varies depending of the rule applied (either 2(a)
or 2(b)), moreover, their application using the ppick() construct allows us to en-
sure an equiprobable choice between the two rules. We focus next on generating
additional edges.

3.2 Creating complementary connections

We still need to generate (|E|—|N|+1) additional edges in the graph G. However,
because we want to ensure the creation of communities during the last phase,
we do not wish to create all the remaining edges just now. Depending on how
we balance the number of edges created during this phase and the next one, the
final graphs will present different characteristics (see Figures 5 and 6). During



this phase, we aim to create either seemingly random connections between the
network users or to reciprocate already existing single-sided connections.
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(a) Rule GenerationEdge. (b) Rule GenerationMirror.

Fig. 3. First set of rules used to generate additional connections within the social
network. Rule (a) is used to create a new connection between two previously created and
unrelated nodes, while Rule (b) is applied on a pair of connected nodes and generates
a new edge reciprocating the pre-existing connection.

We use two rules to link existing nodes thus creating a new additional edge
with each application. The first rule (Fig. 3(a)) simply considers two nodes and
adds an edge between them to emulate the creation of a (one-sided) connection
between two users. The second rule (Fig. 3(b)) reciprocates an existing connec-
tion between a pair of users: for two nodes n,n’ € N connected with an edge
(n',n), a new edge (n,n’) is created; it is used to represent the mutual appreci-
ation of users in the social network. Note that, because each node is randomly
chosen among the possible matches, we do not need to create alternative versions
of these rules with reversed oriented edges.

In both rules, the existence of edges between the nodes on which the rule
applies should be taken into account. Though the rules visual representations do
not explicitly indicate it, any edge (n,n’) created by either rule cannot already
exist in the network, thus forbidding the rules to apply in such case. This require-
ment can be taken into account by adding a condition “where not Edge(n,n’)”
introduced in Definition 3. It can also be handled through positions for limiting
the elements to be considered during matching. We use the latter solution here.
Strategy 3 presents how we proceed. First, we filter the elements to consider
during the matching. We randomly select one node among the nodes whose out-
going arity (OutArity) is lower than the maximal possible value (i.e., |[N| — 1),
and we banish all of its outgoing neighbours as they cannot be considered as
potential matching elements. Then, Rule 3(a) or Rule 3(b) are equiprobably ap-
plied to add a new edge from the selected node. Previously banishing neighbours
allows only considering pair of nodes not already connected. This ensures that
the graph is kept simple (i.e., only one edge per direction between two nodes).

We aim to create |E’| more edges, where |E’| < (|E| — |[N|+ 1) to keep the
number of edges below |E|. The use of the ( )orelse() construct allows testing



Strategy 3: Edge generation: addition of |E’| edges if possible.

repeat(

//select one node with an appropriate number of neighbours
setPos(one(property(crtGraph, node, OutArity < [N| —1)));

//for this node, forbid rule applications on its outgoing neighbours
setBan(all(ngbOut(crtPos, node, true)));

//equiprobable application of the edge generation rules
ppick((one(GenerationEdge))orelse(one(GenerationMirror)), 0.5,

(one(GenerationMirror))orelse(one(GenerationEdge)),0.5);
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all possible rule application combinations, thus, if one of the rules can be applied,
it is found. If neither rule can be applied, the maximum number of edges in the
graph has been reached, i.e., the graph is complete. The values given for the
number of edges |E’| is too high to create a simple graph. If the strategy went
well, we are left with (|E| — |E'| — |[N|+ 1) remaining edges to create in the next
step for enforcing communities within G.

3.3 Construction of communities

To create a realistic social network, we want to add communities. Thus, some of
the links between users have to follow certain patterns. Based on ideas advanced
in several previous works (e.g., [13,25,29, 32]), we focus our interest on triad
configurations (i.e., groups formed by three users linked together) to generate
and extend communities via the three rewrite rules introduced in Figure 4.

The first triad rule (Fig. 4(a)) considers how a first user (A) influences a
second user (B) who influences in turn a third user (C). This situation can
produce some sort of transitivity as “the idol of my idol is my idol”, meaning
that A is much likely to influence C'. We use here the term “idol” instead of the
more classical “friend” because we only consider single-sided relations as a base
for the transformation. The second rule (Fig. 4(b)) shows two users (B and C)
being influenced by a third user (A). When in this position, the users B and C
might start exchanging (similar connections, common interests. . . ), thus creating
a relation between the two of them (either from B to C' or the opposite). The
last rule (Fig. 4(c)) depicts one user (B) being influenced by two other users (A
and C). This case can happen when A and C are well-versed about a common
subject of interest which is of importance to B. An exchange can thus appear
between the two influential users (from A to C' for instance).

The three rules use a where not Edge(n,n’) condition to forbid the exis-
tence of an edge between two matching nodes. The condition is visually encoded
using a cross-shaped headed edge to indicate which edge should be verified as
non-existent during the matching operations.

Strategy 4 is used to drive the three rules. Like the previous strategy, this
one aims at equiprobably testing all possible combinations between the rules.



(b) Rule CommunityDown. (¢) Rule CommunityUp.

Fig. 4. Generation of additional connections based on triads. Rule (a) is used to identify
influence chains: when C' is influenced by B, itself influenced by A, the rule creates a
new connection from A to C. Rule (b) focuses on triads where two users B and C are
influenced by a third person A: this common characteristic can lead B and C to develop
a relation. Rule (c) is somewhat the opposite of Rule (b): two users A and C influence a
third user B, creating a connection between them (from A to C'). Two distinctive edge
types are used: standard arrow edges for representing existing connections and cross-
shaped headed edges for indicating edges which should not exist during the matching
phase.

3.4 Resulting network generation

Once the last strategy execution is completed, the social network generation is
achieved. For the sake of simplicity, the strategies presented above aim at making
equiprobable choices between rules. The probabilities may of course be modified
to take into account any specific condition present in the modelled system, more-
over, whatever the chosen probabilities are, the following result holds.

Proposition 1. Given three positive integer parameters |N|, |E|, |E’|, such that
IN|=1 < |E| < [N|x(|N|-1) and |E'| < |E|—|N|+1, let the strategy S|, E),|2/|
be the sequential composition of the strategies Node generation, Edge generation
and Community generation described above, and Gy be a port graph composed of
one node with one port. The strategic graph program [S, G| terminates with a
port graph G with |N| nodes and |E| edges, which is simple, directed and weakly-
connected.

Proof. Let us prove by induction that the generated port graphs are directed,
simple (at most one edge in each direction between any two nodes) and weakly
connected (connected when direction of edges is ignored). This is trivially true



Strategy 4: Community generation: remaining edges creation to
strengthen communities

1 repeat(
2 ppick(
3 (one(CommunityDown))orelse(
4 ppick(
5 (one(CommunityUp))orelse(one(CommunityLegacy)), 0.5,
6 (one(CommunityLegacy))orelse(one(CommunityUp)),0.5)
7 ),1/3,
8 (one(CommunityUp))orelse(
9 ppick(
10 (one(CommunityLegacy))orelse(one(Community Down)), 0.5,
11 (one(CommunityDown))orelse(one(CommunityLegacy)), 0.5)
12 ),1/3,
13 (one(CommunityLegacy))orelse(
14 ppick(
15 (one(CommunityDown))orelse(one(CommunityUp)), 0.5,
16 (one(CommunityUp))orelse(one(Community Down)),0.5)
17 ),1/3)

18 )(|E| - |E'| = [N|+1)

for Gy and each rewrite step preserves these three properties, thanks to the
positioning strategy that controls the outdegree in Edge generation (Strategy 3)
and the forbidden edges in the rules for Community generation (Figure 4). As
the strategic program never fails, since a repeat strategy cannot fail, this means
that a finite number of rules has been applied and the three properties hold by
rewriting induction. Then by construction, the strategy Node generation creates
a new node and a new edge at each step of the repeat loop, exactly |[N|—1, and
is the only strategy that creates new nodes. From here, G has exactly |N| nodes
and |N| — 1 edges. The strategies Edge generation and Community generation
create a new edge at each step of the repeat loop, so respectively |E’| and
|E| - |E'| — |[N|+ 1. As a result, when the strategy S terminates, the number of
edges created is equal to |[N| — 1+ |E'| + |E| — |E'| — |[N|+ 1= |E|. O

3.5 Implementation, Experimentation and Visualisation

We use the PORGY system [33] to experiment with our generative model. The
latest version of the rewriting platform® is available either as source code or
binaries for MacOS and Windows machines.

Figures 5 and 6 are two examples of social networks generated using a se-
quential composition of the previous strategies. Although both graphs have the
same number of nodes and edges (|| = 100 and |E| = 500), they have been
generated with different |E’|, respectively |E’| = 50 for Fig. 5 and |E’| = 0 for

> PORGY website: http://tulip.labri.fr/TulipDrupal/?q=porgy
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Fig. 5. A generated social network. |N| = 100 nodes, |E| = 500 edges and |E’| = 50.
With these parameters, the average characteristic path length is L ~ 2.563 and the
average clustering coefficient is C' ~ 0.426.

Fig. 6. This changes the number of purely random edges created in the resulting
graph and explains why the first graph seems to visually present less structure
than the other one. Conversely, a graph with only randomly assigned edges could
be generated with |E’| = |E| — |[N| + 1.

To ensure that our constructions present characteristics of real-world social
networks, we have performed several generations using different parameters and
measured the characteristic path length — the average number of edges in the
shortest path between any two nodes in the graph — and the clustering coefficient
— how many neighbours of a node n are also connected with each other — as
defined in [41]. In a typical random graph, e.g., a graph generated using the
Erdés—Rényi model [18] or using our method with the parameters |[N| = 100
nodes, |E| = 500 edges and |E’'| = |E| —|N|+1 = 401, the average characteristic
path length is very short (L ~ 2.274), allowing information to go quickly from
one node to another, but the clustering coefficient is low (C' ~ 0.101), implying
the lack of well-developed communities. However, with the parameters used in
Figure 5 (respectively, Figure 6), we retain a short characteristic path length
L ~ 2.563 (resp. L ~ 3.372) while increasing the clustering coefficient C' ~ 0.426
(resp. C' ~ 0.596), thus matching the characteristics of small-world graphs: a
small diameter and strong local clustering.
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Fig. 6. A generated social network. |[N| = 100 nodes, |E| = 500 edges and |E’| = 0.
With these parameters, the average characteristic path length is L ~ 3.372 and the
average clustering coefficient is C' ~ 0.596.

The graphs generated using our method can be subsequently used as any
randomly generated network. For instance, we have used such graphs in [37] to
study the evolution of different information propagation models. PORGY was
used in this work to run several propagation scenarios and analyse the resulting
outputs with its visualisation tools.

4 Conclusion

Our first experiments and results on generation and propagation in social net-
works, obtained in [37] and in this work, illustrate how labelled port graph
strategic rewriting provides a common formalism in which different mathemat-
ical models can be expressed and compared. The ultimate goal is to provide a
simulation environment helpful for making decisions, such as choosing good pa-
rameters, detecting and preventing unwanted situations, or looking for a better
diffusion strategy.

As a first approach to this ambitious challenge, we focused on social net-
works that already offer a big variety of situations and problems. Several lessons



and research directions can be drawn from this study, both for the rewriting
community and for the social network community.

First, dealing with this application domain led us to validate the concepts
of labelled port graphs on a given signature, of rules that are themselves also
labelled port graphs with variables from the given signature, and of strategy con-
structs added to define positions in graphs in a flexible way. When modelling the
evolution of the studied network, the derivation tree (also a port graph) provides
support for history tracking, state comparison, state recovery and backtracking.
For the social network community, the rewrite rule approach is not quite surpris-
ing because some works such as [25] already use rules to generate social networks,
although without claiming it. The fact that different models can be expressed
in a common formalism provides a good argument for those who are interested
to compare various algorithms and models. In such situations, simulations can
indeed help for taking decision, for instance to prevent bad situations, or to look
for optimal diffusion strategy.

Indeed several issues remain to address. For rewriting, although graph rewrit-
ing has been largely studied, addressing social network applications causes a
drastic change of scale for the structures. Dealing with millions of nodes and
edges requires great attention to size and complexity. There is also room for im-
provement in data storage and retrieval —in connection with graph data bases—,
subgraph matching algorithms —either exact or approximate— for finding one or
all solutions, parallel graph rewriting avoiding dangling edges, and probabilistic
or stochastic issues for matching and rewriting, for instance, in the context of
imprecise data or privacy constraints.

Also related to size, but even more to complexity of information data, there is
a need for data structuring and management, that may be carried on by abstrac-
tion pattern, focusing on points of interests, hierarchies and views (for instance,
through multi-layer graphs). All these notions need a precise and logical defini-
tion that may be influenced by well-known programming language concepts.

As programs, data need certification and validation tools and process, not
only at one step but all along their evolution. The knowledge developed in the
logic and rewriting community should be valuable in this context.

This study has also revealed the importance of visualisation and raises some
challenges in this area. Visualisation is important, more widely, for data analy-
sis, program engineering, program debugging, testing or verifying. However, the
representation of dynamic or evolving data, such as social networks or richer
graph structures, is yet an actual research topic for the visualisation community.

In future work, we plan to address multi-layer networks, based on societal
problems. An example is tracking criminal activities. The objective then is to
build a new methodology for tracking, based on construction, manipulation and
analysis of heterogeneous digital information coming from different sources: legal
records of tribunal sentences, social networks coming from exchanges, meetings,
phone calls, information on financial flows and even family relations. Beyond the
modelisation challenge, in connection with jurists and social scientists, we expect



that our formalism of labelled port graphs, rules and strategy will provide an
adequate framework for simulations and hypotheses testing.
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