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INFINITE DIMENSIONAL MULTIPLIERS AND PONTRYAGIN

PRINCIPLES FOR DISCRETE-TIME PROBLEMS

MOHAMMED BACHIR AND JOËL BLOT

Abstract. The aim of this paper is to provide improvments to Pontryagin
principles in infinite-horizon discrete-time framework when the space of states
and of space of controls are infinite-dimensional. We use the method of re-
duction to finite horizon and several functional-analytic lemmas to realize our
aim.
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1. Introduction

We treat of problems of Optimal Control in infinite horizon which are governed
by discrete-time controlled dynamical systems in the following forms

xt+1 = ft(xt, ut), t ∈ N, (1.1)

or

xt+1 ≤ ft(xt, ut), t ∈ N. (1.2)

X and U are real Banach spaces, the state variable is xt ∈ Xt ⊂ X , the control
variable is ut ∈ Ut ⊂ U and ft : Xt × Ut → Xt+1 is a mapping. For (1.2), X is
endowed with a structure of ordered Banach space, and its positive cone, X+ :=
{x ∈ X : x ≥ 0}, is closed, convex and satisfies X+∩(−X+) = {0}. An initial state,
σ ∈ X0 is fixed. We define Ead(σ) the set of the processes ((xt)t∈N, (ut)t∈N) which
belong to

∏

t∈N
Xt×

∏

t∈N
Ut, which satisfy x0 = σ and (1.1) for all t ∈ N. We define

Iad(σ) the set of the processes ((xt)t∈N, (ut)t∈N) which belong to
∏

t∈N
Xt×

∏

t∈N
Ut,

which satisfy x0 = σ and (1.2) for all t ∈ N.

To define criteria, we consider functions φt : Xt × Ut → R for all t ∈ N. From
these functions we build the functional

J((xt)t∈N, (ut)t∈N) :=

+∞
∑

t=0

φt(xt, ut). (1.3)

Notice that J is not defined for all the processes ((xt)t∈N, (ut)t∈N) ∈
∏

t∈N
Xt ×

∏

t∈N
Ut. And so we define the set of the processes ((xt)t∈N, (ut)t∈N) ∈ Ead(σ)

(respectively in Iad(σ)) such that the series
∑+∞

t=0 φt(xt, ut) converges into R, and
we denote this set by Edom(σ) (respectively Idom(σ)).

We also consider other criteria to define the following problems.
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(PE1(σ)) : Find ((x̂t)t∈N, (ût)t∈N) ∈ Edom(σ) such that J((x̂t)t∈N, (ût)t∈N) ≥
J((xt)t∈N, (ut)t∈N) for all ((xt)t∈N, (ut)t∈N) ∈ Edom(σ).

(PE2(σ)) : Find ((x̂t)t∈N, (ût)t∈N) ∈ Ead(σ) such that

lim supT→+∞

∑T
t=0(φt(x̂t, ût)− φt(xt, ut)) ≥ 0 for all ((xt)t∈N, (ut)t∈N) ∈ Ead(σ).

(PE3(σ)) : Find ((x̂t)t∈N, (ût)t∈N) ∈ Ead(σ) such that

lim infT→+∞

∑T
t=0(φt(x̂t, ût) − φt(xt, ut)) ≥ 0 for all ((xt)t∈N, (ut)t∈N) ∈ Ead(σ).

We also consider similar problems when the system is governed by (1.2) instead of
(1.1).

(PI1(σ)) : Find ((x̂t)t∈N, (ût)t∈N) ∈ Idom(σ) such that
J((x̂t)t∈N, (ût)t∈N) ≥ J((xt)t∈N, (ut)t∈N) for all ((xt)t∈N, (ut)t∈N) ∈ Idom(σ).

(PI2(σ)) : Find ((x̂t)t∈N, (ût)t∈N) ∈ Iad(σ) such that

lim supT→+∞

∑T

t=0(φt(x̂t, ût)− φt(xt, ut)) ≥ 0 for all ((xt)t∈N, (ut)t∈N) ∈ Iad(σ).

(PI3(σ)) : Find ((x̂t)t∈N, (ût)t∈N) ∈ Iad(σ) such that

lim infT→+∞

∑T

t=0(φt(x̂t, ût)− φt(xt, ut)) ≥ 0 for all ((xt)t∈N, (ut)t∈N) ∈ Iad(σ).

These problems are classical in the theory of infinite-horizon discrete-time Optimal
Control, [9], [5].

A way to establish necessary optimality conditions in the form of Pontryagin
principles for the above-mentionned problems is the method of reduction to finite
horizon which appears in [4]. In [5] several variations of this method are given
in the setting of the finite dimension, and in [1] we find the use of this method
in the setting of the infinite dimension. The basic idea of this method is that
when ((x̂t)t∈N, (ût)t∈N) is optimal for one of the previous problems, its restriction
to {0, ..., T } is an optimal solution of a finite-horizon optimization problem. Using
on these finite-horizon optimization problems a Karush-Kuhn-Tucker theorem or a
Multipliers Rule, we obtain multipliers indexed by the finite horizon T . The second
step is to build, from these multipliers sequences, multipliers which are suitable for
the infinite-horizon problems.

When X and U have an infinite dimension, several difficulties arise, notably due
to the closure of the ranges of linear operators, and due to the fact that in infinite
dimensional dual Banach space, the origine is contained in the weak-star closure of
its unit sphere.

Now we briefly describe the contents of the paper. In Section 2, we give the
statements of the main results which are Pontryagin principles. In Section 3, we
establish results of Functional Analysis which are useful in the sequel. In Section 4,
we establish results on Lagrange and Karush-Khun-Tucker multipliers. In Section
5, we give the proofs of the results of section 2. In Section 6, we give some additional
applications of results that we use in the proof of the main theorems.

2. The pontryagin principles.

First we specify some notation.

We denote by Int(A) the topological interior of a set A and by A its closure. When
Z is a vector normed space, z ∈ Z and r ∈ (0,+∞), BZ(z, r) denotes the closed
ball with z as center and r as ray. The set co(A) (respectively co(A)) stands for the
convex hull (respectively the closed convex hull) of a subset A in Z, Aff(A) stands
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for the affine hull of a subset A in Z. The relative interior of A ⊂ Z, denoted ri(A),
is the topological interior of A in the topological subspace Aff(A).

In the paper, the assumptions that we will use in our results belong to the
following list of conditions.

(A1) For all t ∈ N, Xt is a nonempty open subsets of X , and Ut is a nonempty
subsets of U .

(A2) X is separable.

And when ((x̂t)t∈N, (ût)t∈N) is a given process and when σ ∈ X0 is given, we
consider the following conditions.

(A3) For all t ∈ N, φt is Fréchet differentiable at (x̂t, ût), ft is continuously
Fréchet differentiable at (x̂t, ût).

(A4) for all t ∈ N∗, we have 0 ∈ Int [Dft(x̂t, ût)((X × TUt
(ût)) ∩BX×U )], where

BX×U denotes the closed unit ball of X × U .
(A5) For all t ∈ N, the range of D2ft(x̂t, ût) is closed and its codimension (in X)

is finite.
(A6) There exists s ∈ N such that As := D2fs(x̂s, ûs)(TUs

(ûs)) contains a closed

convex subset K with ri(K) 6= ∅ and such that Aff(K) is of finite codimen-
sion in X .

Recall that TUt
(ût) := {α(ut − ût) : α ∈ [0,+∞), ut ∈ Ut}. We have not assume

that the sets Ut are open, but when we speak of the differentiability of a mapping
f on Xt×Ut at (x̂t, ût), the meaning is that there exists a differentiable function f̃

defined on an open neighborhood of (x̂t, ût) which is equal to f on the intersection
of this neighborhood and Xt × Ut. When we speak of tangent cone, we consider
the case where Ut is convex.

Remark 2.1. Note that the condition (A6) is satisfied and is included in (A5),
whenever there exists an s ∈ N such that TUs

(ûs) = X, in particular, if ûs belongs
to the interior of Us.

The first main result concerns the problems governed by (1.1).

Theorem 2.2. Let ((x̂t)t∈N, (ût)t∈N) be an optimal process of (PEk(σ)) when k ∈
{1, 2, 3}. Under [(A1)-(A6)], we assume moreover that Ut is convex for all t ∈ N.
Then, there exist λ0 ∈ R and (pt)t≥1 ∈ (X∗)N∗ such that the following conditions
hold.

(1) (λ0, pt) 6= (0, 0), for all t ≥ s.
(2) λ0 ≥ 0.
(3) pt = pt+1 ◦D1ft(x̂t, ût) + λ0.D1φt(x̂t, ût) for all t ∈ N∗.
(4) 〈λ0.D2φt(x̂t, ût) + pt+1 ◦D2ft(x̂t, ût), ut − ût〉 ≤ 0 for all t ∈ N and for all

ut ∈ Ut.

The second main result concerns the problems governed by (1.2).

Theorem 2.3. Let ((x̂t)t∈N, (ût)t∈N) be an optimal process of (PIk(σ)) when k ∈
{1, 2, 3}. Under [(A1)-(A6)], we assume moreover that Ut is convex for all t ∈ N

and that Int(X+) 6= ∅. Then, there exist λ0 ∈ R and (pt)t≥1 ∈ (X∗)N∗ such that
the following conditions hold.

(1) (λ0, pt) 6= (0, 0), for all t ≥ s.
(2) λ0 ≥ 0, and pn ≥ 0 for all n ∈ N∗.
(3) pt = pt+1 ◦D1ft(x̂t, ût) + λ0.D1φt(x̂t, ût) for all t ∈ N∗.
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(4) 〈λ0.D2φt(x̂t, ût) + pt+1 ◦D2ft(x̂t, ût), ut − ût〉 ≤ 0 for all t ∈ N and for all
ut ∈ Ut.

The proofs of Theorem 2.2 and Theorem 2.3 are based on the following two ideas:
the first one is the reduction to finite horizon given by Lemma 4.1 and the second
one is to find criteria ensuring that the multipliers are not trivial in the infinite
horizon. This criteria will be given by Lemma 3.3.

3. Preliminary results of Functional Analysis

It is well known from Josefson-Nissenzweig theorem, (see [[6], Chapter XII]) that
in infinite dimensional Banach space Z, there always exists a sequence (pn)n in the
dual space Z∗ that is weak∗ null and infn∈N ‖pn‖ > 0. In this section, we look about
reasonable and usable conditions on a sequence of norm one in Z∗ such that this
sequence does not converge to the origin in the w∗-topology. This situation has the
interest, when we are looking for nontrivial multipliers for optimization problems,
and was encountered several times in the literature. See for example [1] and [3].
The key is Lemma 3.3 which permits to provide a solution to this problem. We
split this section in two subsections. The first is devoted to establish an abstract
result (Lemma 3.3) which permits to avoid the Josefson-Nissenzweig phenomenon.
The second is devoted to the consequences of this abstract result which are useful
for our optimal control problem.

We need the following classical result.

Proposition 3.1. Let C be a convex subset of a normed vector space. Let x0 ∈
Int(C) and x1 ∈ C. Then, for all α ∈ (0, 1], we have αx0 + (1− α)x1 ∈ Int(C).

We deduce the following useful proposition.

Proposition 3.2. Let (F, ‖.‖F ) be a normed vector space and C be a closed convex
subset of F with non empty interior. Suppose that D ⊂ C is a closed subset of
C with no empty interior in (C, ‖.‖F ) (for the topology induced by C). Then, the
interior of D is non empty in (F, ‖.‖F ).

Proof. On one hand, there exists x0 such that x0 ∈ Int(C). On the other hand,
since D has no empty interior in (C, ‖.‖F ), there exists x1 ∈ D and ǫ1 > 0 such that
(BF (x1, ǫ1) ∩ C) ⊂ D. Using Proposition 3.1, we obtain that for all α ∈ (0, 1], we
have αx0+(1−α)x1 ∈ Int(C). Since αx0+(1−α)x1 → x1 when α → 0, there exist
some small α0 and an integer number N ∈ N∗ such that BF (α0x0+(1−α0)x1,

1
N
) ⊂

(BF (x1, ǫ1) ∩C) ⊂ D. Thus D has a non empty interior in F . �

3.1. A key lemma. A map p from a vector space Z into R is said to be subadditive
if and only if, for all x, y ∈ Z one has

p(x+ y) ≤ p(x) + p(y).

A map p is said to be sublinear if it is subadditive and satisfies p(λz) = λp(z) for
all λ ≥ 0 and all z ∈ Z.

We give now our principal lemma. This lemma is based on the Baire category
theorem.

Lemma 3.3. Let Z be a Banach space. Let K be a non empty closed convex subset
of Z and suppose that ri(K) 6= ∅. Let T be any nonempty set and (pn)n∈T be a
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collection of subadditive and lower semicontinuous functions on Z and let (λn)n∈T

be a collection of nonnegative real number. Suppose that, for all z ∈ K, there exists
Cz ∈ R such that, for all n ∈ T , pn(z) ≤ Czλn.
Then, for all a ∈ K, there exists ba ∈ Aff(K) such that for all bounded subset B of

Aff(K) there exists RB ≥ 0 such that

∀n ∈ T , sup
h∈B

pn(h− a) ≤ RB · (λn + pn(ba − a)).

Proof. For each m ∈ N, we set Fm := {z ∈ K : ∀n ∈ T , pn(z) ≤ mλn}. The sets
Fm are closed subsets of K. Notice that

Fm = K ∩

(

⋂

n∈T

p−1
n (]−∞,mλn])

)

,

where, for each n ∈ T , p−1
n (]−∞,mλn]) is a closed subset of Z by the semicontinuity

of pn. On the other hand, we have K =
⋃

m∈N
Fm. The inclusion ⊃ is trivial. We

prove the inclusion ⊂. For each z ∈ K, there exists Cz ∈ R such that pn(z) ≤ Czλn

for all n ∈ T . If Cz ≤ 0, we have that z ∈ F0. If Cz > 0, we put m1 := [Cz] + 1
where [Cz ] denotes the integer part of Cz , then we have that z ∈ Fm1

. We deduce
then that for all m ∈ N, the sets Fm − a are closed subset of K − a and that
K − a =

⋃

m∈N
(Fm − a). Using the Baire category Theorem on the complete

metric space K − a, we get an m0 ∈ N such that Fm0
− a has a nonempty interior

in K − a. Since by hypothesis K − a has a nonempty interior in the normed vector
subspace F := Aff(K) − a of Z, then by using Proposition 3.2 we obtain that
Fm0

− a has a nonempty interior in F . So there exists z0 ∈ Fm0
− a and some

integer number N ∈ N∗ such that BF (z0,
1
N
) := (F ∩ BZ(z0,

1
N
)) ⊂ Fm0

− a. In

other words, for all z ∈ BF (b,
1
N
) ⊂ Fm0

where b := a + z0 ∈ Fm0
⊂ F and all

n ∈ T , we have:

pn(z) ≤ m0λn. (3.1)

Now, let B be a nonempty bounded subset of F , there exists an integer number
NB ∈ N∗ such that B ⊂ BF (0, NB). On the other hand, for all h ∈ B, there
exists zh ∈ BF (b,

1
N
) such that h = NBN · (zh − b) (it sufficies to see that zh :=

b+ h
NB .N

∈ BF (b,
1
N
)). So using (3.1) and the subadditivity of pn, we obtain that,

for all n ∈ T :

pn(h) = pn(NBN · (zh − b))

≤ NBN · pn(zh − b)

≤ NBN · (pn(zh) + pn(−b))

≤ NBNm0λn +NBN · pn(−b)

≤ NBNm0λn +NBNm0 · pn(
−b

m0
)

= NBNm0

(

λn + pn(
−b

m0
)

)

.

Setting RB := NBNm0 and b0 := −b
m0

∈ F and by taking the supremum on B, we
obtain for all n ∈ T ,

sup
h∈B

pn(h) ≤ RB · (λn + pn(b0)). (3.2)



6 BACHIR AND BLOT

Now, let B̃ be any bounded subset of the closure F of F . There exists a bounded
subset of F , B, such that B̃ = B. Hence for each z ∈ B̃, there exists a sequence
(hk)k in B such that hk → z when k → +∞. Thus, using the lower semicontinuity
of pn for all n ∈ N and the inequality (3.2), we obtain

pn(z) ≤ lim inf
k→+∞

pn(hk) ≤ sup
h∈B

pn(h) ≤ RB · (λn + pn(b0)),

and by taking the supremum on B̃, we obtain, for all n ∈ T ,

sup
z∈B̃

pn(z) ≤ RB · (λn + pn(b0)).

Since F = Aff(K)− a, by changing the bounded subsets B̃ of F by B− a, where B

is a bounded subset of Aff(K) and by setting ba := b0 + a ∈ Aff(K), we conclude
the proof. �

We obtain the following corollary, which may be of interest in some cases.

Corollary 3.4. Let Z be a Banach space and let A be a non empty subset of Z.
Let T be any nonempty set and (pn)n∈T be a collection of sublinear and lower
semicontinuous functions on Z and let (λn)n∈T be a collection of nonegative real
number. Let C : Z −→ R be a upper semicontinuous function. Suppose that

∀n ∈ T , ∀z ∈ A, pn(z) ≤ C(z)λn. (3.3)

If ri(co(A)) 6= ∅, then, for all a ∈ K, there exists ba ∈ Aff(co(A)) such that for all

bounded subset B of Aff(co(A)) there exists RB ≥ 0 such that

∀n ∈ T , sup
h∈B

pn(h− a) ≤ RB · (λn + pn(ba − a)).

Proof. We can apply Lemma 3.3, with K = co(A). For this, it suffices to establish
that

∀n ∈ T , ∀z ∈ co(A), pn(z) ≤ C(z)λn.

The previous inequality is obtained by using (3.3), the sublinearity and semiconti-
nuity of pn for all n ∈ N, together with the upper semicontinuity of the function
C. �

3.2. Preliminaries for multipliers in infinite horizon. As consequence of
Lemma 3.3, we obtain the following proposition. The sequences (λn)n ∈ (R+)N

and (fn)n ∈ (Z∗)N in the following result, correspond to the multipliers.

Proposition 3.5. Let Z be a Banach space. Let (fn)n ∈ (Z∗)N be a sequence of
linear continuous functionnals on Z and let (λn)n ∈ (R+)N such that λn → 0 when
n → +∞. Let K be a non empty closed convex subset of Z such that ri(K) 6= ∅.
Suppose that

(1) for all z ∈ K, there exists a real number Cz such that, for all n ∈ N, we
have fn(z) ≤ Czλn.

(2) fn
w∗

→ 0 when n → +∞.

Let a ∈ K and set X := Aff(K)− a. Then, we have,

(i) ‖(fn)|X‖X∗ → 0 when n → +∞.
(ii) If moreover we assume that the codimension of X in Z is finite, then

‖fn‖Z∗ → 0 when n → +∞.
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Proof. Using Lemma 3.3 with T = N, the linear continuous functions fn and the
bounded set B := SX + a of Aff(K) (where, SX denotes the sphere of X), we get
a point b0 depending only on X and a constant RB ≥ 0 such that

‖(fn)|X‖X∗ = sup
‖h‖X=1

fn(h) ≤ RB · (λn + fn(b0)).

Since fn
w∗

→ 0 (n → +∞) and λn → 0 (n → +∞) we obtain that ‖(fn)|X‖X∗ →
0 (n → +∞). Suppose now that X is of finite codimension in Z, then there exists
a finite-dimensional subspace E of Z, such that Z = X ⊕ E. Thus, there exists
L > 0 such that

‖fn‖Z∗ ≤ L
(

‖(fn)|E‖E∗ + ‖(fn)|X‖X∗

)

.

Since fn
w∗

→ 0 (n → +∞) and since the weak-star topology and the norm topology
coincids on E since its dimension is finite, we have that ‖(fn)|E‖E∗ −→ 0 (n →
+∞). On the other hand, we proved above that ‖(fn)|X‖X∗ → 0. Thus, ‖fn‖Z∗ −→
0 (n → +∞). �

Remark 3.6. Proposition 3.5 shows that under the condition (1), we have that

fn
w∗

6→ 0, whenever ‖(fn)|X‖X∗ 6→ 0. If moreover, X is of finite codimension in Z,

then fn
w∗

6→ 0, whenever ‖fn‖Z∗ 6→ 0. Thus, the condition (1) is a criterion ensuring
that a sequence of norm one in an infinite dual Banach space, does not converges
to 0 in the weak∗ topology.

To ensure that the multipliers are nontrivial at the limit, the authors in [3] used
a lemma from [[2], pp. 142, 135], which can be recovered by taking C(z) = 1 for
all z ∈ Z in the following corollary.

Definition 3.7. A subset Q of a Banach space Z is said to be of finite codimension
in Z if there exists a point z0 in the closed convex hull of Q such that the closed
vector space generated by Q − z0 := {q − z0| q ∈ Q} is of finite codimension in Z

and the closed convex hull of Q− z0 has a no empty interior in this vector space.

Corollary 3.8. Let Q ⊂ Z be a subset of finite codimension in Z. Let C : Z −→ R

be a upper semicontinuous function. Let δ > 0, (fk)k ∈ (Z∗) and λk ≥ 0, λk →
0 (k → +∞) such that

(i) ‖fk‖ ≥ δ, for all k ∈ N and fk
w∗

→ f (k → +∞).
(ii) For all z ∈ Q, and for all k ∈ N, fk(z) ≤ C(z)λk.

Then, f 6= 0.

Proof. First, note that from the condition (ii), the linearity and continuity of fk,
k ∈ N and the upper semicontinuity of C, we have also that, for all z ∈ co(Q)
and for all k ∈ N, fk(z) ≤ C(z)λk. Suppose by contradiction that f = 0, then
using Proposition 3.5 and the fact that Q is of finite codimension in Z, we get that
‖fk‖Z∗ → 0 (n → +∞), which contredicts the condition (i). �

The following proposition is used in the proof of our main result Theorem 2.2.

In Proposition 3.9, the sequence (β(n))n≥2 in(R+) and the list (f
(n)
t )1≤t≤n+1 ∈

(X∗)n+1, correspond to the non trivial multipliers at the finite horizon n, for all n ≥
2. The aim is to find conditions under which, these sequences have subsequences
which converge to non trivial multipliers at the infinite horizon.
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Proposition 3.9. Let Z be a separable Banach space and Z∗ its topological dual.
Let K be a closed convex subset of Z such that ri(K) 6= ∅ and that Aff(K) is of
finite codimension in Z. Let (β(n))n≥2 be a sequence of nonegative real number and

(f
(n)
t )1≤t≤n+1 ∈ (Z∗)n+1, for all n ≥ 2. Let s ∈ N∗ be a fixed natural number.

Suppose that:

(1) for all n ≥ 2, βn + ‖fn
s ‖Z∗ = 1,

(2) there exists at, bt ≥ 0 such that ‖fn
t ‖Z ≤ atβ

n + bt‖fn
s ‖Z for all n ≥ 2 and

for all 1 ≤ t ≤ n+ 1,
(3) for all z ∈ K, there exist a real number cz such that: fn

s (z) ≤ czβ
n for all

n ≥ 2.

Then there exist a strictly increasing map k 7→ nk, from N into N, β ∈ R
+ and

(ft)t≥1 ∈ (Z∗)N such that:

(i) βnk −→ β when k → +∞,

(ii) for each t ∈ N, fnk

t

w∗

−→ ft when k → +∞,
(iii) (β, fs) 6= (0, 0).

Proof. From (1) and (2) we get that, for each t ≥ 1, the sequences (fn
t )1≤t≤n+1

and (λn
0 )n≥2 are bounded. Hence, using the Banach-Alaoglu theorem and the

diagonal process of Cantor, we get a strictly increasing map k 7→ nk, from N into
N, a nonegative real number β ∈ R

+, and a sequence (ft)t≥1 ∈ (Z∗)N∗ satisfying
(i) and (ii). Suppose by contradiction that (β, fs) = (0, 0), i.e. βnk −→ 0 and

fnk

s

w∗

−→ 0 when k → +∞. Using the condition (3) and Proposition 3.5 we have
that ‖fnk

s ‖Z∗ −→ 0 when k → +∞. Since βnk −→ 0 when k → +∞, we have also
βnk + ‖fnk

s ‖Z∗ −→ 0 which is a contradiction with the condition (1). �

4. Multipliers

In this section, after the recall of the method of reduction to finite horizon, we
establish multiplier rules (Lemma 4.5 and Lemma 4.6), in the spirit of Fritz John’s
theorem, for the problems of finite horizon.

First we recall the method of reduction to finite horizon. When ((x̂t)t∈N, (ût)t∈N)
is an optimal solution of (PEk(σ)), k ∈ {1, 2, 3}, we build the following finite-
horizon problem.

(EF(σ))







Maximize JT (x1, ..., xT , u0, u..., uT ) :=
∑T

t=0 φt(xt, ut)
when ∀t ∈ {0, ..., T }, xt+1 = ft(xt, ut)

x0 = σ, xT+1 = x̂T+1.

Similarly, when ((x̂t)t∈N, (ût)t∈N) is an optimal solution of (PIk(σ)), k ∈ {1, 2, 3},
we build the following finite-horizon problem

(IF(σ))







Maximize JT (x1, ..., xT , u0, u..., uT ) :=
∑T

t=0 φt(xt, ut)
when ∀t ∈ {0, ..., T }, xt+1 ≤ ft(xt, ut)

x0 = σ, xT+1 = x̂T+1.

The proof of the following result is similar to the proof given in [4].

Lemma 4.1. Let k ∈ {1, 2, 3}. When ((x̂t)t∈N, (ût)t∈N) is an optimal solution of
(PEk(σ)) (respectively (PIk(σ))), for all T ∈ N, T ≥ 2, then the restriction
(x̂1, ..., x̂T , û0, ..., ûT ) is an optimal solution of (EF(σ) (respectively (IF(σ))).
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To work on these problems, we introduce several notations. We write xT :=

(x1, ..., xT ) ∈
∏T

t=1 Xt and uT := (u0, ..., uT ) ∈
∏T

t=0 Ut. For all t ∈ {0, ..., T }, we

define the mapping gTt :
∏T

t=1 Xt ×
∏T

t=0 Ut → Xt+1 by setting

gTt (x
T ,uT ) :=







−x1 + f0(σ, u0) if t = 0
−xt+1 + ft(xt, ut) if t ∈ {1, ..., T − 1}
−x̂T+1 + fT (xT , uT ) if t = T.

(4.1)

We define gT :
∏T

t=1 Xt ×
∏T

t=0 Ut →
∏T

t=0 Xt by setting

gt(xT ,uT ) := (gT0 (x
T ,uT ), ..., gTT (x

T ,uT )). (4.2)

And so the problem (EF(σ)) is exactly
{

Maximize JT (xT ,uT )
when gT (xT ,uT ) = 0

(4.3)

and the problem problem (IF(σ)) is exactly
{

Maximize JT (xT ,uT )
when gT (xT ,uT ) ≥ 0

(4.4)

Under (A3), gT is of class C1 at (x̂T , ûT ) as a composition of mappings of class
C1, and the calculation of its differential gives

DgT (xT ,uT )·(δxT , δuT ) = (DgT0 (x
T ,uT )·(δxT , δuT ), ..., DgTT (x

T ,uT )·(δxT , δuT ))

and we have

DgT0 (x
T ,uT ) · (δxT , δuT ) = −δx1 +D2f0(σ, u0) · δu0,

and when t ∈ {1, ..., T − 1},

DgTt (x
T ,uT ) · (δxT , δuT ) = −δxt+1 +D1ft(xt, ut) · δxt +D2ft(xt, ut) · δut,

and

DgTT (x
T ,uT ) · (δxT , δuT ) = D1fT (xT , uY ) · δxT +D2fT (xT , uT ) · δuT .

Thus in order to study ImDgT (x̂T , ûT ) we need to treat the equation

DgT (x̂T , ûT ) · (δxT , δuT ) = (b1, ..., bT+1).

It is the following system






















b1 = −δx1 +D2f0(σ, u0) · δu0

b2 = −δx2 +Df1(x̂1, û1) · (δx1, δu1)
....

bT = −δxT +DfT−1(x̂T−1, ûT−1) · (δxT−1, δuT−1)
bT+1 = DfT (x̂T , ûT ) · (δxT , δuT ).

(4.5)

Lemma 4.2. Under (A1) and (A3), the set ImD1g
T (x̂T , ûT ) is closed into XT+1.

Proof. Suppose that a sequence ((bn1 , ..., b
n
T+1))n ∈ (ImD1g

T (x̂T , ûT ))N converges

to some (b1, b2, ..., bT+1). We prove that (b1, b2, ..., bT+1) ∈ ImD1g
T (x̂T , ûT ). In-

deed, there exists (δxn
1 , δx

n
2 , ..., δx

n
T ) ∈ XT satisfying

bn1 = −δxn
1

bn2 = −δxn
2 +Df1(x̂1, û1) · δxn

1

....

bnT = −δxn
T +DfT−1(x̂T−1, ûT−1) · δxn

T−1

bnT+1 = DfT (x̂T , ûT ) · δxn
T .























(4.6)
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Since (bn1 )n converges to b1, we get that (δxn
1 )n converges to some δx1 and so

(Df1(x̂1, û1) · δxn
1 )n converges to Df1(x̂1, û1) · δx1 by continuity. Since (bn2 )n

converges to b2, we get that (δxn
2 )n converges to some δx2 and so b2 = −δx2 +

Df1(x̂1, û1) · δx1. We proceed inductively to obtain

b1 = −δx1

b2 = −δx2 +Df1(x̂1, û1) · δx1

....

bT = −δxT +DfT−1(x̂T−1, ûT−1) · δxT−1

bT+1 = DfT (x̂T , ûT ) · δxT .























(4.7)

This shows that (b1, b2, ..., bT+1) ∈ ImD1g
T (x̂T , ûT ) and conclude the proof. �

The proof of the following result is similar to the proof of Lemma 3.10 in [1],
replacing Lemma 3.5 in [1] by Lemma 4.2.

Lemma 4.3. Under (A1), (A3) and (A5), the range ImDgT (x̂T , ûT ) is closed in
XT+1.

The following theorem was established in the book of Jahn [8] (Theorem 5.3 in
p.106-111, and Theorem 5.6, p. 118).

Theorem 4.4. Let Ξ, Y and Z three real Banach spaces, and ξ̂ ∈ Ξ. We assume
that the following conditions are fulfilled.

(1) Y is ordered by a cone C with a nonempty interior.

(2) Ŝ is a convex subset of Ξ with a nonempty interior.

(3) I : Ξ → R is a functional which is Fréchet differentiable at ξ̂.

(4) Γ : Ξ → Y is a mapping which is Fréchet differentiable at ξ̂.

(5) H : Ξ → Z is a mapping which is Fréchet differentiable at ξ̂.

(6) S := {ξ ∈ Ŝ : Γ(ξ) ∈ −C,H(ξ) = 0} is nonempty.

(7) ImDH(ξ̂) is closed into Z.

If ξ̂ is a solution of the following minimization problem
{

Minimize I(ξ)
when ξ ∈ S

then there exist λ0 ∈ [0,+∞), Λ1 ∈ Y ∗ a positive linear functional, Λ2 ∈ Z∗ such
that the following conditions are satisfied:

(i) (λ0,Λ1,Λ2) 6= (0, 0, 0)

(ii) 〈λ0DI(ξ̂) + Λ1 ◦DΓ(ξ̂) + Λ2 ◦DH(ξ̂), ξ − ξ̂〉 ≤ 0 for all ξ ∈ S.

Lemma 4.5. Let ((x̂t)t∈N, (ût)t∈N) be an optimal process of (PEk)(σ)) when k ∈
{1, 2, 3}. Under (A1), (A3) and (A5), we assume moreover that Ut is convex for all
t ∈ N. Then, for all T ∈ N, T ≥ 2, there exist λT

0 ∈ R and (pTt )1≤t≤T+1 ∈ (X∗)T+1

such that the following conditions hold.

(a) λT
0 and (pTt )1≤t≤T+1 are not simultaneously equal to zero.

(b) λT
0 ≥ 0.

(c) pTt = pTt+1 ◦D1ft(x̂t, ût) + λT
0 .D1φt(x̂t, ût) for all t ∈ {1, ..., T }.

(d) 〈λT
0 .D2φt(x̂t, ût)+ pTt+1 ◦D2ft(x̂t, ût), ut − ût〉 ≤ 0 for all t ∈ {0, ..., T } and

for all ut ∈ Ut.
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Proof. Using Lemma 4.1, we know that (x̂T , ûT ) = (x̂1, ..., x̂T , û0, ..., ûT ) is an
optimal solution of (EF(σ)). We want to use Theorem 4.4 where the inequality
constraints are absent, and so we don’t nee to the first assumption of Theorem 4.4,
and among the conclusions we lost that the pt are positive. We have not inequality
constraints and so we can delete Γ and conditions on the cone C, and we have
H = gT . Using Lemma 4.3, we know that ImDgT (x̂T , ûT ) is closed in XT+1. And
so there exists λ0 ∈ [0,+∞) (that is the conclusion (ii)) and Λ2 ∈ (X∗)T+1 such

(λ0,Λ2) 6= (0, 0). Denoting by p
(T )
t the coordinates of Λ2 in X∗, we obtain the

conclusion (i). From conclusion (ii) of Theorem 4.4, using the partial differentials

with respect to uT and with respect to uT , and using the openess of
∏T

t=1 Xt, we
obatin

λ0D1J
T (x̂T , ûT ) + Λ2 ◦DgT1 (x̂

T , ûT ) = 0

〈λ0D2J
T (x̂T , ûT ) + Λ2 ◦DgT2 (x̂

T , ûT ),uT − ûT 〉 ≤ 0

for all uT ∈
∏T

t=0 Ut. This gives the conclusions (c) and (d). �

Lemma 4.6. Under (A1), (A3) and (A5), we assume moreover that Ut is convex
for all t ∈ N and that Int(X+) 6= ∅. Then, for all T ∈ N, T ≥ 2, there exist λT

0 ∈ R

and (pTt )1≤t≤T+1 ∈ (X∗)T+1 such that the following conditions hold.

(a) λT
0 and (pTt )1≤t≤T+1 are not simultaneously equal to zero.

(b) λT
0 ≥ 0, and pt ≥ 0 for all t ∈ {1, ..., T + 1}.

(c) pTt = pTt+1 ◦D1ft(x̂t, ût) + λT
0 D1φt(x̂t, ût) for all t ∈ {1, ..., T }.

(d) 〈λT
0 D2φt(x̂t, ût) + pTt+1 ◦D2ft(x̂t, ût), ut − ût〉 ≤ 0 for all t ∈ {0, ..., T } and

for all ut ∈ Ut.

Proof. We procced as in the proof of Lemma 4.5 without deleting the inequality
constraints, but deleting the equality constraints. �

We need the following lemma for the proof of our main result Theorem 2.2.

Lemma 4.7. Under the assumptions of Lemma 4.5 or Lemma 4.6, suppose more-
over that (A4) is satisfied. Then, for all T ∈ N, T ≥ 2, there exist λT

0 ∈ R and
(pTt )1≤t≤T+1 ∈ (X∗)T+1 such that the following conditions hold.

(1) For all T ≥ 2, for all s ∈ {1, ..., T } and all 1 ≤ t ≤ T + 1, there exists
at, bt ≥ 0 such that ‖pTt ‖ ≤ atλ

T
0 + bt‖pTs ‖.

(2) For all s ∈ {1, ..., T }, (λT
0 , p

T
s ) 6= 0.

(3) For all s ∈ {1, ..., T }, for all z ∈ As := D2fs−1(x̂s−1, ûs−1)(TUs−1
(ûs−1)),

there exists Cz ∈ R such that: ∀T ≥ 2, pTs (z) ≤ Czλ
T
0 .

Proof. By adding (c) and (d) of Lemma 4.5 (respectively Lemma 4.6) we obtain for
all t ∈ {1, ..., T }, for all h ∈ X and for all ut ∈ Ut

〈pTt+1, D1ft(x̂t, ût)(h) +D2ft(x̂t, ût) · (ut − ût)〉
+λT

0 .[D1φt(x̂t, ût)(h) +D2φt(x̂t, ût) · (ut − ût)]
≤ pTt (h).

Equivalently, for all t ∈ {1, ..., T } and for all (h, k) ∈ X × TUt
(ût)

〈pTt+1, Dft(x̂t, ût) · (h, k)〉 ≤ pTt (h)− λT
0 Dφt(x̂t, ût)(h, k). (4.8)

Thus we get for all t ∈ {1, ..., T } and for all (h, k) ∈ X × TUt
(ût)

〈pTt+1, Dft(x̂t, ût) · (h, k)〉 ≤ ‖pTt ‖‖h‖X + λT
0 ‖Dφt(x̂t, ût)‖ · ‖(h, k)‖X×U . (4.9)
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Since, for all t ∈ N∗, 0 ∈ Int (Dft(x̂t, ût)((X × TUt
(ût)) ∩BX×U )), there exists a

constant rt > 0 such that BX(0, rt) ⊂ Dft(x̂t, ût)((X × TUt
(ût)) ∩ BX×U ). Thus,

from (4.9) we obtain

‖pTt+1‖ ≤
1

rt
(‖pTt ‖+ λT

0 ‖Dφt(x̂t, ût)‖). (4.10)

On the other hand, using (c) of Lemma 4.5 (respectively Lemma 4.6), we get, for
all t ∈ {1, ..., T },

‖pTt ‖ ≤ ‖pTt+1‖ · ‖D1ft(x̂t, ût)‖+ λT
0 ‖D1φt(x̂t, ût)|‖. (4.11)

Thus, by combining (4.10) and (4.11) for all T ≥ 2, for all s ∈ {1, ..., T }, and all
1 ≤ t ≤ T + 1, there exist at, bt ≥ 0 such that

‖pTt ‖ ≤ atλ
T
0 + bt‖p

T
s ‖.

This gives the part (1). Suppose that there exists s ∈ {1, ..., T } such that (λT
0 , p

T
s ) =

(0, 0). Using the above inequality we obtain that λT
0 and (pTt )1≤t≤T+1 are simul-

taneously equal to zero which contredicts the part (a) of Lemma 4.5 (respectively
Lemma 4.6). Thus, (λT

0 , p
T
s ) 6= (0, 0) which gives the part (2).

Now, using (d) of Lemma 4.5 (respectively Lemma 4.6) for an arbitrary s ∈
{1, ..., T }, for all T ≥ 2, and for all us ∈ Us, we have

〈pTs ◦D2fs−1(x̂s−1, ûs−1), us−1 − ûs−1〉 ≤ −〈λT
0 D2φs−1(x̂s−1, ûs−1), us−1 − ûs−1〉.

For all z ∈ As := D2fs−1(x̂s−1, ûs−1)(TUs−1
(ûs−1)), using the definition of the

set TUs−1
(ûs−1), there exist (uyk

s−1)k ∈ UN
s−1 and (αk)k ∈ (R+)N such that yz :=

limk→+∞(αk(u
yk

s−1 − ûs−1)) and z = D2fs−1(x̂s−1, ûs−1) · yz. So, using the above
inequality and doing k → +∞, we get

pTs (z) ≤ −〈λT
0 D2φs−1(x̂s−1, ûs−1), yz〉,

and so there exists

Cz := −〈D2φs−1(x̂s−1, ûs−1), yz〉

such that, for all T ≥ 2, we have pTs (z) ≤ Czλ
T
0 . This gives the part (3). �

5. The proof of the main results.

This section is devoted to the proofs of the Pontryagin principle for systems
governed by a difference equation, and of the Pontryagin principle for systems
governed by a difference inequation

Proof of Theorem 2.2. Let us prove the existence of the sequences (pt)t∈N∗
∈

(X∗)N∗ and λ0 ≥ 0 satisfying the theorem. By Lemma 4.5, for all T ∈ N, T ≥ 2,
there exist λT

0 ∈ R and (pTt )1≤t≤T+1 ∈ (X∗)T+1 such that the following conditions
hold.

(a) λT
0 and (pTt )1≤t≤T+1 are not simultaneously equal to zero.

(b) λT
0 ≥ 0.

(c) pTt = pTt+1 ◦D1ft(x̂t, ût) + λT
0 D1φt(x̂t, ût) for all t ∈ {1, ..., T }.

(d) 〈λT
0 .D2φt(x̂t, ût) + pTt+1 ◦D2ft(x̂t, ût), ut − ût〉 ≤ 0 for all t ∈ {0, ..., T } and

for all ut ∈ Ut.
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From (A6), there exist s ∈ N such that the set As := D2fs(x̂s, ûs)(TUs
(ûs)) contains

a closed convex subset K with ri(K) 6= ∅ and Aff(K) is of finite codimension in X .
Since the set of the lists of multipliers of a maximization problem is a cone, using
the above consequences of Lemma 4.5, we can normalize the pair (λT

0 , p
T
s ) 6= (0, 0)

and so we can assume that λT
0 + ‖pTs ‖X∗ = 1. By combining Lemma 4.7 and

Proposition 3.9 applied with K, we get a strictly increasing map k 7→ Tk, from N

into N, and λ0 ∈ R
+ and (pt)t≥1 ∈ (X∗)N such that:

(i) λTk

0 −→ λ0 ≥ 0 when k → +∞,

(ii) for each t ∈ N, pTk

t

w∗

−→ pt when k → +∞,
(iii) (λ0, ps) 6= (0, 0).

Thus, by doing k → +∞ in (c) and (d) we obtain (3) and (4). From (i) we get (2).
Now, if there exists t > s such that (λ0, pt) = (0, 0), we proceed recursively using
(3) to obtain that (λ0, ps) = (0, 0) which is a contradiction with (iii). Thus, for all
t ≥ s, (λ0, pt) 6= (0, 0) this gives the part (1). �

Proof of Theorem 2.3. We proceed as in the proof of Theorem 2.2, replacing
the use of Lemma 4.5 by the use of Lemma 4.6. �

6. Appendix: Some additional applications.

In this section we establish some additional consequences of the abstract result
(Lemma 3.3). We begin by the following extension of [Theorem 2.5.4 [7]]. The
[Theorem 2.5.4 [7]] can be obtained by taking K = Z, a = 0 and B = BZ(0, 1) in
Proposition 6.1.

Proposition 6.1. Let Z be a Banach space, T be any nonempty set and (pn)n∈T

be a collection of lower semicontinuous and subadditive functions from Z into R.
Let K be a closed convex subset of Z such that ri(K) 6= ∅. Suppose that for each
z ∈ K we have supn∈T pn(z) < +∞. Then, for each a ∈ K and each bounded

subset B of Aff(K), we have

sup
n∈T

sup
z∈B

pn(z − a) < +∞.

Proof. The proof is immediat by using Lemma 3.3 with λn = 1 for all n ∈ T . �

The above proposition is in fact an extention to subadditive functions of the
classical Banach-Steinauss theorem.

Corollary 6.2. (Banach-Steinauss) Let X be a Banach space and Y be a normed
vector space. Let T be any nonempty set. Suppose that (Tn)n∈T is a collection of
continuous linear operators from X to Y . Suppose that for each x ∈ X one has

sup
n∈T

‖Tn(x)‖Y < +∞,

then
sup
n∈T

sup
‖x‖=1

‖Tn(x)‖Y = sup
n∈T

‖Tn‖B(X,Y ) < +∞.

Proof. The proof follows immediately from Proposition 6.1 applied with: K = X ,
a = 0, the bounded set SX (the unit sphere of X) and with the collection of
the continuous subadditive functions pn(x) := ‖Tn(x)‖Y for all n ∈ T and all
x ∈ X . �
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We also have the following corollary.

Corollary 6.3. Let A be a nonempty set and (Z, ‖.‖) be a Banach space. Let
ϕ : A× Z −→ R be a map such that:

(1) For all x ∈ A, the map z 7→ ϕ(x, z) is lower semicontinuous and sublinear.
(2) For all z ∈ Z, the map x 7→ ϕ(x, z) is bounded.

Then, there exists a real number C ∈ R such that supx∈A ϕ(x, z) ≤ C‖z‖, for all
z ∈ Z.

Proof. We apply Proposition 6.1 with T = A, px := ϕ(x, .), using (1) and (2), there
exists C ∈ R such that supx∈A sup‖z‖=1 ϕ(x, z) ≤ C. Thus, by the homogeneity of

px, we have ϕ(x, z) ≤ C‖z‖, for all x ∈ A and all z ∈ Z. �

Finally, we get the following proposition, which gives, a necessary and sufficient
condition such that the Dirac masses are continuous functionals.

Proposition 6.4. Let X be a nonempty set and (B(X), ‖.‖∞) be the Banach space
of all bounded real-valued functions. Let Y ⊂ B(X) be a subspace and ‖.‖Y be a
norm on Y such that (Y, ‖.‖Y ) is a Banach space. Let us denote by δx the Dirac
mass or the evaluation at x ∈ X defined by δx : f 7→ f(x) for all f ∈ B(X). Then,
the following assertions are equivalent.

(a) δx : (Y, ‖.‖Y ) −→ R is continuous for each x ∈ X,
(b) there exists a constant α ∈ R

+∗ such that ‖.‖Y ≥ α‖.‖∞.

Proof. Indeed, suppose that δx : (Y, ‖.‖Y ) −→ R is continuous for each x ∈ X .
Consider the map ϕ : X×Y −→ R defined by ϕ(x, f) = f(x) for all (x, f) ∈ X×Y .
This map satisfies the hypothesis of Corollary 6.3, so there exists C ∈ R such
that supx∈X f(x) = supx∈X ϕ(x, f) ≤ C‖f‖Y for all f ∈ Y . Thus by symmetry,
supx∈X |f(x)| = ‖f‖∞ ≤ C‖f‖Y for all f ∈ Y . This implies that C > 0 and so we
take α := 1

C
. For the converse, we have |δx(f)| = |f(x)| ≤ ‖f‖∞ ≤ 1

α
‖f‖Y which

shows that δx is continuous on (Y, ‖.‖Y ) since it is linear. �
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