
HAL Id: hal-01306686
https://hal.science/hal-01306686

Submitted on 25 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Customisation of Inheritance
Pierre Crescenzo, Philippe Lahire

To cite this version:
Pierre Crescenzo, Philippe Lahire. Customisation of Inheritance. The Inheritance Workshop lors de
la conférence ECOOP 2002 (16th European Conference on Object-Oriented Programming), Jun 2002,
Malaga, Spain. pp.23-29 et 117-134. �hal-01306686�

https://hal.science/hal-01306686
https://hal.archives-ouvertes.fr


CUSTOMISATION OF INHERITANCE

Pierre Crescenzo and Philippe Lahire

Address: Laboratoire I3S (UNSA/CNRS)

Projet OCL

2000, route des lucioles

Les Algorithmes, Bâtiment Euclide B

BP 121

F-06903 Sophia-Antipolis CEDEX

France

E-Mails: Pierre.Crescenzo@unice.fr
Philippe.Lahire@unice.fr

Web: http://www.crescenzo.nom.fr/
http://www-iutinfo.unice.fr/~lahire/

Keywords: Customised Relationships, Meta-Programming, Hyper-Generic Parameters

Abstract: This paper presents the model OFL with its capabilities to describe a set of variability

criteria for relationships between classes in general, and inheritance in particular. Our main

goal is to show pragmatic criteria which can be used to define or customise the behaviour of

inheritance.

1 Introduction

Inheritance is an essential and powerful concept of object-oriented languages. It is applied to a

great number of different problems [Mey97] such as type specialisation, reuse of pieces of code,

class versioning, type generalisation [CCCL00], . . .

However, inheritance is not a panacea: while it can be used for a large range of programmer’s

needs, the excessive use of inheritance represents also some disadvantages [LJ95], e. g. loss in

code readability, code reliability or code evolution. Those losses may be due, for example, to a non-

relevant use of polymorphism when the need is only to reuse a piece of code or to a reverse use

of polymorphism when type generalisation is concerned. Moreover, making a new class version

through the use of inheritance leads a loss of capability with respect to feature adaptation (for ex-

ample, inheritance does not allow feature removal).

This paper presents some elements of a solution to these problems. This solution is based on

the model OFL [CCL01,Cre01,CCL02] which is presented in section 2. Section 3 on the next page

focuses on the notion of hyper-generic [Des94] parameters which allow to define the inheritance

relationship, and to customise it. Section 4 on page 6 propose a brief overview of the software tools

and last section, 5 on page 6, concludes the paper and presents future works.

2 Open Flexible Languages

This section presents the model OFL (Open Flexible Languages).

OFL is a model to describe the main object-oriented programming languages (such as Java
[GJSB00], C++ [Str97], Eiffel [Mey92], . . . ) to allow their evolution and their adaptation to specific

programmer’s needs. To reach this goal, OFL reifies all elements of an object-oriented programming

language in a set of components of a language. Thus classes, methods, expressions, messages, and

so on are the OFL -components and are integrated in a specific MOP (Meta-Object Protocol) which

allows to extend the set of entities needed for the reification of both languages and user applications.

1



The meta-programmer creates a language by selecting adequate OFL -components in predefined

libraries. (S)he can also specialise a given OFL -components in order to generate one dedicated to

some specific uses. To separate the default OFL -components of the OFL -components created for a

specific language, we call OFL -atom the default one.1

Classes are reified by OFL -components. Take the example of Java. We have ComponentJava-
Class, ComponentJavaInterface, ComponentJavaArray, . . . An originality of OFL is that rela-

tionships are also reified. So, we have for Java: ComponentJavaExtendsBetweenClasses, Com-
ponentJavaExtendsBetweenInterfaces, ComponentJavaImplements, . . . A more complete list of

OFL -components for Java is given in [CCL02].

To facilitate the creation of an OFL -component, OFL provides some meta-components, called

OFL -concepts. So, we have a ConceptRelationship and a ConceptDescription2. Thus, Concept-
Description is equivalent to a meta-meta-class. In each concept, a set of parameters gives the meta-

programmer powerful possibilities to create or adapt an OFL -component. These parameters are

detailed in section 3.

Each parameter corresponds to a part of the operational semantics of the described OFL -components.

To execute operations in accordance with these parameters, OFL provide a system of actions. You

can see an action as a part of a compiler or of a running engine. Here are two examples of action:

lookup This action searches for the relevant feature in conformity with a message. This is the

realisation of the dynamic link. lookup takes into account the value of parameters which handle

polymorphism, redefinition and variance for each encountered relationship.
is_conform_type The goal of this action is to verify if a type is conform to another one. Conformity

is defined by parameters about polymorphism of import relationships (like inheritance).

In order to sum up this short definition of OFL , we present the figure 1 on the next page where

the model is summarised and some OFL -components for Java are defined.

3 Hyper-Generic Parameters

But how can the meta-programmer easily define the OFL -components for the language (s)he wants

to create or adapt? In fact, this work may be very difficult and tedious because (s)he would have to

rewrite a lot of algorithms such as type controls, dynamic links, use-of-polymorphism verifications,

inheritance rules, and so on.

In OFL , we provide a way to simplify this task: hyper-generic parameters. All the algorithms

are predefined (that is to say that all action have a default algorithm which takes care of the value

of hyper-generic parameters, and meta-programmer can redefine these actions) and are customised

by hyper-generic parameters which have a value in each OFL -components.

In the sequel, we illustrate the set of hyper-generic parameters which can be applied to an inher-

itance OFL -component to define it. We explain each parameter and its capabilities of customisation,

and as an example, we give its value to define ComponentJavaExtendsBetweenClasses.

Name This is the most simple hyper-generic parameter. It is the name of the OFL -component and

it must be unique in a language. For ComponentJavaExtendsBetweenClasses, the name is

"ComponentJavaExtendsBetweenClasses".

Kind It allows to determine the sort of the OFL -component. In OFL , we have four kinds of rela-

tionships:

1 In other words, OFL -atoms are supplied by the model, other OFL -components, created for a specific lan-

guage, are not.
2 The word description has been chosen to represent classes and all entities which look like classes, such as

interfaces.

2



A B
B specialises A

A B
B is an instance of A

Caption

Interface
ComponentJava

Extends
BetweenClasses

ComponentJava
Extends

BetweenInterfaces

ComponentJava

Implements
ComponentJava

Relationship
Atom

Description
Atom

Concept
Description

Concept
Relationship

Class
ComponentJava

OFL

Java

Fig. 1. OFL and Java described by OFL

– import for inheritance and all other importation links between descriptions,

– use for aggregation, composition, and all other use links between descriptions,

– type-object for all links between types and objects such as instantiation, and

– objects for all links between objects.

The value of Kind for ComponentJavaExtendsBetweenClasses is obviously import.

Context This is a simple but useful parameter. Context is used to know if the OFL -component is

defined for a specific language (value: language) or in a very general way and included in a

library (value: library). This is important because some other parameters, such as Opposite, as

you will see later, cannot be defined if the OFL -component is not described in the context of a

language. ComponentJavaExtendsBetweenClasses is defined for Java, so here the value of

Context is language.

Cardinality The parameter Cardinality defines the maximal cardinality of a relationship. For ex-

ample, the value of Cardinality is 1�1 for a single inheritance and 1�1 for a multiple one. The

first number represents the number of source-descriptions (heirs), the second is the number of

target-descriptions (ancestors).3 So, with Cardinality, we can customise the relationship to be

single or multiple with a single value! All the difficulty of the lookup algorithm, which searches

the relevant method in the graph of descriptions, is encapsulated in a predefined action which

takes care of the Cardinality value for all relationships used in the application. Cardinality is

also useful to limit the multiplicity. Indeed, giving the value 1 � 3, you can limit your multiple

inheritance to have one, two, or three ancestors, and not more. In Java, inheritance between

classes is single, so Cardinality for ComponentJavaExtendsBetweenClasses has the value1� 1. If we take ComponentJavaExtendsBetweenInterfaces, we have 1�1.

3 All the OFL -components we have defined with OFL have the value 1 � 1 or 1 �1 for Cardinality. But we

keep the capability to make a1�1OFL -component to represent, for example, association of UML [Obj01].

3



Repetition This parameter is useful if and only if Cardinality is not 1 � 1. Repetition indicates if

repetition of source-descriptions and target-descriptions are valid for this OFL -component (to

make repeated inheritance, for example). Repetition is defined as a pair of boolean. For Compo-
nentJavaExtendsBetweenClasses, the value of Cardinality is 1� 1, so the value of Repetition
is ignored.

Circularity This is a boolean and it expresses if the OFL -component admits a circular graph (value:

true) or not (value: false). Often, use relationships allow circularity and import ones don’t. Cir-

cularity is forbidden in inheritance of Java, so the value of Circularity is false for Component-
JavaExtendsBetweenClasses.

Symmetry This parameter points out if the OFL -component provides relationships that are sym-

metrical. Most of traditional links are not, but we can imagine a ComponentIsAKindOf where

the semantics is bidirectional: a boat is-a-kind-of submarine and a submarine is-a-kind-of boat

(they resemble each other but none are a specialisation of the other). ComponentJavaExtends-
BetweenClasses is not symmetrical so the value for its Symmetry is false.

Opposite We may have, in a language, two OFL -components with reversed semantics. Let’s imag-

ine ComponentSpecialisation and ComponentGeneralisation. Each indicates the other as its

opposite. This is an essential information for all actions which need to travel through the graph

of descriptions. ComponentJavaExtendsBetweenClasses has no opposite, so the value of this

parameter is none.

Direct_access In traditional inheritance, features of the ancestor are directly visible in the heir, as

if they are declared in the heir. The parameter Direct_access gives the capability to choose the

policy of this visibility. If the value is mandatory then all features are inevitably visible. If it is

forbidden, none are directly visible (but they can be indirectly visible as we will see in the next

parameter). And if the value is allowed then some are visible, some not and the differentiation

may be done, for example, by a keyword (such as public, private, . . . ). For ComponentJavaEx-
tendsBetweenClasses, the relevant value is allowed.

Indirect_access This is the same idea as for the previous parameter but for indirect accesses.

Indirect accesses mean accesses naming the target-description. In Java, we can use super in

constructors, finalisers or redefined methods. By this way, we can access to some features of the

ancestor, but we have to specify an indirect access. So, for ComponentJavaExtendsBetween-
Classes, the value is allowed.

Polymorphism_implication This parameter is very important. Polymorphism_implication can take

four values:

– up means that all instances of the source-description (heir in an inheritance link) must be

also instances of the target-description (ancestor in an inheritance link). This is the tradi-

tional direction for polymorphism.

– down points out the contrary: all instances of the target-description must be also instances

of the source-description. This value is very useful to create OFL -components like Compo-
nentGeneralisation.

– both is an interesting value. It means that source-description and target-description have

the same instances. This can be relevant to describe other derivations of inheritance, such as

ComponentVersion. We can imagine two versions of class linked by this OFL -component.

The two versions represent the same type, so they must have the same list of instances, and

dynamic link has to find the good version of features to execute.

– none is the last possible value and allows to define other kinds of inheritance, such as

ComponentCodeReuse where features are imported from the target-description to the

source-description, but we need to ensure that polymorphism capabilities are avoided.

The value of Polymorphism_implication for ComponentJavaExtendsBetweenClasses is up.

4



Polymorphism_policy This parameter is ignored if Polymorphism_implication has the value none.

Polymorphism_policy indicates if a new declaration of a feature in the source-description hides

the feature in target-description (value: hiding) or redefines it (value: overriding). This value is

double, one for attributes, one for methods. For ComponentJavaExtendsBetweenClasses, the

value is hiding for attributes and overriding for methods.4

Feature_variance This parameter indicates the kind of variance rule for redefinitions of features,

if these redefinitions are allowed (we will see the parameter Redefining later). Four values are

possible:

– covariant The type indicated in the source-description must be the same or a subtype5 of

the type given in the target-description. This is the relevant value for the parameters of

methods of Eiffel .

– contravariant This is the reverse of the previous value. The type indicated in the target-

description must be the same or a subtype of the type given in the target-description. This

choice has been made, for example, by Sather [SO96].

– nonvariant The type indicated in the source-description must be the same than the type

given in the target-description. This is the case in Java6.

– non_applicable is the last possible value. Meta-programmer uses it if (s)he wants no feature-

variance control.

The value of Feature_variance for ComponentJavaExtendsBetweenClasses is nonvariant for

method parameters, nonvariant for function results, and non_applicable for attributes.

Assertion_variance OFL is able to describe languages with assertions (precondition, postcondi-

tion, and invariant) like Eiffel . So, we have a parameter to indicate the kind of variance for

assertions:

– weakened The assertion in the source-description must be implicated by the assertion in

the target-description.

– strengthened This is the reverse value of the previous one. The assertion in the source-

description must implicate the one of target-description.

– unchanged The assertions in source-description and target-description must be equivalent.

– non_applicable means that controls of assertion variance must be avoided.

For ComponentJavaExtendsBetweenClasses, the value of Assertion_variance is ignored, be-

cause Java has no precondition, postcondition, or invariant.7

Renaming This parameter points out if the programmer can rename a feature using a relationship

defined by the OFL -component. For example, renaming is possible in Eiffel but not in Java or

C++. The accepted values are forbidden to prevent renaming, allowed to authorise renaming,

or mandatory to oblige it. The value for ComponentJavaExtendsBetweenClasses is forbid-
den.

On the same idea than for Renaming, we have parameters to customise the capability to add

(Adding), to remove (Removing), to redefine (Redefining for assertions, method’s signatures,

method’s bodies, and method’s qualifiers), to mask (Masking), to show (Showing), to abstract

(Abstracting), or to make effective (Effecting) the imported features. The value for Componen-
tJavaExtendsBetweenClasses is allowed for Adding and Redefining (only for method’s bodies

and method’s qualifiers) and forbidden for all others.8

4 In OFL , capabilities of overloading is not handle by relationships but by descriptions.
5 Let A be the source and B the target. A is a subtype of B if the value of Polymorphism_implication is up, and

B is a subtype of A if Polymorphism_implication is down. If the value is both, A and B represent the same

type and if it is none, there is no subtype link between A and B.
6 If type of parameters of methods are not exactly the same, in Java this is overloading and not overriding.
7 A keyword assert is present in Java 1.4.0 to handle assertions but this is a very basic ad hoc mechanism.
8 extends between an abstract class and a concrete one is handled by another OFL -component.

5



All these hyper-generic parameters allow to easily create many different kinds of inheritance,

and to directly execute them almost without meta-programming. And we need to write meta-

programming code only if we want to modify or to advance the default semantics of actions which

take care of the values of the hyper-generic parameters9.

4 Tools

The OFL model is defined since December 2001 and we are now implementing several software

tools. The first one is a Java version of the model which reifies all OFL -atoms (the program-

ming language elements such as method, description, message, . . . ) and OFL -concepts (the meta-

components) and provides an OFL -MOP with hyper-generic parameters and actions. This Java

library is called OFL/J and is also equipped by capabilities to save and load all entities conforming

to an XML-Schema [Wor01]. A full documented release should be soon available on our Web sites.

Without these tools, OFL is a way to classify and define components of languages, with it, it will

become a platform to construct language, to test evolution to existing language, or to equip applica-

tions with controls or other behaviours.

We are also implementing some graphical tools to help OFL users. OFL-Meta will be used by the

meta-programmer to create and modify the OFL -components of a language. Its interface resembles

to the interface of the Windows-File-Explorer . Another tool looks like an UML graph editor. It is

called OFL-ML and its goal is to provide a language (made through OFL-Meta) to the programmer

and to give to him(her) graphical solution to make his(her) application. A syntax is not yet specified

(only a reification) in the current version, so method bodies are written using the Java syntax.

Currently, those tools are only at the stage of prototype.

5 Conclusion and future work

This paper has presented a way to customise the inheritance relationship through the OFL model.

In the very near future, we aim to use the OFL -MOP implementation to address the two following

issues: to build a preprocessor of Java in order to implement an extension of this language for the

customisation of the inheritance relationship, and to build a tool which uses the reification of both

language semantics and application description in order to perform semantics controls, metrics,

adequate source-code generation and so on. We also currently study how to use SmartTools [Par01]

in order to implement a prototype which addresses these issues.

References

[CCCL00] A. Capouillez, R. Chignoli, P. Crescenzo, and P. Lahire. How to Improve Persistent Object Manage-

ment using Relationship Information? In WOON’2000 (4th International Conference "The White Object

Oriented Nights"), June 2000. also Research Report I3S/RR–2000-01–FR (Laboratoire d’Informatique,

Signaux et Systèmes de Sophia-Antipolis), http://www.crescenzo.nom.fr/.

[CCL01] A. Capouillez, P. Crescenzo, and P. Lahire. Separation of Concerns in OFL. In ECOOP’2001 (Work-

shop Advanced Separation of Concerns), June 2001. also Research Report I3S/RR–2001-07–FR (Lab-

oratoire d’Informatique, Signaux et Systèmes de Sophia-Antipolis), http://www.crescenzo.nom.
fr/.

[CCL02] A. Capouillez, P. Crescenzo, and P. Lahire. Le modèle OFL au service du méta-programmeur -

Application à Java. In LMO’2002 (Langages et Modèles à Objets). Hermes Science Publications,

L’objet : logiciels, bases de données, réseaux, volume 8, numéro 1-2/2002, January 2002. also Research

Report I3S/RR–2001-04–FR (Laboratoire d’Informatique, Signaux et Systèmes de Sophia-Antipolis),

http://www.crescenzo.nom.fr/.

[Cre01] P. Crescenzo. OFL : un modèle pour paramétrer la sémantique opérationnelle des langages à objets -

Application aux relations inter-classes. PhD. Thesis, Université de Nice-Sophia Antipolis, December

2001. http://www.crescenzo.nom.fr/.

9 Default algorithms of actions are obvious complicated because of the combination of value of the parameters

to handle.

6



[Des94] P. Desfray. Object Engineering, the Fourth Dimension. Addison-Wesley Publishing Co., 1994.

[GJSB00] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. The Sun Microsys-

tems Press Java Series. Sun Microsystems, June 2000. http://java.sun.com/docs/books/jls/.

[LJ95] P. Lahire and J.-M. Jugant. Lessons Learned with Eiffel 3: the K2 Project. In TOOLS 95, July-August

1995.

[Mey92] B. Meyer. Eiffel: The Language. Object-Oriented Series. Prentice Hall, 1992. http://www.eiffel.
com/doc/.

[Mey97] B. Meyer. Object-Oriented Software Construction. Professional Technical Reference. Prentice Hall,

2nd edition, 1997. http://www.eiffel.com/doc/oosc/.

[Obj01] Object Management Group. Unified Modeling Language Specification (UML), September 2001. Ver-

sion 1.4, http://www.omg.org/technology/uml/.

[Par01] D. Parigot. Web Site of SmartTools. World Wild Web, December 2001. http://www-sop.inria.fr/
oasis/SmartTools/.

[SO96] D. Stoutamire and S. Omohundro. Sather Specification. Technical report, International Computer

Science Institute, University of Berkeley, August 1996. Version 1.1, http://www.icsi.berkeley.
edu/~sather/Documentation/Specification/Sather-1.1/.

[Str97] B. Stroustrup. The C++ Programming Language. Addison-Wesley Publishing Co., 3rd edition, 1997.

http://www.research.att.com/~bs/3rd.html.

[Wor01] World Wide Web Consortium. XML Schema, May 2001. Version 1.1, W3C Recommendation, http:
//www.w3.org/XML/Schema.

7


