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HITTING TIMES, FUNCTIONAL INEQUALITIES, LYAPUNOV

CONDITIONS AND UNIFORM ERGODICITY.
PATRICK CATTIAUX * AND ARNAUD GUILLIN ¢*
® UNIVERSITE DE TOULOUSE

¢ UNIVERSITE BLAISE PASCAL
% INSTITUT UNIVERSITAIRE DE FRANCE

ABSTRACT. The use of Lyapunov conditions for proving functional inequalities was initiated
in [5]. It was shown in [4, 30] that there is an equivalence between a Poincaré inequality, the
existence of some Lyapunov function and the exponential integrability of hitting times. In
the present paper, we close the scheme of the interplay between Lyapunov conditions and
functional inequalities by
e showing that strong functional inequalities are equivalent to Lyapunov type conditions;
e showing that these Lyapunov conditions are characterized by the finiteness of gener-

alized exponential moments of hitting times.

We also give some complement concerning the link between Lyapunov conditions and in-
tegrability property of the invariant probability measure and as such transportation in-
equalities, and we show that some “unbounded Lyapunov conditions” can lead to uniform
ergodicity, and coming down from infinity property.
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1. INTRODUCTION

Let D be some smooth open domain in R?. In this paper, we will mainly consider the
differential operator defined for smooth functions f € C*°(D) by

1 o 0;
Lf =35 (00";() aéij + Zbi(x)axi,

ij

where o is an R¥™ smooth and bounded (for simplicity C°(D)) matrix field and b a C>(D)

vector field.

We may see L as the infinitesimal generator of a diffusion process associated to the stochastic
differential equation (SDE)

dXt = O'(Xt)dBt + b(Xt)dt s XQ =,
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2 P. CATTIAUX AND A. GUILLIN
where B; is an usual R”-Brownian motions when D = R? or to the reflected SDE
t
dXt = O'(Xt)dBt + b(Xt)dt + dNt, / laD(Xs)st = Nt X(] =,
0

if D is some smooth subdomain.

The domain D(L) of L (viewed as a generator) is thus some extension of the set of smooth
and compactly supported functions C°(D) such that the normal derivative % vanishes on
0D (if 9D is non void). This corresponds to normal reflection or to a Neumann condition on

the boundary. We also define P, the associated semi-group

P f(x) = Eq(f(X4))
which is defined for bounded functions f.
In order to use classical results in PDE theory we will also assume that L is uniformly elliptic,
ie.

oco* > ald

in the sense of quadratic forms for some a > 0, or more generally that L is uniformly strongly
hypo-elliptic in the sense of Bony (see [15]) and that the boundary is non characteristic. For
details we refer to [17].

We will also assume (though it should be a consequence of some of our assumptions) that
there exists a probability measure

p(dz) = e V@ dy

which is an invariant measure for the process (or the semi-group) i.e. for all bounded and
smooth function f € D(L),

/ Lfdu=0 orequivalently for all ¢, E,(f(X;))= /fd,u.

P, then extends to a contraction semi-group on LP(u) for 1 < p < +o0o0. We shall say that p
is symmetric, or that P; is p symmetric if for smooth f and ¢ in the domain of L,

/ngdu=/Lfgdu-

The standard example of p-symmetric semi-group is obtained for o = v/2Id and b = —VV
(provided V' is smooth enough). In all cases our ellipticity assumptions imply that this
measure is unique and ergodic.

Among the most fascinating recent developments at the border of analysis and probability
theory, a lot of work has been devoted to the study of the relationship between

e geometric properties of the measure p, for instance concentration properties,

e functional inequalities (the study of weighted Sobolev or Orlicz-Sobolev spaces asso-
ciated to L and pu) like the Poincaré (Wirtinger) inequality or the Gross logarithmic
Sobolev inequality,

e transportation inequalities like the T, Talagrand’s inequality,

e the rate of convergence to equilibrium for the semi-group P; in various functional
spaces, L2(u1), Orlicz spaces related to p,

e the rate of convergence of its dual P/ (i.e. the distribution of the process at time t)
in total variation or in Wasserstein distance,
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e the existence of Lyapunov functions,

e and finally some properties of the stochastic process X in particular existence of
general moments for hitting times of some subsets (for instance the control of how
the process comes down from infinity in the ultracontractive situation).

We refer to the monographs of Davies [33], Ledoux [45], Wang [58] and Bakry-Gentil-Ledoux
[7], the surveys by Gross [39] and Ledoux [44], the collective book [3] and the papers [2, 6,
9,8, 10, 11, 14, 13, 12, 18, 22, 20, 43, 55| among many others, for the first four items.

For the last three items we refer to the monographs of Hasminskii [40] and Meyn-Tweedie
[52] and the papers [16, 35, 36, 37, 53, 54, 57] among many others.

The link between both approaches was done in [5] for the first time, up to our knowledge. It
was extended in [4, 24, 27, 28, 29]. One can see the (now outdated) survey [25].

To be a little bit more precise, let us recall the following result from [30] Theorem 2.3 (also
see [42] for a similar statement)

Theorem 1.1. Consider the following properties

(HP1) There exists a Lyapunov function W, i.e. a smooth function W : D — R, s.t.
W >w > 0, and there exist a constant X\ > 0 and an open connected bounded subset
U such that %—IZ/ =0 on 0D and
LW < =AW +15.
(HP2) There exist an open connected bounded subset U and a constant @ > 0 such that for
all x,

E,; (eGTU> < 400,

where Ty denotes the hitting time of U.
(HP3) The process is geometrically ergodic, i.e. there exist constants B > 0 and C > 0 and
a function W > 1 belonging to (i) such that for all x

|1Py(x,.) — pllrv < CW(x)e P?,

where Py(x,.) denotes the distribution of X; (when Xy = x) and ||.|rv denotes the
total variation distance.

(HP4) w satisfies a Poincaré inequality, i.e. there exists a constant Cp(u) such that for all
smooth f € D(L),

Var,(f) < Cp(p) E(f),

where
&) = [ ~tiran =3 [losPan.
(HP5) There exists a constant Ap(u) such that for all f € L?(u),
Var, (P, f) < e~ Ar)t Var, (f) .

Then (HP5) < (HP4), (HP4) = (HP2), (HP2) < (HP1) and (HP1) = (HP3). Actually
(HP4) implies (HP2) for all (non-empty) open connected and bounded subset U.
If in addition p is symmetric, then

(HP1) < (HP2) < (HP3) < (HP4) < (HP5).
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When p is not symmetric, examples are known (kinetic diffusions) where (HP1) (hence
(HP3)) is satisfied but (HP4) is not. In the case of kinetic diffusions, it is evident that
(HP4) cannot hold as the Dirichlet form is degenerate. It is however also possible to build
"monster” diffusion where the invariant probability measure has some polynomial tail but
the diffusion (with identity diffusion matrix) may converge exponentially fast and thus a
Lyapunov condition holds.

The first equivalence is well known (see [3]), the second one is a simple application of Ito’s
calculus and PDE results (see [30] and [17]), the final implication is a consequence of the
Meyn-Tweedie theory. The implication (HP4) = (HP2) is shown in [30] by using the
deviation results for the occupation measure obtained in [23] (using a beautiful deviation
result obtained in [59]). We shall see in the next section another much more direct approach.
Finally, in the symmetric case the converse implications are obtained by using the method
in [4].

Some extensions of this theorem to polynomial ergodicity are discussed in [30] in connexion
with weak Poincaré inequalities. A deeper study of this situation is done in [50, 49, 48].

The questions we shall address in the present paper are not concerned with weakening but
with reinforcing of the assumptions, that is, does it exist similar results as in Theorem 1.1 if we
replace the Poincaré inequality by stronger inequalities, for instance F-Sobolev inequalities
in the spirit of [1, 9, 10] ?

Partial answers are known: an F-Sobolev inequality is equivalent to exponential stabilization
in some Orlicz space (see [56]) and in the symmetric situation, reinforced Lyapunov conditions
imply super-Poincaré inequalities or F-Sobolev inequalities (see [27, 28, 29]). Recently, Liu
([47, 46]) proposed some new ideas in order to directly link Lyapunov conditions on one hand,
concentration properties or functional inequalities on the other hand. Though some aspects
of his proofs are a little bit obscure for us, we shall follow his main idea in order to deduce
a Lyapunov condition from a functional inequality, and then get equivalent results in terms
of hitting times. This yields the following result written here for the logarithmic Sobolev
inequality which is the best known F-Sobolev

Theorem 1.2. Assume that D is not bounded. Consider the following properties

(HLS1) There exists a Lyapunov function W, i.e. there exists a smooth function W : D — R,
with W > w > 0, and there exist constants X\ > 0 and b > 0 such that %—IZ/ =0 ondD
and

LW(z) < —Xz*W(z) +b.

(HLS1’) There exists a Lyapunov function W, i.e. there exists a smooth function W : D — R,
with W > w > 0, and there exist constants X\ > 0 and b > 0 such that %—IZ =0 ondD
and

LW(z) < =AV(x)W(x) +b.
(HLS2) There exist an open connected bounded subset U and a constant @ > 0 such that for

all x,
Ty
E, (exp </ 6\X8\2d3>> < 400,
0

where Ty denotes the hitting time of U.
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(HLS2’) There exist an open connected bounded subset U and a constant § > 0 such that for

all x,
Ty
E, <exp </ HV(XS)ds>> < 400,
0

where Ty denotes the hitting time of U.
(HLS4) w satisfies a logarithmic-Sobolev inequality, i.e. there exists a constant Crg(p) such
that for all smooth f € D(L),

Ent () = [ m( s >dM < Cus ),

1
&) = [ ~Lfdu = —/IUVfIQdM-
(HLS5) There exists a constant Cg(u) such that for all f? € LInL(u) s.t. [ f2dp=1,
Entu(Pi(f?)) < e 00" Bnty (1),

where

Then
1) (HLS5) < (HLS4), (HLS4) = (HLS1) and (HLS2) < (HLS1).

1’) Assume that V' goes to infinity at infinity and that there exists some a > 0 such that
(e < 4o0.
Then (HLS5) < (HLS4), (HLS4) = (HLS1") and (HLS2') < (HLS1).

Actually (HLS4) implies in both cases (HLS2) or (HLS2') for all open nice subset U.

Assume in addition that p is symmetric and that o.0* is uniformly elliptic.

2’) Assume that V' goes to infinity at infinity, that |VV (x)| > v > 0 for |z| large enough
and that there exists some a > 0 such that pu(e?V) < +oo.
Then (HLS1') < (HLS2') < (HLS4) < (HLS5).

2) Assume the curvature condition Ric + HessV > —C > —oo where Ricci and Hess
are related to the riemanian metric defined by o.

Then (HLS1) < (HLS2) < (HLS4) < (HLS5).

Except (HLS5) < (HLS4) which is well known, we will prove this Theorem (and actually
more general results) in section 3. Part of this result can be extended to general F-Sobolev
inequalities, this is done in section 4.

The next two sections are devoted to the rate of convergence of P;(v,.), the distribution
at time t of the process with initial distribution v, to the invariant distribution p for the
total variation distance. In section 5 Theorem 5.4 we get the following: under some natural
assumptions on u, almost any F-Sobolev inequality combined with the Poincaré inequality
provides an exponential convergence

1P:(v,.) = pllrv < Cw)e 7,
for all v absolutely continuous w.r.t. p such that g—z belongs to LP(u) for some p > 1. The
remarkable fact here is that 5 does not depend on the integrability property (the p) of dv/dp.
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If this and more general results were proved in [24], the proof given here is particularly simple
and understandable.

In the next section 6 we study L°° properties of the Lyapunov functions, in relation with
the property of “coming down from infinity” for the process. In particular we show that if
the ultra boundedness property of the semi-group implies the “coming down from infinity”
property for the process, the converse is not true. All these notions are particularly relevant
in the study of quasi-stationnary distributions.

Finally in the last section we directly rely general Lyapunov condition to the existence of
some exponential moments for the measure p, extending the results in [47].

2. BACK TO THE POINCARE INEQUALITY.

As we said in the introduction, we shall give here a new direct proof of (HP4) = (HP1) in
Theorem 1.1.

Theorem 2.1. Assume that p satisfies a Poincaré inequality with constant Cp(u). Then for
all open subset A, there exists a smooth Lyapunov function W € D(L) i.e. a smooth function
satisfying W > w > 0 on A¢ and LW < —cW on A€ with

=i ().

It is easily seen that if A is smooth an bounded, we can modify W to get (HP1) (with a A
smaller than the ¢ in the theorem).

Proof. Let start with a simple lemma.

Lemma 2.2. Assume that w satisfies a Poincaré inequality with constant Cp(u). Then for
all subset A such that u(A) > 0 and all f in H'(u) = D(E) it holds

QCP() 4 5
/f )5(f)+m/Afdﬂ-

Proof. Using Poincaré inequality and the elementary

1
(a—i—b)Zg(l—i—)\)aQ—i—(l—i—X) b forall A >0

we can write

[ Pan < coen + )
< Cp(W)E(f) +pP(fla+ flac)
< CpE) +(1+ ) <f1A>+%M2<f1Ac>
< Colw ) + 1+ N ) [Pt S (A

where we have used Cauchy-Schwartz in the final inequality. Hence provided

(A1 +N) -1 >0,
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we have obtained

ACp(p) AL+ ) p(4)
[ A O+ T S,
The result follows by choosing A = 2(1 — u(A))/u(A). O
Now define
¢(z) = —c+ 1a(z), (2.3)

and introduce for all smooth u € D(L),
Hu=—-Lu+ ¢u.
On one hand, it holds

w(uHu) < E(u) + /A u?du.

On the other hand, applying the previous lemma we have

p(u.Hu) = E(U)—l—/AuZd,u—c,u(uQ)
2 2Cp(p) 4 02
> e+ [ d‘”( e+ d")

%<€(u)+ /A u2du>

¢ = u(A) min (@ , %) .

v

if we choose

Now we will linearize p(u.Hu). If v € D(L) and u € H'(11), H(u,v) = p(u.Hv) is well defined,
and using an integration by parts (or the Green-Rieman formula since the normal derivative
of v at the boundary vanishes) can be written as a (non necessarily symmetric) bilinear form
on H'(u). Tt is easily seen that this bilinear form # is continuous on H! () equipped with
the (usual) hilbertian norm (5 (u) + [ u? du)%, hence equipped with the hilbertian norm
(5(u) + fA u? d,u)% which is equivalent according to Lemma 2.2. But according to what
precedes, H is also coercive for this norm.

Hence, we may apply the Lax-Milgram theorem which tells us that for any g € H'(u) there
exists some v € H!(u) such that for all u, H(u,v) = (u,g). We will use this result with
g=1

First of all, the previous relation with u compactly supported in D shows that Hv = ¢ in
D'(D), so that thanks to ellipticity (or hypo-ellipticity), v € C°°(D) and satisfies Hv = g in
the usual sense in D. When D = R? this is enough. Otherwise, since the boundary is non
characteristic, v admits sectional traces on 0D of any order (see [17] Theorem 4.6) and using
the results in [17] section 4, one can see that v € C°°(D) and satisfies 9,v = 0 on dD. Since
Hv € L2(u), it follows that v € D(H).
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As a routine, defining v_ = min(v,0), one can check using integration by parts or the Green-
Rieman formula, that p(v—.Lv) = £(v_) so that, using the previous lower bound we obtain,

plo—.g) = H(v_,v) = p(v_.Hv) = plv_.Lv) + p(pv.w_) = —E(v-) — p(¢p.v?)

< —% (5(0_)+/Av3du>

and v_ = 0 p since g > 0. So v > 0 almost surely.
One should now use the maximum principle but we prefer use Ito’s formula. Assume that A
is open and bounded. Since ¢ = —c on A€, we get for any z € A,

v(z) = Ey(v(Xinr,) +Eg </0 1<, (Hv — qﬁv)(XS)ds>
E,(t ATs) > 0

v

since T4 > 0 if z € A°. Replacing A by A. = {y,d(y, A) < €} we may finally let ¢ go to
infinity, use the fact that v is bounded from below by a positive constant v(A,e) on 0A,
which is compact and obtain that v(z) > v(A4,¢) for all z € AS using the previous inequality
(which actually furnishes exactly the minimum principle). For a general open set A just take
the intersection with a large ball to get a bounded subset. O

Remark 2.4. As soon as we know the existence of a Lyapunov function satisfying (H P1)
it immediately follows using Ito’s formula with the function (t,7) — e W (y) that for all z,

Wy (z) = Ep(e}"V) < +o0,

and conversely, if the exponential moment is finite, Wy is a Lyapunov function (see [30]).

Also notice that the proof of Theorem 2.1 furnishes a Lyapunov function in H'(1), hence in
D(L) since Lv = (14 —c)v — 1 implies Lv € L?(x). Hence the previous Wy belongs to D(L).
Conversely if Wy is finite, LWy = —AWy in U€. Replacing A by \/2 if necessary, we may
assume that Wy is in L2(uz) so that LWy is square integrable too (at least in U¢). If U is
relatively compact it is easy to see that one can modify U and Wy to get a smooth function
everywhere that belongs to D(L). &

3. THE LOGARITHMIC SOBOLEV INEQUALITY.

We start with an analogue of Theorem 2.1.

Proposition 3.1. Assume that p satisfies the logarithmic Sobolev inequality (HLS4). Let

h be a nmon-negative continuous function such that b = 2u(e’) < +oo. For ¢ > 0, define

Us(h) ={(1 —e)h > b}.

Then there exists a Lyapunov function W € D(L) such that W (z) > w. > 0 on Us(h) and
€

2CLs

(HLh) LW < — hW  on U(h).

Proof. We follow and modify the proof in [46]. Assume that h is a non-negative function
such that u(e) < +-00. We follow the proof of Theorem 2.1 and define, for 2 p < %S so that

2p Ent,(u?) < E(u),
¢(x) = p(=h(x) +b), (3.2)
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with b = 2u(e’) and introduce for all smooth u € D(L),
Hu=—-Lu+ ¢u.

On one hand, it holds
p(uHu) < E(u) + pbu(u?).

On the other hand, applying this time Young’s inequality and LSI, we get for a smooth
u € D(L),

p(uHu) = Eu)+ pbp(u®) — pp(hu?)

u2 u2 'LL2
> E(u) + pbp(u®) — pu(u®)p <€h ~ e ™ (M(u2)>>
> E(u) + pbp(u®) - ﬂgﬂ(u2) + pp(u®) — p Ent(u?)
> 5 (€ + pbu(u))

We can then follow the proof of Theorem 2.1, and thus apply again the Lax-Milgram theorem
to get the existence of a non-negative smooth function v € H'(u) satisfying

Lv=¢v—-1=—-1—p(b—h)v.
If in addition
h(z) >b ,YxeU°

we obtain that v is bounded from below by a positive constant in US. The proof is completed.

0

This result is in particular interesting when D is not bounded and h goes to infinity at
infinity. Two cases are mainly relevant, due to the converse statements we will prove below

Corollary 3.3. Assume that p satisfies the logarithmic Sobolev inequality (HLS4) and that
D is not bounded. Then

1) for all xy € D, there exists a Lyapunov function W € D(L) with W (x) > w > 0 for
all x € D satisfying

LW (x) < =Xd*(z,20) W(z) + b,
for some X\ and b strictly positive;

2) if in addition V goes to infinity at infinity and e € L (u) for some a > 0, there
exists a Lyapunov function W € D(L) with W(x) > w > 0 for all x € D satisfying

LW(z) < =AV(z)W(zx) + b,
for some X\ and b strictly positive.
We may replace b by bl 4 for some well chosen bounded subset A of D.

Proof. In case 2), just apply the previous proposition with A = a|V| and modify W in the
corresponding level set A of V. For case 1), recall that the logarithmic-Sobolev inequality

implies that there exists some ¢ > 0 such that u(eCdQ("xO)) < 400 and conclude as before
with h = cd?(., z0). O
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Introducing the process
dH; = h(X,)dt

and applying Ito’s formula to (H,x) — e2%rs it is easy to show that (H Lh) implies for all
x’

Wis(z) = B (exp </OTU5(h) 2C6L5 h(XS)ds>> < 400. (3.4)

Conversely, if W}, .(z) is finite for all z, using the arguments in [17] one can prove that it
satisfies (HLh) with an equality instead of an inequality. Notice that once again we may
apply the arguments in Remark 2.4.

To complete the proof of Theorem 1.2, it remains to look at the converse statements in the
symmetric situation.

The first case is the case h(x) = cd?(z, 7). Statement 2) in Theorem 1.2 under the curvature
assumption is proved in [28] using transportation inequalities. An alternative method of proof
was recently proposed in [46] (with some points to be corrected). For the second case h = aV/
we will use the results in [27] based on super-Poincaré inequalities.

Proposition 3.5. Assume that u is symmetric and that o.0* is uniformly elliptic. Assume
in addition that V' goes to infinity at infinity, that |VV (x)| > v > 0 for |z| large enough and
that e*V € LY (u) for some a > 0.
If there exists a Lyapunov function W with W(z) > w > 0 for all x € D, %—IZ/ =0 on 0D
and satisfying

LW(z) < =AV(z)W(z) + b,

for some X\ and b strictly positive, then u satisfies a logarithmic-Sobolev inequality.

Proof. We follow the method in [27] Theorem 2.1 (itself inspired by [4]). Let A, = {V <r}.
For 7y large enough and some X < X we have

LW(z) < =NV(z)W(z) + bly
so that we may assume that

L
—(z) £ — x or x € and all r large enough.
VE/ AV f A7 and all 7 1 h

TO’

Denote by M = sup(—V'). We have for s < sy and r > ry,
[ra = [ Pas [ o
Ay A¢
< M 1+i / fzd:c+i/)\V(x)f2d,u
- Aro ) Ja, Ar ’
b 1 —LW
< M1+ — 2d —/ 2(——)d
= <+)\r0>/ATf v ) )
b C 2 1
M v 2 . _ 2
< e <1+M0> <s/Arywy &+ o (/Arlf]dm> ) e /\U.ny du.

The first part of the last bound is obtained by using (3.1.4) in [27] (it is here that we are
using the assumption on |VV|), while the second bound is obtained using integration by
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parts or the Green-Rieman formula (see [27] (2.2)). Using uniform ellipticity we thus obtain,
denoting ¢ = eM <1 + %)

2
ur) < (34 52) [lovsean e e el ([isian) . 6o

a

Hence choosing r = ¢/ /s we get the following super-Poincaré inequality for small s,

2
u() < s [lerP dn + et ( / \f\dﬂ> ,

which is known to be equivalent to a defective logarithmic Sobolev inequality (see the in-
troduction of [27]). But the Lyapunov condition being stronger than (HP1), we know that
 satisfies a Poincaré inequality, hence using Rothaus lemma, that it satisfies a (tight) log-
Sobolev inequality.

0

Remark 3.7. With some additional effort one should replace (3.1.4) in [27] directly by a
similar statement with 0.V f instead of V f, even in the strongly hypo-elliptic case, replacing
the arguments in [27] by the Jerison and Sanchez-Calle estimates for such operators, up to a
modification of the power s~%2 replaced by s~ where m depends on the dimension of the
graded Lie algebra. We do not want to go further into details here, that is why we choosed
to only consider the uniformly elliptic situation. &

4. F-SOBOLEV INEQUALITIES.

We will extend the results of the previous section to general F-Sobolev inequalities introduced
by Aida ([1]) and studied in [58, 9, 10]. Actually we will not be as complete as for the log-
Sobolev inequality, because for general functions F instead of the logarithm, results are much
more intricate. In particular the reader will find in [56] convergence results in Orlicz spaces
(replacing (H LS5) we shall not give here.

We are mainly interested here with the following version of (defective) F-Sobolev inequalities
for a nice F' defined on R™:

f2

wpsidcsect) [ 17 () < Celu () + Dr ().

When Dp = 0 one say that the inequality is tight and simply denote it by (HFS4). The
relationship between F-Sobolev and super-Poincaré inequalities is due to Wang ([58] Theorem
3.3.1 and Theorem 3.3.3). Recall some basic facts on these inequalities

Proposition 4.1. We have:
o (see [58].) A super-Poincaré inequality

(%) < sEF) + B(s) (u(I£D)*
implies (HF S4defect) for

Fo =+ [ “ew2ar ) =sup (1 - @) |

a>0 \ @ ta
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o (see [58].) If (HFS4defect) holds true for F such that f+°° uF;(u) du < 400, then

the semi-group Py is ultra-bounded, i.e. for all t > 0 there exists C(t) such that,
1B flloo < C(E) 1f 1l ()

so that if in addition a Poincaré inequality holds,

1Pf — 1(f)lloe < Me M| f = n(f)llL2g

for some C > 0 (one can replace 1.2 by any LP for p > 1 just changing C using
interpolation results, see e.g. [24, 26]).

e (see[9] lemma 8.) IfF(1) =0, F is C? in a neighborhood of 1 and 2F'(1)+F"(1) =
¢ >0, (HFS4) implies the Poincaré inequality (HP4) with Cp(u) = 1/(2¢).

o (see [9] Remark 22.) If F >0 and F(u) > ¢ > 0 for u > 2, then (HFS4) implies
the Poincaré inequality (H P4).

o (see [9] lemma 9.) If F is concave, non-decreasing, growths to infinity and satisfies
F(1) = 0 and uF'(u) < M, then (HFSdefect) and the Poincaré inequality imply
(HFS4).

We thus have two situations: either F' < log (interpolating between Poincaré and log-
Sobolev), in which case (with additional structural conditions on F') F-Sobolev inequalities
are equivalent to an exponential convergence in some Orlicz space ([56]), we still have some
Rothaus(-Orlicz) lemma allowing us to tight a defective F-Sobolev inequality and a lot of
additional properties connected with Orlicz hyperboundedness, concentration and isoperime-
try (see [9, 10]), or [ e m Fl(u) du < 400 in which case exponential convergence holds in L*°,
with a very small gap between both classes of F'.

We will now prove the analogue of Proposition 3.1. To this end we need to introduce some
convexity notions.

Definition 4.2. Assume that u — uF(u) = G(u) is convex. We define G* as the Fenchel-
Legendre dual function of G i.e. G*(u) = supysq (ut — G(t)).
For instance if F(u) behaves like lnﬁ(u) at infinity for some B > 0, then G*(t) behaves like

1
BtB=/B t? at infinity (see [9] subsection 7.1 to see the correct F to be chosen,).

Proposition 4.3. Assume that p satisfies the F-Sobolev inequality (HFS4defect) and that
G(s) = sF(s) is convex. Let h be a non-negative continuous function such that b = 2(Dp +
u(G*(h))) < 4o00. For e > 0, define U.(h) = {(1 —e)h > b}.

Then there exists a Lyapunov function W € D(L) such that W (z) > we > 0 on Us(h) and

£

Proof. The proof mimic the one of proposition 3.1 with the following modifications: take
¢ = p(—h +b) with b = 2(Dp + p(G*(h))) and pCr = 3, use Young’s inequality st <
G(s) + G*(t). O

We thus obtain, for a particular choice of F":

Theorem 4.4. Assume that D is not bounded, that V goes to infinity at infinity and that
e € LY (u) for some a > 0. Consider the following properties
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(HFS1) There exists a Lyapunov function W, i.e. there exists a smooth function W : D — R
with W > w > 0, and there exist constants X\ > 0 and b > 0 such that %—IZ/ =0 o0ndD
and

LW (z) < =MV |P(z) W(z) + b.
(HFS2) There exist an open connected bounded subset U and a constant 0 > 0 such that for

all x,
Ty
E, (exp </ 9|V|5(Xs)ds>> < 400,
0

where Ty denotes the hitting time of U.
(HFSpB) u satisfies (HFS4defect) with F(s) = lnﬁ(s).

Then (HFSp) = (HFS1) and (HFS1) < (HFS2).

If in addition p is symmetric, 0.0 is uniformly elliptic and |VV (z)| > v > 0 for |x| large
enough, then

(HFSpP) < (HFS1) & (HFS2).
For B <1 we may replace (HFSB) by its tight version.

Proof. For the first part we use the previous proposition with h = a|V|? for some a small

enough. In the symmetric situation, we mimic the proof of proposition 3.5 yielding a super-
1

Poincaré inequality with 5(s) = e/s” hence the corresponding defective F-Sobolev inequality

using Proposition 4.1. But (HFS1) implies (HP1) hence a Poincaré inequality and we can

use the final statement of Proposition 4.1 to get a tight version when 5 < 1. 0

We know in particular (see [9]) that for V(x) = |z|%, o > 1, p satisfies (HF'SB) with

=s(-2)

The main reason for writing Theorem 4.4 only in the case F ~ lnﬁ is the converse part
(HFS1) = (HFSp) for which the argument is easy since we have an explicit expression of
G*. Of course Proposition 4.3 contains much more general situations. Here is one which will
be useful in the sequel

Theorem 4.5. Assume that D is not bounded, that u satisfies both a Poincaré inequality
and the F-Sobolev inequality (HF S4defect), that G(s) = sF(s) is convex, non decreasing at
infinity and that (G*)~1 (the inverse function of G*) growths to infinity at infinity.
Then for all xog € D there exist a and 0 two positive constants, such that, defining

hiz) = (@)~ (e ),

we have for all x and all non empty, open and bounded subset U,

Wagiala) = . (o0 ( [ Y on(x,) ) ) < s,

where Ty denotes the hitting time of U. Actually Wy € LY ().
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Proof. Since p satisfies a Poincaré inequality, it is known that there exists a > 0 such that
(G () = (@) < fo.

In addition h goes to infinity at infinity so that its level sets are compact. It remains to apply
Proposition 4.3 to get the Lyapunov function Wy 175, and consequently the result. As usual
since LWy 7, +0hWy 175, < 0 outside of a compact set, we get that h Wy 17, is integrable and
since h goes to infinity that Wjy 17}, is integrable too. ([l

5. L GEOMETRIC ERGODICITY AND FUNCTIONAL INEQUALITIES.

Come back to the geometric ergodicity property (HP3). If we replace the initial distribution
d, by some initial probability distribution v, we have

1P(v,.) — pllv < Ce Pt

provided

(LWv) Well(v). (5.1)
If v is absolutely continuous w.r.t. y and zll_;l; € LP(u) a sufficient condition is thus

mwe W el

for % + % = 1. It is thus interesting to study the property (LWgq).

As shown in [30], once (HP1) is satisfied, (LW1) is satisfied too. It follows that for some
0 >0, Wy(z) = E,(e?TV) is finite, hence satisfies LWy = —Wj on U®, so that enlarging a
little bit U (say U.) we can modify the previous Wy in U, in order to get a new Lyapunov
function, still denoted Wy for simplicity satisfying

LWy < —0W, + bl

Hence Wy € L' (u). It follows that for every p > 1, defining Wy ,(z) = Em(e%TU), we have first
that Wy, € LP(u), second that (after similar modifications) Wpy , is a Lyapunov function with
6 replaced by 6/p. Since U is compact, these modifications do not modify the integrability
properties of Wp ,. Hence we have obtained

Proposition 5.2. If (HP1) is satisfied, for all p > 1, one can find another Lyapunov
function (associated to a different X\ and a different U) W, € LP(u). Hence there ezists some
Bp such that as soon as g—; € L9(u) with % + % =1,

|1P(v,.) — pllry < C(v)e Pt

In the symmetric case the situation is better understood. Indeed, (HP1) implies the geo-
metric ergodicity in L2(u) (HP5), so that using Riesz-Thorin interpolation theorem in an
appropriate way (see [26]) we have that provided Z—Z € L%(p) for some 1 < ¢ < 2,

() -
t — - .
dys Lo () Lo ()

In this situation we thus have geometric convergence for a stronger topology.

dv

(¢=1)
< Kq equlAP(;u‘)t d_
1%
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But the discussion preceding Proposition 5.2 furnishes a stronger result. Indeed (H P1) yields
(HP3)

H(z) = ||Pyx,.) — pllry < CW(z)e P!, (5.3)
so that H(x) converges to 0 for all x at a geometric rate. But we may replace W by W,

and B by 3, and get that actually H converges to 0 in all LP(x) for 1 < p < 400, with a
geometric rate depending on p.

Assume from now on that u satisfies some F-Sobolev inequality, for some smooth F'. Does
it improve the previous results 7 In this situation, the rate of convergence to equilibrium in
total variation distance was studied in [24]. The results we proved in the previous sections
allow us to give a new and substantially simpler proof of some results contained in [24]. Here
is a result in this direction:

Theorem 5.4. Under the assumptions of Theorem 4.5, there exists A > 0 such that for all
non-empty, open and bounded set U,

W(.):E_(e”v)e N L.
1<g<+

It thus follows that there exists some 8 > 0 such that for all v absolutely continuous w.r.t. u
such that g—z belongs to LP(u) for some p > 1,

1B (v,.) = plirv < Cv)e P*.
Actually H defined in (5.3) converges to 0 in all the ILP’s with a rate e~ P*.
Proof. Let h as in Theorem 4.5. The level sets Hr = {h < R} of h are smooth (since F’
is smooth) compact sets. Denote by T the hitting time of Hr. For R large enough, Hp
contains U. Let A > 0 be such that W (z) = E,(e*V) < +o0 for all . Such a X exists since

u satisfies a Poincaré inequality. If y € Hgr, W (y) < K(R) < +oo using the regularity of W.
If x ¢ Hg, we have

E, (eATU> ~E, (e)‘TR Exg, <e>‘TU>> < K(R)E, <e)‘TR> .

But now for 6R > g A,

Wi(z) < K9(R)ES (&TR) < KY(R)E, <quTR)
< KYR)E, (el OPXD ) = KU(R) Wy ().
The first part of the Theorem follows from Theorem 4.5. The second part is immediate. [

Remark 5.5. If g—z € L'(u), La Vallée-Poussin theorem implies that there is some Young

function ¢(u) = ut(u) with ¢ growing to infinity, such that g—z belongs to the Orlicz space
L. Hence the second part of the Theorem will follow from the first one and the Hélder-Orlicz
inequality, once W' € Lg«(p). But for the previous proof to work we need something like
(M) < O e®*Nu which is not true for ¢* growing faster than a power function. That is
why the result is only stated for v with a density belonging to some ILP space. &
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This result is nor new nor surprising. For instance, when a logarithmic Sobolev inequality
holds true, Theorem 2.13 in [24] shows that there is exponential convergence to the equilib-
rium in total variation distance as soon as v belongs to the space L InlL. It is then a simple
consequence of Pinsker’s inequality and the entropic convergence to equimibrium. More gen-
erally, the courageous reader will find in the jungle of section 3 of [24] similar results for
general F-Sobolev inequalities. It should be interesting to recover these results by using
Lyapunov functions.

Actually we should describe the problem as follows: we know that reinforcing functional
inequalities from Poincaré to F-Sobolev, reinforces the Lyapunov condition and conversely
in the symmetric case. Does a reinforced functional inequality reinforce the integrability
of the Lyapunov function and conversely in the symmetric case ? In particular can we
characterize (at least in the symmetric case) a functional inequality through integrability
properties of (some) Lyapunov function ?

Example 5.6. Look at the simple symmetric case L = A — VV.V in the whole R?. Then it
is easily seen that the following holds: there is an equivalence between

e £.VV(z) > alz|? for large |z,
o We(z) = e*l71*/2 i a Lyapunov function, i.e. satisfies (HP1),
o Wo(x) = |z|? also satisfies (HP1).

The first item is of course equivalent to the fact that V' is uniformly convex. We see that
the behavior of various Lyapunov functions can be very different. They also imply various
integrability properties and functional inequalities. Notice however that thanks to what we
said previously we can directly make the following reasoning: if V' is uniformly convex, Wy
is a Lyapunov function and admits some exponential moment so that convergence to the
equilibrium in total variation distance holds as soon as v belongs to the space L InlL as
expected. Indeed, we have by (H P1) that for some § and some r (denoting B, the euclidean
ball of radius r, and = € Bf

B, (e?T2r) < Wy(z).
Note however that in fact W, satisfies a stronger Lyapunov condition, i.e.
LWe(x) < —A|z|* We(z) + blp,

so that by the previous result on logarithmic , we have a stroonger integrability property
linked to hitting times:

T
E. <e§f0 BT X52> < We(z).

However, it does not seem possible to pass from this last control to the previous one.

Hence, finally, these results do not give any precise idea of the dependence in z of E,(e*V)
for a given bounded U. Actually this is a very difficult problem for which results are only
known in the gaussian case (i.e. for the Ornstein-Uhlenbeck process). &

In the next section we shall look more into details at the case where one can find a bounded
Lyapunov function.
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6. COMING DOWN FROM INFINITY, UNIFORM GEOMETRIC ERGODICITY AND LyApuNov
FUNCTIONS.

If dv/dp only belongs to L1, it is interesting to look at a bounded Lyapunov function. What
precedes allows us to state

Proposition 6.1. The following statements are equivalent:

e there exists A > 0 such that

sup E, (e)‘TU) < 400
xzeD
for one (or all) non empty, open and bounded set U,
e there exists a bounded Lyapunov function satisfying (HP1),
e the process is uniformly geometrically ergodic, i.e. there exist 5 >0 and C > 0 such
that
sup [|Py(z,.) — pllrv < Ce Pt
zeD
In this case of course, for any initial probability measure v,

1P:(v,.) — pllrv < Ce Pl

There exists a stronger form of uniform exponential integrability, the notion of “coming
down from infinity” which is used by people who are studying quasi-stationary distributions
or more precisely Yaglom limits (see e.g. the recent book [32]). We shall use the following
definition

Definition 6.2. We say that the process comes down from infinity if for all a > 0 there
exists some open, bounded subset U, such that sup, E, (e“TUa) < —+o0.

In one dimension, this property was related to the uniqueness of quasi-stationary distributions
(QSD) and to the fact that oo is an entrance boundary, in [19]. Uniqueness of a (QSD) also
follows from the ultraboundedness property of the semi-group, even in higher dimension (see
e.g. [31]). In [30] Proposition 5.3, we claimed that ultraboundedness is actually equivalent to
coming down from infinity for one dimensional diffusion processes with generator A — VV.V
satisfying some extra condition. D. Loukianova pointed out to us that the proof of this
proposition in fact needs slightly more stringent assumptions (the function z — F(z)/z
therein is not necessarily non-increasing) for this equivalence to hold true.

Nevertheless, part of this result is true and we shall give a direct and simple proof.

Indeed, assume that W satisfies (HP1). We have seen that we can always assume that
W € L%(u) and then W € D(L)). It follows that

L(PW) = P,(LW) < ~AP,W + P(1;). (6.3)
Now assume that R < d(z,U) < 2R. We have
P(1p)(z) = E:(lx,ep)

< Ee (1T0<t) < sup Qy(Ty <t)
d(y,U)>R

where @, denotes the law of the process Y with the same generator L but reflected on
d(z,U) = 2R (which can be assumed to be smooth) and starting from y. Indeed if the
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process X hits U before to leave {d(z,U) < 2R}, it coincides with Y, (with the same starting
point) up to Ty. If not, X leaves {d(z,U) < 2R} before Ty, but in order to hit U it has
to come back to {d(z,U) < 2R} first, so that using the Markov property we may apply
the same argument as before this time starting from X7, where T is the hitting time of
{d(z,U) < 2R}. That is why the final upper bound contains the supremum over y.

Now, since all coefficients are smooth, they are bounded with bounded derivatives of any
order in {d(z,U) < 2R} which is compact. It is then well known that

sup Qu(Ty <t) < C e R/t
d(y,U)>R
for some constants C' and ¢ only depending on these bounds. Hence
P,(17)(x) < Ce el

as soon as R < d(z,U) < 2R. If d(z,U) > 2R, Ty > Tg, and we may apply again the
Markov property to get the same upper bound.
Pick some R > 0 once for all and choose ¢t > 0 in such a way that

1
Ce B/t < 5)\11}.

We thus have

LIEW)(z) < =APW(2)+ 1y iy<r + Ce ™ 1y, o
A
< —5 BW() + Ly o)<r;

so that P,W is a new Lyapunov function with A\/2 and {d(x,U) < R} in place of A\ and U
(of course P,V belongs to D(L) and satisfies P,WW > w > 0).
We deduce immediately

Theorem 6.4. Assume that (HP1) is satisfied (for ezample p satisfies a Poincaré inequality)
and that the semi-group P is ultra-bounded, i.e. that P, maps continuously L' into L>° for
any t > 0. Then the process comes down from infinity.

Proof. (HP1) together with ultra-boundedness imply that the semi-group is hyper-contractive