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LANDAU EQUATION FOR VERY SOFT AND COULOMB POTENTIALS

NEAR MAXWELLIANS

K. CARRAPATOSO AND S. MISCHLER

Abstract. This work deals with the Landau equation for very soft and Coulomb potentials
near the associated Maxwellian equilibrium. We first investigate the corresponding linearized
operator and develop a method to prove strong asymptotical (but not uniformly exponential)
stability estimates of its associated semigroup in large functional spaces. We then deduce
existence, uniqueness and fast decay of the solutions to the nonlinear equation in a close-
to-equilibrium framework. Our result drastically improves the set of initial data compared
to the one considered by Guo and Strain who established similar results in [21, 38, 39].
Our functional framework is compatible with the non perturbative frameworks developed by
Villani, Desvillettes and co-authors [44, 17, 16, 13], and our main result then makes possible
to improve the speed of convergence to the equilibrium established therein.
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Contents

1. Introduction 2
1.1. The Landau equation 2
1.2. Main results 3
1.3. Overview of the proof 5
1.4. Notations and definitions 7
1.5. Structure of the paper 7
2. Linearized operator 7
2.1. Known results 8
2.2. Factorization of the operator 8
2.3. Preliminaries 9
2.4. Dissipative properties of B 12
2.5. Estimates on the operator A 15
3. Semigroup decay 16
3.1. Decay estimates for SB 16
3.2. Regularity properties of SB 18
3.3. Decay estimates for SL 18
3.4. Weak dissipativity of L 20
3.5. Summarizing the decay and dissipativity estimates 21
4. Nonlinear estimates 21
5. Nonlinear stability 24
6. The spatially inhomogeneous case 28
6.1. The linearized inhomogeneous operator 28
6.2. Functional spaces 28
6.3. Weak coercivity estimate of L̄ 29

2010 Mathematics Subject Classification. 35B40, 35Q20, 35K67, 47D06, 47H20.
Key words and phrases. Landau equation, existence, uniqueness, stability, semigroup stability, very soft

potentials, Coulomb potential, convergence to equilibrium.

1



2 K. CARRAPATOSO AND S. MISCHLER

6.4. Weak dissipativity properties on B̄ 32
6.5. Regularisation properties of SB̄ and (ASB̄)

(∗n) 35
6.6. Decay of the semigroup SL̄ 39
6.7. Summary of the decay and dissipativity results for L̄ 41
6.8. Nonlinear estimate 42
6.9. Proof of the main result 43
References 43

1. Introduction

1.1. The Landau equation. The Landau equation is a fundamental equation in kinetic theory
modeling the evolution of a dilute plasma interacting through binary collisions. We consider here
a plasma confined in a torus T3 and described by the distribution function F = F (t, x, v) ≥ 0
of particles which at time t ≥ 0 and at position x ∈ T3, move with the velocity v ∈ R3. The
evolution of F is governed by the spatially inhomogeneous Landau equation

(1.1)

{
∂tF + v · ∇xF = Q(F, F )

F (0, x, v) = F0(x, v).

For a spatially homogeneous plasma, namely when F = F (t, v), the equation simplifies into the
spatially homogeneous Landau equation

(1.2)

{
∂tF = Q(F, F )

F (0, v) = F0(v).

The Landau collision operator Q is a bilinear operator acting only on the velocity variable and
it is given by

(1.3) Q(g, f)(v) = ∂i

∫

R3

aij(v − v∗) {g∗∂jf − f∂jg∗} dv∗,

where here and below we use the convention of implicit summation over repeated indices and the
usual shorthand g∗ = g(v∗), ∂jg∗ = ∂v∗jg(v∗), f = f(v) and ∂jf = ∂vjf(v). The matrix-valued
function a is nonnegative, symmetric and depends on the interaction between particles. When
particles interact by an inverse power law potential, a is given by

(1.4) aij(z) = |z|γ+2

(
δij −

zizj
|z|2

)
, −3 ≤ γ ≤ 1.

In the present article, we shall consider the cases of very soft potentials γ ∈ (−3,−2) and
Coulomb potential γ = −3. It is worth mentioning that the Coulomb potential is the most
physically interesting case, and also the most difficult because of the strong singularity in (1.4).

The Landau equation (1.1) (or (1.2)) possesses two fundamental properties (which hold at
least formally). On the one hand, it conserves mass, momentum and energy, more precisely

(1.5)
d

dt

∫

T3×R3

Fϕdxdv =

∫

T3×R3

{Q(F, F ) − v · ∇xf}ϕdxdv = 0 for ϕ(v) = 1, v, |v|2.

On the other hand, the Landau version of the celebrated Boltzmann H-theorem holds: the en-
tropy H(F ) :=

∫
F logF dxdv is non-increasing and the global equilibria are global Maxwellian

distributions that are independent of time and position. Hereafter, we normalize the initial data
∫

T3×R3

F0 dx dv = 1,

∫

T3×R3

F0 v dx dv = 0,

∫

T3×R3

F0 |v|2 dx dv = 3,
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and therefore we consider the associated global Maxwellian equilibrium

µ(v) = (2π)−3/2e−|v|2/2,

with same mass, momentum and energy of the initial data (normalizing the volume of the torus
to |T3

x| = 1).

1.2. Main results. Our aim in this work is to study the Landau equation in a close-to-
equilibrium framework (or perturbative regime) in large functional spaces and to establish new
well-posedness and trend to the equilibrium results.

Let us then introduce the functional framework we will work with. For a given velocity weight
function m = m(v) : R3 → R+ and exponent 1 ≤ p ≤ ∞, we define the associated weighted
Lebesgue space Lpv(m) and weighted Sobolev space W 1,p

v (m), through their norms

(1.6) ‖f‖Lp
v(m) := ‖mf‖Lp

v
, ‖f‖W 1,p

v (m) := ‖mf‖W 1,p
v
.

Similarly, we define the weighted Sobolev space Wn,p
x Lpv(m), n ∈ N, associated to the norm

(1.7) ‖f‖p
Wn,p

x Lp
v(m)

:= ‖mf‖p
Wn,p

x Lp
v
:=

∑

0≤j≤n

‖∇j
x(mf)‖pLp

x,v
,

and we adopt the usual notation Hn =Wn,2.

We make the following assumption on the weight function m :

(1.8)
m = 〈v〉k := (1 + |v|2)k/2 with k > 2 + 3/2;

m = exp(κ〈v〉s) with s ∈ (0, 2) and κ > 0, or s = 2 and κ ∈ (0, 1/2);

and through the paper we denote σ = 0 when m is a polynomial weight, and σ = s when m is
an exponential weight. We associate the decay functions

(1.9) Θm(t) =





C 〈t〉−

k−ℓ
|γ| , if m = 〈v〉k,

Ce−λ t
s

|γ|
, if m = eκ〈v〉

s

,

for any constant ℓ ∈ (2+3/2, k) and some constants C, λ ∈ (0,∞). It is worth emphasizing that
in the polynomial case m = 〈v〉k, the notation Θm refers to a class of functions (with increasing
rate of decay as ℓ tends to 2 + 3/2), while in the exponential case m = eκ〈v〉

s

, the notation Θm
stands for a fixed function. We finally introduce the projection operator Pv on the v-direction
for any given v ∈ R3\{0} defined by

(1.10) Pvξ =

(
ξ · v|v|

)
v

|v| , ∀ ξ ∈ R3,

as well as the anisotropic gradient ∇̃vf of a function f defined by

(1.11) ∇̃vf = Pv∇vf + 〈v〉(I − Pv)∇vf.

Our main result reads as follows.

Theorem 1.1. For any weight function m satisfying (1.8), there exist C > 0 and ε0 > 0, small
enough, so that, if ‖F0 − µ‖H2

xL
2
v(m) < ε0, there exists a unique global weak solution F to (1.1)

such that

(1.12)

sup
t≥0

‖F (t)− µ‖2H2
xL

2
v(m) +

∫ ∞

0

‖〈v〉 γ+σ
2 (F (t)− µ)‖2H2

xL
2
v(m) dt

+

∫ ∞

0

‖〈v〉 γ
2 ∇̃v{m(F (t)− µ)}‖2H2

xL
2
v
dt ≤ Cε20.

This solution verifies the decay estimate

(1.13) ‖F (t)− µ‖H2
xL

2
v
≤ Θm(t) ‖F0 − µ‖H2

xL
2
v(m), ∀ t ≥ 0.
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Remark 1.2. For a spatially homogeneous initial datum F0 ∈ L2
v(m), the associated solution F (t)

is also a spatially homogeneous function, and thus satisfies the spatially homogeneous Landau
equation (1.2). In that spatially homogeneous framework, the H2

x regularity is automatically
fulfilled, it can be then removed of the corresponding version of Theorem 1.1 which statement
thus simplifies accordingly.

Let us briefly comment on known results on the existence, uniqueness and long-time behaviour
of solutions to the Landau equation when −3 ≤ γ < −2. For the other cases −2 ≤ γ ≤ 1, we
refer the reader to the recent work [14] and the references therein.

In the space homogeneous case, existence of solutions has been first addressed by Arsenev-
Penskov [2], and next by Villani [44] and Desvillettes [16] who establish existence of global
solutions for any initial datum with finite mass, energy and entropy. Uniqueness of strong
solutions (which do exist locally in time) has been proved by Fournier-Guérin [19] and Fournier
[18]. In a similar framework and for bounded (after regularisation) collision kernel a with
−3 < γ < −2, polynomial convergence to the equilibrium has been obtained by Toscani and
Villani [40] by entropy dissipation method. That last result has been recently improved by
Desvillettes, He and the first author [13], who prove convergence to equilibrium with algebraic
or stretched exponential rate removing the boundedness (unphysical) assumption on the collision
kernel a and also considering the Coulomb potential γ = −3. The space homogeneous version
of the results by Guo and Stain presented below also provides well-posedness and accurate rate
of convergence to the equilibrium in a perturbative regime in H8

v (µ
−θ), θ ∈ (1/2, 1). It is worth

emphasising that even in that simple space homogeneous case, it was the only known result of
existence and uniqueness of global (in time) solutions.

In the space inhomogeneous case, existence of global (renormalized with a defect measure)
solutions has been established by Alexandre-Villani [1] for any initial datum with finite mass,
energy and entropy. Under an additional (unverified) strong uniform in time boundedness
assumption, Desvillettes and Villani [17] proved polynomial convergence of the solutions to the
equilibrium. On the other hand, in a perturbative regime, Guo [21] proved well-posedness in the
high-order Sobolev space with fast decay in velocity H8

x,v(µ
−1/2), and Guo and Strain [38, 39]

proved stretched exponential convergence to equilibrium in H8
x,v(µ

−θ), θ ∈ (1/2, 1).

Our result thus improves the well-posedness theory of Guo [21] to larger spaces H2
xL

2
v(m)

as well as the convergence to equilibrium of Guo and Strain [38, 39] to larger spaces and with
more accurate rate. It is worth emphasising that in the space homogeneous case, our results
only require that initial data are bounded (and close) in the Lebesgue space L2

v(m) (and thus
do not require any control on derivatives).

Our result makes possible to improve the speed of convergence to the equilibrium results
available in a non perturbative framework in the following way.

Corollary 1.3 (Spatially homogeneous framework). Consider a nonnegative normalized initial
datum F0 = F0(v) with finite entropy such that furthermore F0 ∈ L1(m) for an exponential
weight function m satisfying (1.8) with s ∈ (0, 1/2). There exists a global weak solution F to
the spatially homogenous Landau equation (1.2) associated to F0 satisfying

(1.14) ‖F (t)− µ‖L2
v
. Θm(t), ∀ t ≥ 0.

Estimate (1.14) improves the rate of convergence of order e−λ t
s

s+|γ|
established in [13], thanks

to an entropy method, for the global weak solutions built in [44, 16]. Corollary 1.3 has to be
compared with [34] where the optimal speed of convergence to the equilibrium for the spatially
homogeneous Boltzmann equation for hard spheres has been established and with [41] where
the optimal speed of convergence to the equilibrium for the spatially homogeneous Boltzmann
equation for hard potentials has been proved.
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Corollary 1.4 (Spatially inhomogeneous framework with a priori bounds). Let F be a non-
negative normalized global strong solution to the spatially inhomogeneous Landau equation (1.1)
such that

(1.15) sup
t≥0

(
‖F (t)‖Hℓ

x,v
+ ‖F (t)‖L1

x,v(m)

)
< +∞,

for some explicit ℓ ≥ 3 large enough and some exponential weight function m satisfying (1.8),
and such that the spatial density is uniformly positive on the torus, namely

(1.16) ∀ t ≥ 0, x ∈ T3, ρ(t, x) =

∫

Rd

f(t, x, v) dv ≥ α > 0.

Then this solution satisfies

(1.17) ‖F (t)− µ‖H2
xL

2
v
. Θm(t), ∀ t ≥ 0.

Estimate (1.17) improves the polynomial (of any order) rate of convergence established in [17,
Theorem 2] under stronger (of any order) uniform Sobolev norm estimates but weaker (polyno-
mial of any order) velocity moment uniform estimates. Corollary 1.4 has to be compared with
[20] where the optimal speed of convergence to the equilibrium for the spatially inhomogeneous
Boltzmann equation for hard spheres has been established.

1.3. Overview of the proof. Our main theorem is based on stability estimates (which are
however not uniformly exponential) for the semigroup corresponding to the associated linearized
operator in large functional spaces, by taking advantage of a weak coercivity estimate in one small
space and using an enlargement trick for weakly dissipative operators that we introduce here.
We then conclude to our main result by combining these stability estimates (at the linear level)
together with some nonlinear estimates for the Landau operator Q and a trapping argument.
It is worth mentioning that our method is mostly based on these semigroup stability estimates,
what is drastically different from the nonlinear energy method of [21, 38, 39].

Let us explain this enlargement trick in more details, and we restrict ourselves to the Hilbert
framework to make the discussion simpler (and because it is the only case we will consider in the
all paper). We begin with the simpler hypodissipative case. Let Λ be a linear operator acting
on two Hilbert spaces E ⊂ E and suppose that Λ has a spectral gap in the small space E, and
more precisely

(1.18) ∀ f ∈ EΛ
1 , 〈Λf, f〉E . −‖Πf‖2E,

where EΛ
1 stands for the domain of Λ when acting on the space E and Π denotes the projector

onto the orthogonal of ker(Λ). It is worth recalling that this estimate is equivalent to an
exponential rate decay for the associated semigroup SΛ(t)Π in E. The extension theory recently
introduced in an abstract Banach framework in [34] and developed in [20, 31, 29] (see also
[30, 42, 32] for other developments of the factorization approach for the spectral analysis of
semigroups in large Banach spaces) establishes that if we can factorise Λ = A + B where B is
hypodissipative (with respect to E), A is bounded and some convolution product of ASB enjoys
suitable regularity property, then Λ generates a C0-semigroup SΛ(t) on the large space E and
SΛ(t)Π enjoys in E the same exponential rate decay as in E. This method has been successfully
applied to many evolution equations, and in particular to the Landau equation with hard and
moderately soft potentials in [11, 12, 14].

In our case (of very soft and Coulomb potentials γ ∈ [−3,−2)), the linearized Landau operator
Λ does not satisfy any spectral gap inequality but only a weak coercivity estimate on a small
space E. We are however able to generalize the extension theory presented above and prove
that Λ generates a uniformly bounded continuous semigroup SΛ(t) on small and large Hilbert
spaces X , which is now only strongly stable but not uniformly exponentially stable.
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More precisely, on the one hand, the linearized version of the H-Theorem states that (at
least) in one Hilbert space E, the linearized Landau operator Λ enjoys a weak spectral gap
estimate

(1.19) ∀ f ∈ EΛ
1 , 〈Λf, f〉E . −‖Πf‖2E∗

, E∗ not included into E,

where here E∗ is a second Hilbert space (in the norm of which we express the weak dissipativity
property of Λ in E).

On the other hand, in many Hilbert spaces X , the linearized Landau operator Λ splits as
Λ = A+ B where A is a bounded operator in X and B is weakly dissipative

(1.20) ∀ f ∈ XΛ
1 , 〈Bf, f〉X . −‖f‖2X∗

, X∗ not included into X,

where again XΛ
1 stands for the domain of Λ when acting on the space X and X∗ is a second

Hilbert space (in the norm of which we express the weak dissipativity property of B in X).
It is worth emphasizing that this weakly dissipative case is much more tricky than the previous

classical dissipative case, because one cannot deduce any decay estimate on ΠSΛ (resp. SB) just
from inequality (1.19) (resp. inequality (1.20)).

However, by using (1.20) with several choices of spaces X and using an interpolation argu-
ment, we first obtain that SB is strongly asymptotically stable (but not uniformly exponentially
stable). Next, by using an extension trick, we deduce that the same holds for ΠSΛ. More
precisely, for several choices of Hilbert spaces X ( X0, we have first

(1.21) ‖ΠSΛ(t)‖X→X0 ≤ Θ(t) → 0, as t→ ∞,

for some polynomial or stretched exponential decay function Θ = ΘX,X0 , as well as the regular-
ization estimate

(1.22) ‖ΠSΛ(t)‖X′
∗→X0 ≤ (t ∧ 1)−1/2 Θ∗(t),

for some polynomial decay function Θ∗ = ΘX′
∗,X0 (such that (t ∧ 1)−1/2 Θ(t)Θ∗(t) ∈ L1(R+))

and where X ′
∗ is the dual of X∗ for some suitable duality product. Next, for some convenient

choice of η,K > 0, the norm

(1.23) ∀ f ∈ ΠX, |||f |||2X := η‖f‖2X +

∫ ∞

0

‖SΛ(τ)f‖2X0
dτ

is an equivalent norm in ΠX and Λ satisfies the weak dissipativity estimate

(1.24) ∀ f ∈ XΛ
1 , 〈〈Λf, f〉〉X ≤ −K‖Πf‖2X∗

,

where 〈〈·, ·〉〉X stands for the duality bracket associated to the ||| · |||X norm.

By choosingX andX∗ well adapted for the quadratic Landau operator, we may then establish
that for any solution f = F − µ to the Landau equation, the following a priori estimate holds
(for some constant C > 0)

d

dt
‖Πf‖2X ≤ ‖Πf‖2X∗

(−K + C‖Πf‖X).

Our existence, uniqueness and asymptotic stability results are then immediate consequences of
that last differential inequality and of the estimates it provides.

Let us finally discuss the decay issue for non-uniformly exponentially stable semigroups which
naturally arises in many contexts. It arises first in statistical physics when involved coefficients
are suitably decaying. In [9, 10], for the Boltzmann equation with soft potential of interaction
under Grad’s cutoff assumption, Caflisch had exhibited the explicit semigroup solution to the
associated linearized equation and had deduced well-posedness and stability for the nonlinear
Boltzmann equation in a perturbative regime. In [28], a similar result is obtained for the
critical case of an attractive reversible nearest particle system. More recently, for the Fokker-
Planck equation with weak confinement potential and for the spatial homogeneous Landau
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equation with soft interaction some polynomial and stretch exponential rate of convergence to
the equilibrium have been established in [37, 40]. The proofs are based on entropy methods,
moments estimates and interpolation arguments. These results for the Fokker-Planck equation
are improved in [23] where a similar factorization approach, as introduced in the present paper,
is developed.

Independently, inspired by scattering and control theory [24, 4], many results on the decay
rate of the energy for damped wave type equations have been established, see for instance
[25, 26, 27, 8]. These results are based on the analysis of the absence of poles (resonances)
in the neighbourhood of the real axis for the resolvent of the associated operator. They have
inspired an abstract theory for non-uniformly exponentially stable semigroups, and we refer the
interested reader to [7, 5, 6] and the references therein.

It is worth emphasizing that in that last abstract theory, one typically obtains some estimate
on the semigroup by allowing the lost of (part of) a domain in the control of the trajectory
and, roughly speaking, that is related to the absence of pole in bounded neighbourhoods of
the real axis and to the control of how the spectrum approaches the imaginary axis at ±i∞.
That is slightly different from the picture arising in the present statistical physics framework,
where the estimates do not involve domains norms but norms controlling the confinement of the
distribution function and where the continuous spectrum extends up to the origin.

1.4. Notations and definitions. If Λ is a closed linear operator on a Banach space X that
generates a semigroup on X , we denote by SΛ(t) its associated semigroup. Moreover, for Banach
spaces X and Y , we denote B(X,Y ) the space of bounded linear operators from X to Y , with
the associated operator norm ‖·‖X→Y . We say that the generator Λ of a semigroup in a Banach
space X is dissipative if

∀ f ∈ X1
Λ, ∃ f∗ ∈ Jf , 〈f∗,Λf〉X′,X ≤ 0

where X1
Λ = D(Λ) is the domain of Λ and Jf is the dual set Jf := {g ∈ X ′; ‖g‖2X′ = ‖f‖2X =

〈g, f〉X′,X}. We say that the generator Λ is hypodissipative if it is dissipative for an equivalent
norm.

1.5. Structure of the paper. For the sake of clarity, we shall first consider the spatially
homogeneous case through Sections 2 to 5, and in the last Section 6 we show how our method can
be adapted to the spatially inhomogeneous equation. In Section 2 we introduce a factorization
of the (homogeneous) linearized Landau operator L = A+B and prove several properties of the
operatorsA and B. Section 3 is devoted to the proof of (non exponential) decay estimates in large
functional spaces of the semigroup associated to L (see Theorem 3.5) as well as weak dissipative
properties for L (see Corollary 3.7), using the method presented above. In Section 4 we prove
nonlinear estimates for the Landau operator Q, and then in Section 5 we prove the spatially
homogeneous version of Theorem 1.1. Finally, in Section 6, we deal with the inhomogeneous
case and prove Theorem 1.1, by following the same program as for the homogeneous case above.

Acknowledgments. The first author is supported by the Fondation Mathématiques Jacques
Hadamard. The second author gratefully acknowledges the support of the STAB ANR project
(ANR-12-BS01-0019).

2. Linearized operator

We define the following quantities

(2.1)

bi(z) = ∂jaij(z) = −2 |z|γ zi,
c(z) = ∂ijaij(z) = −2(γ + 3) |z|γ if γ ∈ (−3,−2),

c(z) = ∂ijaij(z) = −8πδ0 if γ = −3,
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from which we are able to rewrite the Landau operator (1.3) into two other forms

(2.2)
Q(g, f) = ∂i{(aij ∗ g)∂jf − (bi ∗ g)f}

= (aij ∗ g)∂ijf − (c ∗ g)f.

Consider now the variation f := F − µ and the linearized (homogeneous) Landau operator

(2.3) Lf := Q(µ, f) +Q(f, µ).

We denote

(2.4) āij = aij ∗ µ, b̄i = bi ∗ µ, c̄ = c ∗ µ,

and remark that

c̄(v) = −2(γ + 3)

∫

v∗

|v − v∗|γ µ∗ when γ ∈ (−3,−2),

c̄(v) = −8πµ(v) when γ = −3.

2.1. Known results. On the space E0 := L2
v(µ

−1/2), we classically observe that L is self-
adjoint and verifies 〈Lf, f〉E0 ≤ 0, so that its spectrum satisfies Σ(L) ⊂ R−. Moreover, thanks
to the conservation laws, there holds

ker(L) = span{µ, v1µ, v2µ, v3µ, |v|2µ},

and the projection Π0 onto ker(L) is given by

(2.5) Π0(f) =

(∫
f dv

)
µ+

3∑

j=1

(∫
vjf dv

)
vjµ+

(∫ |v|2 − 3

6
f dv

) |v|2 − 3

6
µ.

Several authors have studied weak coercivity estimates for L on E0. Summarising results
from [15, 3, 21, 33, 36], for all −3 ≤ γ ≤ 1, we have

(2.6) 〈Lf, f〉E0 . −‖〈v〉 γ+2
2 Πf‖2E0

− ‖〈v〉 γ
2 ∇̃vΠ(µ

−1/2f)‖2L2 , ∀ f ∈ E0,

where we define the projection Π := I − Π0 onto the orthogonal of ker(L) and we recall that

the anisotropic gradient ∇̃v has been defined in (1.11). Observe that (2.6) does not provide any
spectral gap for the operator L in E0 in the very soft and Coulomb potential case −3 ≤ γ < −2
we are concerned with in the present work, contrarily to the moderately soft and hard potentials
case −2 ≤ γ ≤ 1.

2.2. Factorization of the operator. Using the form (2.2) of the operator Q, we decompose
the linearized Landau operator as L = A0 + B0, where we define

(2.7)
A0f := Q(f, µ) = ∂i{(aij ∗ f)∂jµ+ (bi ∗ f)µ} = (aij ∗ f)∂ijµ− (c ∗ f)µ,
B0f := Q(µ, f) = ∂i{(aij ∗ µ)∂jf + (bi ∗ µ)f} = (aij ∗ µ)∂ijf − (c ∗ µ)f.

Consider a smooth nonnegative function χ ∈ C∞
c (R3) such that 0 ≤ χ(v) ≤ 1, χ(v) ≡ 1 for

|v| ≤ 1 and χ(v) ≡ 0 for |v| > 2. For any R ≥ 1, we define χR(v) := χ(R−1v). Then, we make
the final decomposition of the operator L as L = A+ B, with

(2.8) A := A0 +MχR, B := B0 −MχR,

where M > 0 and R ≥ 1 will be chosen later.
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2.3. Preliminaries. We introduce some convenient classes of weight functions and we state
some preliminaries results that will be useful in the sequel.

We say that a weight function m : R3 → R+ is admissible if

(i) it is a polynomial function, and we write m = 〈v〉k, k ≥ 0;
(ii) or if it is an exponential function, that is m = eκ〈v〉

s

with κ > 0 and s ∈ (0, 2), or with
0 < κ < 1/2 and s = 2.

We denote σ = 0 when m = 〈v〉k and σ = s when m = eκ〈v〉
s

. For two admissible weight
functions m0 and m1, we write m0 ≺ m1 (or m1 ≻ m0) if lim|v|→∞

m0

m1
(v) = 0. Similarly, we

write m0 � m1 (or m1 � m0) if m0 ≺ m1 or m0 = m1 (up to a constant).

We finally define the following functions:

(2.9) ζm(v) :=
1

2

1

m2
∂ij(āijm

2)− c̄ = āij
∂ijm

m
+ āij

∂im

m

∂jm

m
+ 2b̄i

∂im

m
− 1

2
c̄,

(2.10) ζ̃m(v) := āij
∂im

m

∂jm

m
+ b̄i

∂im

m
− 1

2
c̄,

and also

(2.11) ζm,ω(v) := āij
∂ijω

ω
+ āij

∂iω

ω

∂jω

ω
− 2āij

∂iω

ω

∂jm

m
.

We start stating some estimates on the matrix āij . To that purpose, we define

ℓ1(v) =

∫

R3

(
1−

(
v

|v| ·
w

|w|

)2
)
|w|γ+2µ(v − w) dw,

ℓ2(v) =

∫

R3

(
1− 1

2

∣∣∣∣
v

|v| ×
w

|w|

∣∣∣∣
2
)
|w|γ+2µ(v − w) dw,

where × stands for the vector product in R3, and, for −3 < β < 0, we define

Jβ(v) :=

∫

R3

|v − w|βµ(w) dw.

Lemma 2.1. The following properties hold:

(a) The matrix ā(v) has a simple eigenvalue ℓ1(v) > 0 associated with the eigenvector v and a
double eigenvalue ℓ2(v) > 0 associated with the eigenspace v⊥. Moreover, when |v| → +∞,
we have

ℓ1(v) ∼ 2〈v〉γ , ℓ2(v) ∼ 〈v〉γ+2.

(b) The function āij is smooth, more precisely for any multi-index β ∈ N3,

|∂β āij(v)| ≤ Cβ〈v〉γ+2−|β|.

Moreover, there exists a constant K > 0 such that

āij(v)ξiξj = ℓ1(v)|Pvξ|2 + ℓ2(v)|(I − Pv)ξ|2

≥ K{〈v〉γ |Pvξ|2 + 〈v〉γ+2|(I − Pv)ξ|2}.
(c) We have

tr(ā(v)) = ℓ1(v) + 2ℓ2(v) = 2Jγ+2(v) and b̄i(v) = −ℓ1(v) vi.
(d) If |v| > 1, we have

|∂βℓ1(v)| ≤ Cβ〈v〉γ−|β| and |∂βℓ2(v)| ≤ Cβ〈v〉γ+2−|β|.

(e) For any β ∈ (−3, 0), there exists some constant Cβ > 0 such that

|Jβ(v) − 〈v〉β | ≤ Cβ〈v〉β−1/2, ∀ v ∈ R3.



10 K. CARRAPATOSO AND S. MISCHLER

Proof. Item (a) comes from [15, Propositions 2.3 and 2.4], (b) is [21, Lemma 3], (c) is evident
and (d) is [14, Lemma 2.3].

We just then present the proof of (e). On the one hand, for any v ∈ R3, we have

Jβ(v) =

∫

|v∗|≤1

|v∗|βµ(v∗ − v) dv∗ +

∫

|v∗|≥1

|v∗|βµ(v − v∗) dv∗(2.12)

≤ sup
|v∗|≤1

µ(v − v∗)

∫

|v∗|≤1

|v∗|β dv∗ +
∫

|v∗|≥1

µ(v − v∗) dv∗ ≤ C1,

since the two terms are clearly bounded uniformly in v ∈ R3.

On the other hand, for any v ∈ R3, |v| ≥ 1, and for any R > 0, we write

Jβ(v) =

∫

|v∗|≤R

|v∗ − v|βµ(v∗) dv∗ +
∫

|v∗|≥R

|v∗ − v|βµ(v∗) dv∗ = T1 + T2.

For the second term, we have

|T2| ≤
√
µ(R)

∫

|v∗|≥R

|v∗ − v|β
√
µ(v∗) dv∗ ≤ C2 e

−R2/4,

where we have used an estimate very similar to (2.12) in order to bound the integral term. For
the first term and for |v| > R, we have

T1 ≥
∫

|v∗|≤R

(|v|+ |v∗|)βµ(v∗) dv∗

≥
∫

|v∗|≤R

(|v|+R)βµ(v∗) dv∗ ≥ (|v|+R)β(1− C3e
−R2/4),

and in a similar way, we have

T1 ≤ ||v| −R|β.
We conclude by making the choice R := |v|1/2. �

Lemma 2.2. Let m be an admissible weight function such that m ≻ 〈v〉(γ+3)/2.

(1) If σ = 0 and ω = 〈v〉α is a polynomial weight function such that ω ≺ m〈v〉−(γ+3)/2, then

lim sup
|v|→∞

ζm(v)〈v〉−γ = lim sup
|v|→∞

ζ̃m(v)〈v〉−γ ≤ 2{(γ + 3)/2− k},

lim sup
|v|→∞

[
ζ̃m(v) + ζm,ω(v)

]
〈v〉−γ ≤ 2{(γ + 3)/2 + α− k}.

(2) If σ ∈ (0, 2), then

lim sup
|v|→∞

ζm(v)〈v〉−σ−γ = lim sup
|v|→∞

ζ̃m(v)〈v〉−σ−γ ≤ −2κs.

(3) If σ = 2, then

lim sup
|v|→+∞

ζm(v)〈v〉−2−γ ≤ 4κ(4κ− 1),

lim sup
|v|→+∞

ζ̃m(v)〈v〉−2−γ ≤ 4κ(2κ− 1).

Proof. We introduce the notation

J̃γ(v) =

{
(γ + 3)Jγ(v) if γ ∈ (−3,−2),

4πµ(v) if γ = −3,
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so that c̄ = −2J̃γ . We observe from Lemma 2.1 that, when |v| → +∞, we have

(2.13)
1

2
ℓ1(v) ∼ ℓ2(v)|v|−2 ∼ 〈v〉γ and J̃γ(v) = (γ + 3) 〈v〉γ +O(〈v〉γ−1/2).

Step 1. Polynomial weight. Consider m = 〈v〉k. From definition (2.1)-(2.4) and Lemma 2.1, we
obtain

āij
∂ijm

m
= (δij āij) k〈v〉−2 + (āijvivj) k(k − 2)〈v〉−4

= 2ℓ2(v) k〈v〉−2 + ℓ1(v) k〈v〉−2 + ℓ1(v) k(k − 2)|v|2〈v〉−4,

Moreover,

āij
∂im

m

∂jm

m
= (āijvivj) k

2〈v〉−4 = ℓ1(v) k
2|v|2〈v〉−4,

and also, using the fact that b̄i(v) = −ℓ1(v)vi from Lemma 2.1,

b̄i
∂im

m
= −ℓ1(v) k|v|2〈v〉−2.

It follows that

ζm(v) = 2kℓ2(v)〈v〉−2 + kℓ1(v)〈v〉−2 + k(k − 2) ℓ1(v) |v|2〈v〉−4

+ k2 ℓ1(v) |v|2〈v〉−4 − 2k ℓ1(v) |v|2〈v〉−2 + J̃γ(v),

as well as

ζ̃m(v) = k2ℓ1(v)|v|2〈v〉−4 − kℓ1(v)|v|2〈v〉−2 + J̃γ(v).

Thanks to (2.13), the dominant terms are of order 〈v〉γ . We then obtain

lim sup
|v|→+∞

ζm(v)〈v〉−γ = lim sup
|v|→+∞

ζ̃m(v)〈v〉−γ ≤ 2{(γ + 3)/2− k},

from which we conclude the proof of the first part of point (1). The estimate of ζm,ω is similar
as above, and thus we omit it.

Step 2. Exponential weight. For m = eκ〈v〉
s

, we have

ζm(v) = 2κs ℓ2(v)〈v〉s−2 + κs ℓ1(v)〈v〉s−2 + κs(s− 2) ℓ1(v)|v|2〈v〉s−4

+ 2κ2s2 ℓ1(v)|v|2〈v〉2s−4 − 2κs ℓ1(v)|v|2〈v〉s−2 + J̃γ(v)

and also

ζ̃m(v) = −κsℓ1(v)|v|2〈v〉s−2 + κ2s2ℓ1(v)|v|2〈v〉2s−4 + J̃γ(v).

In any cases 0 < s ≤ 2, the dominant terms are of order 〈v〉γ+s, and we easily conclude. �

We conclude this section with a remark about the weighted spaces we have defined in (1.6).
For any admissible weight function m we easily obtain

(2.14) ‖〈v〉(σ−1)+ mf‖2L2 + ‖∇v(mf)‖2L2 ∼ ‖mf‖2L2 + ‖m∇vf‖2L2,

so that in particular ‖f‖2H1(m) ∼ ‖f‖2L2(m) + ‖∇vf‖2L2(m) when σ ∈ [0, 1].
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2.4. Dissipative properties of B. We prove in this section weakly dissipative properties for
the operator B. These estimates are similar to the estimates established in [12, 14] for −2 ≤
γ ≤ 1, in which case it is proven that the operator B − α is dissipative for some α < 0.

Lemma 2.3. Let m be an admissible weight function such that m ≻ 〈v〉(γ+3)/2 and we recall
that we have defined σ = 0 when m is polynomial and σ = s when m is exponential. There exist
M,R > 0 large enough such that B is weakly dissipative in L2(m) in the sense:

• If m ≺ µ−1/2, there holds

(2.15) 〈Bf, f〉L2(m) . −‖〈v〉 γ
2 ∇̃vf‖2L2(m) − ‖〈v〉 γ

2 ∇̃v(mf)‖2L2 − ‖〈v〉 γ+σ
2 f‖2L2(m).

• If µ−1/2 � m ≺ µ−1, there holds

(2.16) 〈Bf, f〉L2(m) . −‖〈v〉 γ
2 ∇̃v(mf)‖2L2 − ‖〈v〉 γ+σ

2 f‖2L2(m),

Proof. From the definition (2.7)-(2.8) of B, we have
∫
(Bf) f m2 =

∫
āij∂ijf f m

2 −
∫
c̄ f2m2 −

∫
MχR f

2m2

=: T1 + T2 + T3.

Let us compute the term T1. Writing g = mf and thus ∂ijf fm
2 = ∂ij(m

−1g) gm, an integration
by parts yields

T1 = −
∫ {

b̄jgm+ āij∂igm+ āijg∂im
}
∂j(m

−1g).

Using that ∂j(m
−1g) = m−1∂jg −m−2∂jmg in the last equation, we first get

T1 = −
∫
āij∂ig∂jg +

∫ {
āij

∂im

m

∂jm

m
+ b̄j

∂jm

m

}
g2 −

∫
b̄jg∂jg,

and thanks to another integration by parts for the last term, we finally obtain
∫
(Bf) f m2 = −

∫
āij∂i(mf)∂j(mf) +

∫
{ζ̃m −MχR}f2m2.

In a similar (and even simpler) way, we can also obtain
∫
(Bf) f m2 = −

∫
āij∂if∂jf m

2 +

∫
{ζm −MχR}f2m2.

Thanks to Lemma 2.2, we may choose M,R > 0 large enough such that

ζm(v) −MχR(v) . −〈v〉γ+σ, ζ̃m(v)−MχR(v) . −〈v〉γ+σ, if m ≺ µ−1/2,

and

ζ̃m(v)−MχR(v) . −〈v〉γ+σ, if µ−1/2 � m ≺ µ−1,

and we then conclude using the coercivity of āij from Lemma 2.1. �

For any admissible weight function m, we define the operator Bmg = mB(m−1g), which
writes

(2.17)
Bmg = āij∂ijg − 2āij

∂im

m
∂jg +

{
2āij

∂im

m

∂jm

m
− āij

∂ijm

m
− c̄−MχR

}
g

=: āij∂ijg + βj∂jg + (δ −MχR)g.

We then define its formal adjoint operator B∗
m that verifies

(2.18) B∗
mφ = āij∂ijφ+ 2

{
āij

∂im

m
+ b̄j

}
∂jφ+

{
āij

∂ijm

m
+ 2b̄i

∂im

m
−MχR

}
φ.
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Observe that if f satisfies the equation ∂tf = Bf then g = mf satisfies ∂tg = Bmg, and also
that 〈Bf, f〉L2(m) = 〈Bmg, g〉L2 . Moreover there holds by duality

∀ t ≥ 0, 〈SBm(t)g, φ〉L2 = 〈g, SB∗
m
(t)φ〉L2 ,

where we recall that SBm(t) is the semigroup generated by Bm and SB∗
m
(t) the semigroup

generated by B∗
m.

We now prove weakly dissipative properties of the adjoint B∗
m. Here, we restrict ourselves

to the case of a polynomial weight function in order to simplify the presentation and because
it will be sufficient for our purpose. Indeed, the final estimates we will deduce of the analysis
we are starting here will be used on “perturbation terms” and we will not destroy the possible
faster rate of decay we get for stronger weight functions.

Lemma 2.4. Let m and ω be two admissible polynomial weight functions such that m ≻
〈v〉(γ+3)/2 and 1 � ω ≺ m 〈v〉−(γ+3)/2.

(1) We can choose M,R > 0, large enough, such that B∗
m is weakly dissipative in L2(ω) in

the following sense:

(2.19) 〈B∗
mφ, φ〉L2(ω) . −‖φ‖2L2(ω〈v〉γ/2) − ‖∇̃vφ‖2L2(ω〈v〉γ/2).

(2) For any η > 0, we define the equivalent norm ‖ · ‖H̃1(ω) on H1(ω), and the associated

scalar product 〈·, ·〉H̃1(ω), by

‖φ‖2
H̃1(ω)

:= ‖φ‖2L2(ω) + η‖∇vφ‖2L2(ω).

We can choose M,R, η > 0, such that B∗
m is weakly dissipative in H1(ω) in the following sense:

(2.20) 〈B∗
mφ, φ〉H̃1(ω) . −‖φ‖2

H̃1(ω〈v〉γ/2)
− ‖∇̃vφ‖2L2(ω〈v〉γ/2) − η‖∇̃v(∇vφ)‖2L2(ω〈v〉γ/2).

Proof. We split the proof into three steps. In what follows we shall use the equivalence (2.14)
since ω is a polynomial weight function.

Step 1. We have

∫
(B∗
mφ)φω

2 =

∫ (
āij

∂ijm

m
+ 2b̄j

∂jm

m
−M χR

)
φ2 ω2

+

∫ (
āij

∂jm

m
+ b̄i

)
∂i(φ

2)ω2 +

∫
āij∂ijφφω

2

=: I1 + I2 + I3.

Performing one integration by parts, we obtain

I2 = −
∫
∂i

(
āij

∂jm

m
+ b̄i

)
φ2 ω2 −

∫ (
āij

∂jm

m
+ b̄i

)
2ω∂iω φ

2

=

∫ {
− āij

∂ijm

m
+ āij

∂im

m

∂jm

m
− b̄j

∂jm

m
− c̄

}
φ2 ω2

−
∫

2

{
āij

∂jm

m

∂iω

ω
+ b̄i

∂jω

ω

}
φ2 ω2.
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Using that ∂ijφφ = 1
2∂ij(φ

2)− ∂iφ∂jφ, it follows

I3 = −
∫
āij∂iφ∂jφω

2 +
1

2

∫
∂ij(āijω

2)φ2

= −
∫
āij∂iφ∂jφω

2 +
1

2

∫
∂i(b̄iω

2 + āij2ω∂jω)φ
2

= −
∫
āij∂iφ∂jφω

2 +
1

2

∫ {
c̄+ 4b̄i

∂iω

ω
+ 2āij

∂iω

ω

∂jω

ω
+ 2āij

∂ijω

ω

}
φ2 ω2.

Finally, we get

(2.21)

∫
(B∗
mφ)φω

2 = −
∫
āij∂iφ∂jφω

2 +

∫
{ζ̃m + ζm,ω −MχR}φ2 ω2

. −‖〈v〉 γ
2 ∇̃vφ‖2L2(ω) − ‖〈v〉 γ

2 φ‖2L2(ω)

by choosing M,R > 0 large enough and using that ζ̃m(v) + ζm,ω(v)−MχR(v) . −〈v〉γ thanks
to Lemma 2.2. That completes the proof of point (1).

Step 2. Now, we introduce the notation φα := ∂αv φ where α ∈ N3 and |α| = 1. There holds

∂αv (B∗
mφ) = B∗

mφα + ∂αv

{
āij

∂ijm

m
+ 2b̄j

∂jm

m
−M χR

}
φ+ 2∂αv

{
āij

∂jm

m
+ b̄i

}
∂iφ

+ ∂αv āij∂ijφ,

which implies that
∫
∂αv (B∗

mφ)φα ω
2 =

∫
(B∗
mφα)φα ω

2 +

∫
∂αv

{
āij

∂ijm

m
+ 2b̄j

∂jm

m
−M χR

}
φφα ω

2

+ 2

∫
∂αv

{
āij

∂jm

m
+ b̄i

}
∂iφφα ω

2 +

∫
(∂αv āij)(∂ijφ)φα ω

2

=: T1 + T2 + T3 + T4.

Using Step 1 of the proof, we have, for some constant λ > 0,

T1 ≤ −λ‖〈v〉 γ
2 ∇̃vφα‖2L2(ω) +

∫
{ζ̃m + ζm,ω −MχR}φ2α ω2.

For the term T2, we have straightforwardly from Lemma 2.1

T2 .

∫
〈v〉γ−1|φ| |∇vφ|ω2 ≤ ‖φ‖L2(ω 〈v〉(γ−1)/2)‖∇vφ‖L2(ω 〈v〉(γ−1)/2),

and similarly

T3 .

∫
〈v〉γ |∇vφ|2 ω2 = ‖∇vφ‖2L2(ω 〈v〉γ/2).

For the last term, we use one first integration by part, in order to get

T4 = −
∫
(∂αv b̄i)(∂iφ)φα ω

2 −
∫
(∂αv āij)(∂iφ) ∂jφα ω

2

−
∫
(∂αv āij)(∂iφ)φα ∂jω

2 = U1 + U2 + U3.

In the above expression, the first term and last term can be bounded exactly as T3. For the
middle term, we perform one more integration with respect to the ∂α derivative, and we get

U2 =

∫
(∆v āij)∂iφ∂jφω

2 +

∫
(∂αv āij)(∂iφα) ∂jφω

2 +

∫
(∂αv āij)(∂iφ) ∂jφ∂

α
v ω

2.
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We recognize the middle term as −U2, from what we deduce

U2 =
1

2

∫
(∆v āij)∂iφ∂jφω

2 +
1

2

∫
(∂αv āij)(∂iφ) ∂jφ∂

α
v ω

2

. ‖∇vφ‖2L2(ω〈v〉γ/2).

All the estimates together, we have established, for some constants λ,C > 0,

(2.22) 〈∇v(B∗
mφ),∇vφ〉L2(ω) ≤ −λ‖∇̃v(∇vφ)‖2L2(ω〈v〉γ/2) + C‖φ‖2H1(ω〈v〉γ/2).

Step 3. We gather estimates (2.21) and (2.22), we observe that

‖φ‖2H1(ω〈v〉γ/2) . ‖φ‖2L2(ω〈v〉γ/2) + ‖∇̃vφ‖2L2(ω〈v〉γ/2)

and we conclude choosing η > 0 small enough. �

2.5. Estimates on the operator A. We prove boundedness properties for the operator A.

Lemma 2.5. For any θ ∈ (0, 1), ℓ = 0, 1 and p ∈ [1,∞], there holds A ∈ B(W ℓ,p,W ℓ,p(µ−θ)).

Proof. We only prove the case ℓ = 0, the case ℓ = 1 being similar. We only investigate A0 since
A = A0 +MχR, and we recall that A0g = (aij ∗ g)∂ijµ+(c ∗ g)µ. We decompose a and c into a
bounded part and a singular part. More precisely, we split aij(z) = aij(z)1|z|>1+aij(z)1|z|≤1 =:

a+ij(z) + a−ij(z), and similarly for c(z).

Assume first γ ∈ (−3,−2). For the bounded parts a+ and c+, we easily have

|(a+ij ∗ g)(v)| + |(c+ ∗ g)(v)| . ‖g‖L1,

and therefore
‖(a+ij ∗ g)∂ijµ‖Lp(µ−θ) + ‖(c+ ∗ g)µ‖Lp(µ−θ) . ‖g‖L1.

We now turn to the singular terms. We first have

‖(a−ij ∗ g)∂ijµ‖L1(µ−θ) .

∫

v∗

|g(v∗)|
(∫

v

|v − v∗|(γ+2) 1|v−v∗|≤1 µ
1−θ(v)

)
. ‖g‖L1

and similarly,

‖(c− ∗ g)µ‖L1(µ−θ) .

∫

v∗

|g(v∗)|
(∫

v

|v − v∗|γ 1|v−v∗|≤1 µ
1−θ(v)

)
. ‖g‖L1.

As a consequence, we already obtain that A is a bounded operator from L1 → L1(µ−θ). More-
over, we can estimate

|(a−ij ∗ g)(v)| . ‖g‖L∞

(∫
|v − v∗|(γ+2) 1|v−v∗|≤1 dv∗

)
. ‖g‖L∞

and in a similar way

|(c− ∗ g)(v)| . ‖g‖L∞

(∫
|v − v∗|γ 1|v−v∗|≤1 dv∗

)
. ‖g‖L∞,

which imply

‖(a−ij ∗ g)∂ijµ‖L∞(µ−θ) . ‖g‖L∞, ‖(c− ∗ g)µ‖L∞(µ−θ) . ‖g‖L∞.

These estimates prove that A is bounded from L∞ → L∞(µ−θ). We can then conclude to the
boundedness of A for any p ∈ [1,∞] by Riesz-Thorin interpolation theorem.

Assume now γ = −3. In that case the term (aij ∗ g)∂ijµ can be treated exactly in the same
way as above, but now we have c = −δ0 and then c ∗ g = −g. Therefore, for any p ∈ [1,∞],

‖(c ∗ g)µ‖Lp(µ−θ) = ‖gµ1−θ‖Lp . ‖g‖Lp ,

which completes the proof. �
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3. Semigroup decay

This section is devoted to the proof of decay and regularity estimates for the linearized
semigroup SL. Given two admissible weight functions m0 ≺ m1, we define

Θm1,m0(t) = 〈t〉−
(k1−k∗)

|γ| , for any k∗ ∈ (k0, k1), if m1 = 〈v〉k1 and m0 = 〈v〉k0 ,
and

Θm1,m0(t) = e−λ t
s

|γ|
, for some λ > 0, if m1 = eκ〈v〉

s

.

In order to avoid misleading, it is worth emphasizing that when m1 is a polynomial weight,
Θm1,m0 refers to a class of functions, whereas for m1 an exponential weight, Θm1,m0 stands for
a fixed function. That somehow usual convention greatly shorten notations and simplify the
exposition. As a consequence, we also emphasize that in both cases, for any 0 < s < t, we have

Θ−1
m1,m0

(t) . Θ−1
m1,m0

(t− s)Θ−1
m1,m0

(s).

Here and below, we define the time convolution product S1 ∗ S2 of two functions Si defined
on the half real line R+ by

(S1 ∗ S2)(t) =

∫ t

0

S1(t− s)S2(s) ds,

and we also define S0 = I and S(∗n) = S ∗ S(∗(n−1)) for any n ≥ 1.

3.1. Decay estimates for SB. We first prove decay estimates for the semigroup SB.

For any admissible weight function m, we define the space H1
∗ (m) associated to the norm

(3.1) ‖f‖2H1
∗(m) := ‖f‖2L2(m〈v〉(γ+σ)/2) + ‖∇̃v(mf)‖2L2(〈v〉γ/2),

and we easily observe that H1
∗ (m〈v〉|γ|/2) ⊂ H1(m) ⊂ H1

∗ (m). When furthermore m is a
polynomial weight function, we define the negative Sobolev spaceH−1

∗ (m) in duality withH1
∗ (m)

with respect to the duality product on L2(m), more precisely

(3.2) ‖f‖H−1
∗ (m) := sup

‖φ‖H1
∗(m)≤1

〈f, φ〉L2(m) = sup
‖φ‖H1

∗(m)≤1

〈mf,mφ〉L2 ,

and observe that ‖f‖H−1
∗ (m) = ‖mf‖H−1

∗
.

Lemma 3.1. Let m0,m1 be two admissible weight functions such that m1 ≻ m0 ≻ 〈v〉(γ+3)/2.
For any t ≥ 0, there holds

(3.3) ‖SB(t)‖L2(m1)→L2(m0) . Θm1,m0(t).

Let m0,m1,m be admissible polynomial weight functions such that m � m1 ≻ m0 ≻ 〈v〉(γ+3)/2.
For any t ≥ 0, there holds

(3.4) ‖SB∗
m
(t)‖L2(ω1)→L2(ω0) . Θm1,m0(t),

where ω1 := m/m0 and ω0 := m/m1.

Proof. We denote X(m) = L2(m). We observe that for m̃0 := m0〈v〉(γ+σ)/2 ≺ m0 ≺ m1 (where
we recall that σ = 0 if m0 is a polynomial function and σ = s if m0 is an exponential function),
there is a positive constant C = C(m0,m1) such that for any R ∈ (0,∞) we have

m̃2
0

m2
0

(R)‖f‖2X(m0)
≤ ‖f‖2X(m̃0)

+ C
m̃2

0

m2
1

(R)‖f‖2X(m1)
,

where we also denote by m the function R 7→ m(v) for |v| = R. We write that estimate as

(3.5) εR‖f‖2X(m0)
≤ ‖f‖2X(m̃0)

+ CθR‖f‖2X(m1)
,
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with

εR :=
m̃2

0

m2
0

(R), θR :=
m̃2

0

m2
1

(R), εR,
θR
εR

→ 0 as R → ∞.

Let us denote fB(t) = SB(t)f0 for any t ≥ 0. Thanks to (2.15) for the weight m1, we have

‖fB(t)‖X(m1) ≤ ‖f0‖X(m1), ∀ t ≥ 0.

Writing now (2.15) for m0, using the interpolation (3.5) and the above estimate, for any R > 0,
we get ( for some positive constants λ,C > 0)

d

dt
‖fB‖2X(m0)

≤ −λ‖fB‖2X(m0〈v〉(γ+σ)/2)

≤ −λεR‖fB‖2X(m0)
+ CθR‖fB‖2X(m1)

≤ −λεR‖fB‖2X(m0)
+ CθR‖f0‖2X(m1)

,

with εR = 〈R〉γ+σ and θR/εR = m2
0(R)/m

2
1(R). Integrating that last differential inequality, we

obtain

‖fB(t)‖2X(m0)
. e−λεRt‖f0‖2X(m0)

+
θR
εR

‖f0‖2X(m1)

. Γ2
m1,m0

(t) ‖f0‖2X(m1)
,

with

Γ2
m1,m0

(t) := inf
R>0

(
e−λεRt +

θR
εR

)
.

We can complete the proof of (3.3) by establishing Γm1,m0(t) . Θm1,m0(t) for the different
choices of weight functions m0 ≺ m1.

Case 1: m0 = 〈v〉k0 and m1 = 〈v〉k1 with k0 < k1. We have

Γ2
m1,m0

(t) = inf
R>0

(
e−λ〈R〉γt + 〈R〉2(k0−k1)

)
.

We take 〈R〉 = (〈t〉θ(t))1/|γ| with θ(t) := [log(1 + t)]−2 and we get

Γ2
m1,m0

(t) ≤ e−λθ(t)
−1

+ [log(1 + t)]4(k1−k0)/|γ| 〈t〉−2(k1−k0)/|γ|,

from which we easily obtain Γm1,m0(t) . Θm1,m0(t).

Case 2: m0 = eκ0〈v〉
s

and m1 = eκ1〈v〉
s

with κ0 < κ1. We have

Γ2
m1,m0

(t) = inf
R>0

(
e−λ〈R〉γ+st + e2(κ0−κ1)〈R〉s

)
.

We take 〈R〉 = t1/|γ| and we get

Γ2
m1,m0

(t) ≤ e−λt
s/|γ|

+ e−2(κ1−κ0)t
s/|γ|

,

which is nothing but Θ2
m1,m0

(t). The general case m1 ≻ m0 follows from that estimate, and the
proof of (3.3) is complete.

Case 3: m0 = 〈v〉k0 and m1 = eκ1〈v〉
s

. We define m = eκ〈v〉
s

with κ < κ1 so that m0 ≺ m ≺ m1.
Using Case 2 above with m and m1 we obtain

‖fB(t)‖X(m0) ≤ ‖fB(t)‖X(m) . Θm1,m(t)‖f0‖X(m1) . e−λt
s/|γ|‖f0‖X(m1),

and conclude with the estimate of Case 2 above.

Case 4: m0 = eκ0〈v〉
s0

and m1 = eκ1〈v〉
s

with s0 < s. We first define m = eκ〈v〉
s

with κ < κ1, so
that m0 ≺ m ≺ m1, and we argue as in Case 3.
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Estimate (3.4) can be proven similarly as above by using the estimates of Lemma 2.4, where
we remark that in this case we have Θω1,ω0(t) = Θm1,m0(t), because m0,m1,m are polynomial
weight functions and ω1 = m/m0, ω0 = m/m1. �

3.2. Regularity properties of SB. We now prove that the semigroup SB enjoys some regu-
larization properties.

Lemma 3.2. Let m1,m be admissible polynomial weight functions such that 〈v〉3/2 ≺ m1 ≺ m.
Then the following regularization estimate holds

(3.6) ‖SB(t)‖H−1
∗ (m)→L2(m1〈v〉γ/2) .

Θm,m1(t)

t1/2 ∧ 1
, ∀ t > 0.

Proof. We define ω0 := 1, ω1 := 〈v〉|γ|/2 and ω := m/(m1〈v〉γ/2), so that 1 ≺ ω ≺ m〈v〉−(γ+3)/2.
We write φt := SB∗

m
(t)φ for a giving function φ ∈ L2(ω1). Thanks to (2.19) and (2.20) together

with H1
∗ (ω1) ⊂ H1(ω0), we have for some constant λ > 0

d

dt

(
‖φt‖2L2(ω1)

+ ηt‖φt‖2H̃1(ω0)

)
≤ −λ‖φt‖2H1

∗(ω1)
+ η‖φt‖2H̃1(ω0)

≤ 0,

for η > 0 small enough. We deduce that

(3.7) ηt ‖φt‖2H1(ω0)
. ‖φ‖2L2(ω1)

, ∀ t ≥ 0.

For large values of time t ≥ 1, we can use (3.7) and (3.4) to obtain

‖φt‖H1(ω0) . ‖φt−1‖L2(ω1) . Θm,m1(t− 1)‖φ‖L2(ω) . Θm,m1(t)‖φ‖L2(ω).

Both estimates together with H1(ω0) ⊂ H1
∗ (ω0), we have proved

‖SB∗
m
(t)φ‖H1

∗(ω0) .
Θm,m1(t)

t1/2 ∧ 1
‖φ‖L2(ω) ∀ t > 0.

We then get (3.6) by duality. More precisely, recalling that that

∀ t ≥ 0, mSB(t)f = SBm(t)g, 〈SBm(t)g, φ〉L2 = 〈g, SB∗
m
(t)φ〉L2 ,

we first have ‖SB(t)f‖L2(m1〈v〉γ/2) = ‖ω−1SBm(t)g‖L2 and then we can compute

‖ω−1SBm(t)g‖L2 = sup
‖ψ‖L2≤1

〈SBm(t)g, ω−1ψ〉L2

= sup
‖φ‖L2(ω)≤1

〈g, SB∗
m
(t)φ〉L2

≤ sup
‖φ‖L2(ω)≤1

‖g‖H−1
∗ (ω0)

‖SB∗
m
(t)φ‖H1

∗(ω0)

. sup
‖φ‖L2(ω)≤1

Θm,m1(t)

t1/2 ∧ 1
‖g‖H−1

∗ (ω0)
‖φ‖L2(ω),

which completes the proof of (3.6) by coming back to the function f = m−1g. �

3.3. Decay estimates for SL. We first prove decay estimates in a family of small reference
spaces included in L2(µ−1/2).

Proposition 3.3. For any admissible weight ν such that µ−1/2 ≺ ν ≺ µ−1, there holds

∀ t ≥ 0, ‖SL(t)Π‖L2(ν)→L2(µ−1/2) . Θν,µ−1/2(t) = Ce−λt
2

|γ|
.

Proof. Let us denote for simplicity E0 = L2(µ−1/2) ⊃ E1 = L2(ν). We already know from (2.6)
and (2.15) that

t 7→ ‖SL(t)Π‖E0→E0 , t 7→ ‖SB(t)‖E1→E1 ∈ L∞(R+).
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We then write, thanks to Duhamel’s formula,

SLΠ = SBΠ+ SBA ∗ SLΠ,

and using Lemma 2.5 and Lemma 3.1, we obtain that t 7→ ‖SBA(t)‖E0→E1 ∈ L1(R+), whence

(3.8) ‖SL(t)Π‖E1→E1 . ‖SB(t)‖E1→E1 + ‖SBA(t)‖E0→E1 ∗ ‖SL(t)Π‖E1→E0 ∈ L∞
t (R+).

Defining ΠfL(t) = ΠSL(t)f0 and using (2.6), (3.8) and the same interpolation argument as
in the proof of Lemma 3.1, we obtain

d

dt
‖ΠfL(t)‖2E0

≤ −λ‖〈v〉(γ+2)/2ΠfL(t)‖2E0

≤ −λεR‖ΠfL(t)‖2E0
+ CθR‖ΠSL(t)f0‖2E1

≤ −λεR‖ΠfL(t)‖2E0
+ CθR‖Πf0‖2E1

,

with εR = 〈R〉γ+2 and θR/εR = µ−1/2(R)/ν(R). We conclude as in the proof of Lemma 3.1. �

As an immediate consequence, we prove uniform in time bounds for the semigroup SL in
large spaces.

Lemma 3.4. For any admissible weight function m ≻ 〈v〉 γ+3
2 , there holds

t 7→ ‖SL(t)Π‖L2(m)→L2(m) ∈ L∞(R+).

Proof. Let us denote E = L2(µ−1/2), E1 = L2(ν) and X = L2(m), with µ−1/2 ≺ ν ≺ µ−1. We

only need to treat the case 〈v〉 γ+3
2 ≺ m ≺ µ−1/2 so that E ⊂ X (the other cases have already

been treated in (3.8)). We first write

SLΠ = ΠSB + SLΠ ∗ ASB,

and observe that t 7→ ‖SB(t)‖X→X ∈ L∞(R+) from (2.15) and t 7→ ‖SL(t)Π‖E1→E ∈ L1(R+)
from Proposition 3.3. Moreover, Lemma 2.5 and Lemma 3.1 yield t 7→ ‖ASB(t)‖X→E1 ∈
L∞(R+), so that

‖SL(t)Π‖X→X . ‖SB(t)‖X→X + ‖SL(t)Π‖E1→E→X ∗ ‖ASB(t)‖X→E1 ∈ L∞
t (R+),

and the proof is complete. �

We can now prove that SL inherits the decay and regularity estimates already established for
the semigroup SB.

Theorem 3.5. Let m0,m1 be two admissible weight functions such that 〈v〉(γ+3)/2 ≺ m0 ≺ m1

and m0 � µ−1/2. There holds

(3.9) ‖SL(t)Π‖L2(m1)→L2(m0) . Θm1,m0(t), ∀ t ≥ 0.

Let m0,m1 be two admissible polynomial weight functions such that 〈v〉3/2 ≺ m0 ≺ m1. There
holds

(3.10) ‖SL(t)Π‖H−1
∗ (m1)→L2(m0〈v〉γ/2) .

Θm1,m0(t)

t1/2 ∧ 1
, ∀ t > 0.

Proof. We fix an admissible weight function ν such that µ−1/2 ≺ ν ≺ µ−1 and ν ≻ m1, and we
split the proof into two steps.

Step 1. We denote X0 = L2(m0), X1 = L2(m1), E0 = L2(µ−1/2) and E1 = L2(ν). We write
the factorization identity

SLΠ = ΠSB + SLΠ ∗ ASB,

which implies

Θ−1
m1,m0

‖SLΠ‖X1→X0 . Θ−1
m1,m0

‖SBΠ‖X1→X0 +
(
Θ−1
m1,m0

‖ΠSL‖E1→X0 ∗Θ−1
m1,m0

‖ASB‖X1→E1

)
.
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Thanks to Lemma 3.1, Proposition 3.3 and Lemma 2.5, we have

t 7→ Θ−1
m1,m0

(t) ‖SB(t)Π‖X1→X0 ∈ L∞(R+),

t 7→ Θ−1
m1,m0

(t) ‖ΠSL(t)‖E1→E0→X0 ∈ L1(R+),

t 7→ Θ−1
m1,m0

(t) ‖ASB(t)‖X1→X0→E1 ∈ L∞(R+),

which concludes the proof of (3.9).

Step 2. Denote Z1 = H−1
∗ (m1) and X̃0 = L2(m0〈v〉γ/2). Writing the factorization identity as

in Step 1 and denoting Θ̃m1,m0(t) = Θm1,m0(t)/(t
1/2 ∧ 1), we have

Θ̃−1
m1,m0

‖SLΠ‖Z1→X̃0
. Θ̃−1

m1,m0
‖SB‖Z1→X̃0

+
(
Θ̃−1
m1,m0

‖SLΠ‖E1→X̃0
∗ Θ̃−1

m1,m0
‖ASB‖Z1→E1

)
.

Thanks to Lemma 2.5, Lemma 3.2, and Proposition 3.3, we deduce

t 7→ Θ̃−1
m1,m0

(t) ‖SB(t)Π‖Z1→X̃0
∈ L∞(R+),

t 7→ Θ̃−1
m1,m0

(t) ‖ΠSL(t)‖E1→E0→X̃0
∈ L1(R+),

t 7→ Θ̃−1
m1,m0

(t) ‖ASB(t)‖Z1→X̃0→E1
∈ L∞(R+),

which implies (3.10). �

3.4. Weak dissipativity of L. As a final step, we establish that L is weakly dissipative in
some appropriate spaces. In order to do that, we define the spaces

(3.11) X := L2(m), Y := H1
∗ (m), Z := H−1

∗ (m), X0 := L2,

where we recall that H1
∗ (m) and H−1

∗ (m) have been introduced in (3.1) and (3.2). For any
η > 0, we also define the norm ||| · |||X on ΠX by

(3.12) |||f |||2X := η‖f‖2X +

∫ ∞

0

‖SL(τ)f‖2X0
dτ,

and we denote by 〈〈·, ·〉〉X the associated duality product.

Proposition 3.6. Let m be an admissible weight function such that m ≻ 〈v〉 3
2 . The norm ||| · |||X

is equivalent to ‖ · ‖X on ΠX , and, moreover, there exists η > 0 small enough such that

(3.13)
d

dt
|||SL(t)f |||2X . −‖SL(t)f‖2Y , ∀ f ∈ ΠX.

Proof. We easily observe that, thanks to Theorem 3.5,
∫ ∞

0

‖SL(τ)f‖2X0
dτ . ‖f‖2X

∫ ∞

0

Θ2(τ) dτ,

for some decay function Θ ∈ L2(R+) under the condition m ≻ 〈v〉3/2, thus ||| · |||X is equivalent
to ‖ · ‖X on ΠX . Now denote fL(t) = SL(t)f0, f0 ∈ ΠX , so that fL(t) ∈ ΠX for any t ≥ 0,
recall that L = A+ B and write

1

2

d

dt
|||fL(t)|||2X = η〈BfL(t), fL(t)〉X + η〈AfL(t), fL(t)〉X +

1

2

∫ ∞

0

d

dτ
‖SL(τ)fL(t)‖2X0

dτ.

Thanks to Lemma 2.3 and Lemma 2.5, we have

η〈BfL(t), fL(t)〉X ≤ −ηK ′‖fL(t)‖2Y , η〈AfL(t), fL(t)〉X ≤ ηC‖fL(t)‖2X0
.

Moreover, for the last term, we have
∫ ∞

0

d

dτ
‖SL(τ)fL(t)‖2X0

dτ = lim
τ→∞

‖SL(τ)fL(t)‖2X0
− ‖fL(t)‖2X0

= −‖fL(t)‖2X0
,
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where we have used

∀ t ≥ 0, ‖SL(τ)fL(t)‖X0 ≤ CΘm(τ)‖f0‖X with lim
τ→∞

Θm(τ) = 0,

thanks to Lemma 3.4 and Theorem 3.5. We conclude the proof of (3.13) gathering previous
estimates and taking η > 0 small enough. �

3.5. Summarizing the decay and dissipativity estimates. We summarize the set of in-
formation we have established in this section and that we will use in order to get our main
existence, uniqueness and stability result for the nonlinear equation in Section 5 (in the spa-
tially homogeneous case). Consider the spaces defined in (3.11).

Corollary 3.7. Consider an admissible weight function m such that m ≻ 〈v〉2+3/2. With the
above assumptions and notation, there exists η > 0 such that the norm ||| · |||X defined in (3.12)
is equivalent to the initial norm on ΠX and

〈〈LΠf,Πf〉〉X . −‖Πf‖2Y , ∀ f ∈ XL
1 ,(3.14)

t 7→ ‖SL(t)Π‖Y→X0 ‖SL(t)Π‖Z→X0 ∈ L1(R+),(3.15)

where we recall that XL
1 is the domain of L when acting on X.

It is worth observing again that the polynomial decay rate (3.10) in Theorem 3.5 has been
established in polynomial weighted Sobolev spaces and thus immediately extends with same
decay rate to exponential weighted Sobolev spaces. That remark is used in the proof of the
second estimate in (3.15) which is valid for any (polynomial or not) admissible weight function.

Proof. Using the identity
1

2

d

dt
|||SL(t)Πf |||2X = 〈〈LΠf,Πf〉〉X ,

we see that estimate (3.14) is just a reformulation of (3.13) in Proposition 3.6.
We now prove estimate (3.15). We fix admissible polynomial weight functions m0 and m1

such that 〈v〉(γ+3)/2 ≺ m0 ≺ m1 � 〈v〉γ/2m. Then estimate (3.9) in Theorem 3.5 and the
embeddings L2(m0) ⊂ X0 and Y ⊂ L2(m1) imply

‖SL(t)Π‖Y→X0 . Θm1,m0(t), ∀t ≥ 0.

Now consider admissible polynomial weight functionsm′
0 andm

′
1 so that 〈v〉3/2 ≺ m′

0 ≺ m′
1 � m.

Thanks to estimate (3.10) in Theorem 3.5 together with the embeddings L2(m′
0〈v〉γ/2) ⊂ X0

and Z ⊂ H−1
∗ (m′

1), we obtain

‖SL(t)Πf‖Z→X0 .
Θm′

1,m
′
0
(t)

t1/2 ∧ 1
, ∀ t > 0.

We finally obtain (3.15) by observing that t 7→ 〈t〉−(2k−3)/|γ| (t ∧ 1)−1/2 ∈ L1(R+) for any
k > 2 + 3/2 and that we may thus choose m0,m1,m

′
0 and m′

1 adequately in such a way that
t 7→ Θm1,m0(t)Θm′

1,m
′
0
(t) (t ∧ 1)−1/2 ∈ L1(R+). �

4. Nonlinear estimates

In this section, we present some estimates on the nonlinear Landau operator Q. We start
with two auxiliary results.

Lemma 4.1. ([14, Lemma 3.2]) Let −3 < α < 0 and θ > 3. Then

Aα(v) :=

∫

R3

|v − v∗|α 〈v∗〉−θ dv∗ . 〈v〉α.

Lemma 4.2. There holds
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(i) For any 3/(3 + γ + 2) < p ≤ ∞ and θ > 2 + 3(1− 1/p)

|(aij ∗ f)(v) vivj |+ |(aij ∗ f)(v) vi|+ |(aij ∗ f)(v)| . 〈v〉γ+2 ‖f‖Lp(〈v〉θ).

(ii) For any 3/(3 + γ + 1) < p ≤ ∞ and any θ′ > 3(1− 1/p)

|(bj ∗ f)(v)| . 〈v〉γ+1 ‖f‖Lp(〈v〉θ′ ).

Proof. (i) Recall that 0 is an eigenvalue of the matrix aij(z) so that aij(v−v∗)vi = aij(v−v∗)v∗i
and aij(v − v∗)vivj = aij(v − v∗)v∗iv∗j . Thanks to Holder’s inequality and using Lemma 4.1,
we obtain for any 3/(3 + γ + 2) < p ≤ ∞ and any θ̄ > 3(1− 1/p),

|(aij ∗ f)(v) vivj | = |
∫

v∗

aij(v − v∗)v∗iv∗jf∗|

.

∫

v∗

|v − v∗|γ+2 〈v∗〉−θ̄ 〈v∗〉θ̄+2|f∗|

.

(∫

v∗

|v − v∗|(γ+2) p
p−1 〈v∗〉−θ̄

p
p−1

)(p−1)/p

‖f‖Lp(〈v〉θ̄+2)

. 〈v〉γ+2‖f‖Lp(〈v〉θ̄+2).

We can get the estimates for (aij ∗ f)(v) vi and (aij ∗ f)(v) in a similar way. Remark that we
can choose p = 2 since γ ∈ [−3,−2).

(ii) For the term (b ∗ f) we recall that bi(z) = −2|z|γzi. Thanks to Holder’s inequality and
Lemma 4.1, we obtain for any 3/(3 + γ + 1) < p ≤ ∞ and any θ′ > 3(1− 1/p),

|(bi ∗ f)(v)| .
∫

v∗

|v − v∗|γ+1 〈v∗〉−θ
′ 〈v∗〉θ

′ |f∗|

.

(∫

v∗

|v − v∗|(γ+1) p
p−1 〈v∗〉−θ

′ p
p−1

)(p−1)/p

‖f‖Lp(〈v〉θ′ )

. 〈v〉γ+1‖f‖Lp(〈v〉θ′ ).

Remark now that we have 3/(3 + γ + 1) ∈ (3/2, 3], thus we can choose p = 4 for any γ ∈
[−3,−2). �

We establish our main estimate on the Landau collision operator.

Lemma 4.3. Consider any admissible weight function m � 1. Then, for any θ > 2 + 3/2 and
θ′ > 9/4, there holds

(4.1) 〈Q(f, g), h〉L2(m) .
(
‖f‖L2(〈v〉θ) ‖g‖H1

∗(m) + ‖f‖H1(〈v〉θ′ ) ‖g‖L2(m)

)
‖h‖H1

∗(m).

Proof. Let us denote G = mg and H = mh. We write

〈Q(f, g), h〉L2(m) =

∫
∂j{(aij ∗ f)∂ig − (bj ∗ f)g} hm2

=

∫
∂j{(aij ∗ f)∂i(m−1G)}Hm−

∫
∂j{(bj ∗ f)m−1G}Hm =: A+B.

Performing an integration by parts and developing terms, we easily get A = A1 +A2 +A3 +A4

and B = B1 +B2, with

A1 := −
∫
(aij ∗ f) ∂iG∂jH, A2 := −

∫
(aij ∗ f)

∂jm

m
∂iGH,

A3 :=

∫
(aij ∗ f)

∂im

m
G∂jH, A4 :=

∫
(aij ∗ f)

∂im

m

∂jm

m
GH,
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B1 :=

∫
(bj ∗ f)G∂jH, B2 :=

∫
(bj ∗ f)

∂jm

m
GH.

We then estimate each term separately.

Step 1. Term A1. We only consider the case |v| > 1, since the estimate for |v| ≤ 1 is evident.

We decompose ∂iG = Pv∂iG+(I−Pv)∂iG =: ∂
‖
iG+∂⊥i G, and similarly for ∂jH = ∂

‖
jH+∂⊥j H .

We write

A+
1 :=

∫

|v|>1

(aij ∗ f) {∂‖iG∂
‖
jH + ∂

‖
iG∂

⊥
j H + ∂⊥i G∂

‖
jH + ∂⊥i G∂

⊥
j H}

=: T1 + T2 + T3 + T4.

Using Lemma 4.2-(i) with p = 2, for any θ > 2 + 3/2, we have

T1 =

∫

|v|>1

(aij ∗ f)vivj
(v · ∇vG)

|v|2
(v · ∇vH)

|v|2

. ‖f‖L2(〈v〉θ)

∫

|v|>1

〈v〉γ+2|v|−2 |∇vG| |∇vH |

. ‖f‖L2(〈v〉θ) ‖〈v〉
γ
2 ∇v(mg)‖L2 ‖〈v〉 γ

2 ∇v(mh)‖L2 .

On the other hand, we have

T2 =

∫

|v|>1

(aij ∗ f)vi
(v · ∇vG)

|v|2 ∂⊥j h

. ‖f‖L2(〈v〉θ)

∫

|v|>1

〈v〉γ+2|v|−1 |∇vG| |∇⊥
v H |

. ‖f‖L2(〈v〉θ) ‖〈v〉
γ
2 ∇v(mg)‖L2 ‖〈v〉 γ+2

2 ∇⊥
v (mh)‖L2 ,

and similarly

T3 . ‖f‖L2(〈v〉θ) ‖〈v〉
γ+2
2 ∇⊥

v (mg)‖L2 ‖〈v〉 γ
2 ∇v(mh)‖L2 .

For the term T4, we have

T4 . ‖f‖L2(〈v〉θ)

∫
〈v〉γ+2|∇⊥

v G| |∇⊥
v H |

. ‖f‖L2(〈v〉θ) ‖〈v〉
γ+2
2 ∇⊥

v (mg)‖L2 ‖〈v〉 γ+2
2 ∇⊥

v (mh)‖L2 .

All in all, we obtain

A+
1 . ‖f‖L2(〈v〉θ) ‖g‖H1

∗(m) ‖h‖H1
∗(m).

Step 2. Term A2. Recall that ∂jm
2 = Cvj〈v〉σ−2m2. The case |v| ≤ 1 is evident so we only

consider |v| > 1. The same argument as for A1 gives us

A+
2 := C

∫

|v|>1

(aij ∗ f) vj〈v〉σ−2
{
∂
‖
iG+ ∂⊥i G

}
H

. ‖f‖L2(〈v〉θ)

∫ {
〈v〉γ+σ−1|∇vG|+ 〈v〉γ+σ|∇⊥

v G|
}
|H |

. ‖f‖L2(〈v〉θ)

{
‖〈v〉 γ

2 ∇v(mg)‖L2 + ‖〈v〉 γ+2
2 ∇⊥

v (mg)‖L2

}
‖〈v〉 γ+2σ−2

2 h‖L2(m)

. ‖f‖L2(〈v〉θ) ‖g‖H1
∗(m) ‖h‖H1

∗(m).

Step 3. Term A3. In a similar way as for the term A2, we also have

A3 . ‖f‖L2(〈v〉θ) ‖〈v〉
γ+σ

2 g‖L2(m) ‖h‖H1
∗(m) . ‖f‖L2(〈v〉θ) ‖g‖H1

∗(m) ‖h‖H1
∗(m).
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Step 4. Term A4. Arguing as before, we easily get

A+
4 := C

∫

|v|>1

(aij ∗ f) vi vj〈v〉2σ−4 GH

. ‖f‖L2(〈v〉θ)

∫
〈v〉γ+2σ−2 |G| |H |

. ‖f‖L2(〈v〉θ) ‖〈v〉
γ+2σ−2

2 g‖L2(m) ‖〈v〉
γ+2σ−2

2 h‖L2(m)

. ‖f‖L2(〈v〉θ) ‖g‖H1
∗(m) ‖h‖H1

∗(m).

Step 5. Term B1. Thanks to Lemma 4.2-(ii) with p = 4, for any θ′ > 9/4, it follows

B1 . ‖f‖L4(〈v〉θ′ )

∫
〈v〉γ+1 |G| |∇vH |

. ‖f‖H1(〈v〉θ′ ) ‖〈v〉
γ+2
2 g‖L2(m) ‖〈v〉

γ
2 ∇v(mh)‖L2

. ‖f‖H1(〈v〉θ′ ) ‖〈v〉
γ+2
2 g‖L2(m) ‖h‖H1

∗(m),

where we have used the embedding H1(〈v〉θ′) ⊂ L4(〈v〉θ′).
Step 6. Term B2. Using ∂jm = Cvj〈v〉σ−2m, we have

B2 . ‖f‖L4(〈v〉θ′ )

∫
〈v〉γ+σ |G| |H |

. ‖f‖H1(〈v〉θ′ ) ‖〈v〉
γ+σ

2 g‖L2(m) ‖〈v〉
γ+σ

2 h‖L2(m)

. ‖f‖H1(〈v〉θ′ ) ‖〈v〉
γ+σ

2 g‖L2(m) ‖h‖H1
∗(m).

Step 7. Conclusion. Gathering previous estimates and using that ‖〈v〉 γ+σ
2 g‖L2(m) and ‖〈v〉 γ+2

2 g‖L2(m)

can be controlled by ‖g‖L2(m), we obtain, for any θ > 2 + 3/2 and θ′ > 9/4,

〈Q(f, g), h〉L2(m) . ‖f‖L2(〈v〉θ) ‖g‖H1
∗(m) ‖h‖H1

∗(m) + ‖f‖H1(〈v〉θ′ ) ‖g‖L2(m) ‖h‖H1
∗(m),

which concludes the proof of (4.1). �

Corollary 4.4. Consider an admissible weight function m such that m ≻ 〈v〉2+3/2. With the
notation (3.11), there holds

(4.2) 〈Q(f, g), h〉X .
(
‖f‖X ‖g‖Y + ‖f‖Y ‖g‖X

)
‖h‖Y ,

and in particular

(4.3) ‖Q(f, g)‖Z . ‖f‖X ‖g‖Y + ‖f‖Y ‖g‖X .

Proof. The proof of (4.2) easily follows from (4.1) observing that, since m ≻ 〈v〉2+3/2, we can

choose θ and θ′ in Lemma 4.3 such that L2(m) →֒ L2(〈v〉θ) and H1
∗ (m) →֒ H1(〈v〉θ′ ) (see (3.1)).

The proof of (4.3) is then straightforward by the definition of Z = H−1
∗ (m) (see (3.2)). �

5. Nonlinear stability

This section is devoted to the proof of the spatially homogeneous version of Theorem 1.1.

Consider a solution F to the homogeneous Landau equation (1.2) and define the variation
f = F − µ, which satisfies,

(5.1)

{
∂tf = Lf +Q(f, f)

f|t=0 = f0 = F0 − µ.
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We observe that, Π0f0 = 0 and therefore, thanks to the conservation laws,

Π0f(t) = Π0Q(f(t), f(t)) = 0 for any t > 0.

Hereafter in this section, we fix an admissible weight function m satisfying m ≻ 〈v〉2+3/2 and
consider the spaces X,Y, Z and X0 defined in (3.11). We also recall the norm ||| · |||X defined in
(3.12), which is equivalent to ‖ · ‖X .

We first prove a stability estimate.

Proposition 5.1. There exist some constants C,K ∈ (0,∞) such that any solution f to (5.1)
satisfies, at least formally, the following differential inequality

d

dt
|||f |||2X ≤ (C|||f |||X −K) ‖f‖2Y .

Proof. We write

1

2

d

dt
|||f |||2X = 〈〈Lf, f〉〉X + η〈Q(f, f), f〉X +

∫ ∞

0

〈SL(τ)ΠQ(f, f), SL(τ)Πf〉X0 dτ

=: T1 + T2 + T3.

On the one hand, thanks to (3.14) in Corollary 3.7 and to Corollary 4.4, there exist K,C′ > 0
such that

T1 + T2 ≤ −K‖f‖2Y + C′‖f‖X ‖f‖2Y .
On the other hand, we have

∫ ∞

0

〈SL(τ)ΠQ(f, f), SL(τ)Πf〉X0 dτ

≤
∫ ∞

0

‖SL(τ)ΠQ(f, f)‖X0 ‖SL(τ)Πf‖X0 dτ

. ‖Q(f, f)‖Z ‖f‖Y
∫ ∞

0

‖SL(τ)Π‖Z→X0 ‖SL(τ)Π‖Y→X0 dτ

. ‖f‖X ‖f‖2Y ,

where we have used (3.15) in Corollary 3.7 as well as Corollary 4.4 again in the last line. We
conclude the proof by gathering theses two estimates. �

A consequence of the stability estimate in Proposition 5.1 we obtain the spatially homoge-
neous version of Theorem 1.1.

Proof of Theorem 1.1. The spatially homogeneous case. We split the proof into three steps.

Step 1. Uniqueness. We still denote by K and C the constants exhibited in Proposition 5.1 and
we set ε := (2−

√
2)K/C. Consider two solutions f1 and f2 to (5.1) with same initial data such

that

(5.2) ∀ i = 1, 2, |||fi|||2L∞(0,∞;X) +K ‖fi‖2L2(0,∞;Y ) < 2ε2.

The difference ρ := f1 − f2 satisfies

∂tρ = Lρ+Q(f1, ρ) +Q(ρ, f2), ρ(0) = 0.

Repeating the same computation as in Proposition 5.1, we get

d

dt
|||ρ|||2X ≤ −K ‖ρ‖2Y +

C

2

(
(|||f1|||X + |||f2|||X)‖ρ‖2Y + (‖f1‖Y + ‖f2‖Y )|||ρ|||X‖ρ‖Y

)
.
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Integrating in time the above differential inequality and using the Cauchy-Schwarz inequality,
we obtain

A := |||ρ|||2L∞(0,∞;X) +K‖ρ‖2L2(0,∞;Y )

≤ |||ρ(0)|||2X +
C

2

(
|||f1|||L∞(0,∞;X) + |||f2|||L∞(0,∞;X)

)
‖ρ‖2L2(0,∞;Y )

+
C

2

(
‖f1‖L2(0,∞;Y ) + ‖f2‖L2(0,∞;Y )

)
|||ρ|||L∞(0,∞;X) ‖ρ‖L2(0,∞;Y ).

We assume by contradiction that ρ 6≡ 0. Thanks to estimate (5.2) and the Young inequality, we
deduce

A < C
(
2ε2
)1/2‖ρ‖2L2(0,∞;Y ) + C

(2ε2
K

)1/2 |||ρ|||L∞(0,∞;X) ‖ρ‖L2(0,∞;Y )

≤ |||ρ|||2L∞(0,∞;X) +
{
C
√
2 ε+

C2

2K
ε2
}
‖ρ‖2L2(0,∞;Y ) ≤ A,

and a contradiction. We conclude that f1 = f2.

Step 2. Existence. The proof follows a classical argument based on an iterative scheme that
approximates (5.1) (see e.g. [43, 21] or [20, Proof of Theorem 5.3]) that we sketch for the sake
of completeness. We consider the iterative scheme

{
∂tf

n = Lfn +Q(fn−1, fn)

fn|t=0 = f0
∀n ∈ N,

with the convention f−1 = Q(f−1, f0) = 0 when n = 0. We claim that for ε0 := |||f0|||X < ε,
with ε defined as in Step 1, we may build by an induction argument a sequence (fn)n≥0 of
solutions of the above scheme such that

(5.3) ∀n ∈ N, An := sup
t≥0

|||fn(t)|||2X +K

∫ ∞

0

‖fn(t)‖2Y dt ≤ 2ε20.

We only prove the a priori estimate (5.3) by an induction argument, the construction at each
step of the solution of the above linear equation being very classical. We assume that fn−1

satisfies (5.3). Repeating the same argument as in Step 1, we have

An ≤ |||f0|||2X +
C

2
|||fn−1|||L∞(0,∞;X) ‖fn‖2L2(0,∞;Y )

+
C

2
‖fn−1‖L2(0,∞;Y ) |||fn|||L∞(0,∞;X) ‖fn‖L2(0,∞;Y ).

Thanks to estimate (5.3) at rank n− 1 and the Young inequality, as in Step 1 again, we deduce

An ≤ ε20 +
1

2
|||fn|||2L∞(0,∞;X) +

{ C√
2K

ε0 +
C2

4K2
ε20

}
K‖fn‖2L2(0,∞;Y )

≤ ε20 +
1

2
An,

from what fn satisfies (5.3) and the stability of the scheme is proven. We now turn to the
convergence of the scheme and we define ρn := fn+1 − fn, for all n ∈ N, which satisfies

{
∂tρ

0 = Lρ0 +Q(f0, f1);

∂tρ
n = Lρn +Q(fn, ρn) +Q(ρn−1, fn), ∀n ∈ N∗;

with ρn|t=0 = 0. We define

∀n ∈ N, Bn := sup
t≥0

|||ρn(t)|||2X +K

∫ ∞

0

‖ρn(t)‖2Y dt,
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so that in particular B0 ≤ A1 +A0 ≤ (2ε0)
2. For n ≥ 1, we compute as in the previous steps

Bn ≤ C

2
|||fn|||L∞(0,∞;X) ‖ρn‖2L2(0,∞;Y ) +

C

2
‖fn‖L2(0,∞;Y ) |||ρn|||L∞(0,∞;X) ‖ρn‖L2(0,∞;Y )

+
C

2

{
|||fn|||L∞(0,∞;X) ‖ρn−1‖L2(0,∞;Y ) + |||ρn−1|||L∞(0,∞;X) ‖fn‖L2(0,∞;Y )

}
‖ρn‖L2(0,∞;Y ).

Arguing similarly as in the previous steps by using the Young inequality, estimate (5.3) and

choosing ε0 <
√
2K/(3C), we easily get

Bn ≤ C2
1

2
ε20Bn−1 +

1

2
Bn,

where the constant C1 := 3C/(
√
2K) only depends on C and K. That readily implies that

Bn ≤ (C1ε0)
2n B0, ∀n ≥ 1,

with C1ε0 < 1. It then follows that (fn)n∈N is a Cauchy sequence in L∞(0,∞;X), its limit f
is a weak solution to (5.1) and, passing to the limit n→ ∞ in (5.3), f also satisfies (5.3), from
which one deduces (1.12).

Step 3. Decay. Let m̃ be an admissible weight function such that 〈v〉2+3/2 ≺ m̃ ≺ m, and denote

X̃ = L2(m̃) and Ỹ = H1
∗ (m̃). Thanks to the estimate (5.3) (or (1.12)) and Proposition 5.1 in

both spaces X and X̃, it follows

d

dt
|||f |||2X ≤ (C

√
2ε0 −K)‖f‖2Y ≤ −K ′‖f‖2Y ≤ 0,

d

dt
|||f |||2

X̃
≤ (C

√
2ε0 −K)‖f‖2

Ỹ
≤ −K ′‖f‖2

Ỹ
.

These two estimates together imply (see the proof of Lemma 3.1) the decay

|||f(t)|||X̃ . Θm,m̃(t) |||f0|||X .
We hence obtain

‖f(t)‖X0 . Θm(t) ‖f0‖X ,
where we recall that Θm is defined in (1.9), and that completes the proof. �

We conclude the section by presenting a proof of our improvement of the speed of conver-
gence to the equilibrium for solutions to the spatially homogenous Landau equation in a non
perturbative framework.

Proof of Corollary 1.3. We claim that for some time t0 > 0 (smaller than some explicit constant
T > 0) we have

(5.4) ‖f(t0)‖L2
v(m1) ≤ ε0,

where we denote m1 = m1/2〈v〉−9/2 and ε0 > 0 is given in Theorem 1.1. Indeed, thanks to [16]
there holds

∀ t, T > 0,

∫ t+T

t

‖f(τ)‖L3
v(〈v〉

−3) dτ . 1 + T,

and from [13, Theorem 2] we have the convergence

‖f(t)‖L1(m) . θ(t), θ(t)=e−λ t
s

s+|γ| (log(1+t))
−

|γ|
s+|γ|

,

for some constant λ > 0. Thanks to the interpolation inequality

‖f‖L2
v(m1) ≤ ‖f‖1/4L1

v(m) ‖f‖
3/4
L3

v(〈v〉
−3),
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we obtain, for any t > 0,

θ(t)−1/4

∫ t+1

t

‖f(τ)‖L2
v(m1) dτ .

∫ t+1

t

θ−1(τ)‖f(τ)‖L1
v(m) dτ +

∫ t+1

t

‖f(τ)‖L3
v(〈v〉

−3) dτ . 1,

which proves (5.4). Therefore, observing that m1/3 ≺ m1 and m1/3 is an exponential weight
satisfying (1.8), we can apply Theorem 1.1 with m1/3 starting from t0 > 0 and we deduce the
convergence

‖f(t)‖L2
v
. Θm1/3(t).

The proof is then complete by remarking that, since m is an exponential weight, Θm1/3 and Θm
have the same type of asymptotic behaviour (up to a change in the constants in (1.9)). �

6. The spatially inhomogeneous case

In this section, we explain how we may adapt to the spatially inhomogeneous case the argu-
ments presented in the previous sections. The novelties come from the facts that:

(1) We establish a first weak hypocoercivity estimate in the (small) space H1
x,v(µ

−1/2) (see
(6.3) below);

(2) We prove a set of weak dissipativity estimates on an appropriate operator B̄ and of regu-
larization results on the time functions (ASB̄)

(∗n) and (SB̄A)(∗ℓ) in order to transfer the above
information to the space H2

xL
2
v(m), which is suitable for establishing our existence, uniqueness

and stability results.

6.1. The linearized inhomogeneous operator. We denote by L̄ the inhomogeneous lin-
earized Landau operator given by

(6.1) L̄ := L− v · ∇x,

where we recall that L is defined in (2.3). We have

ker(L̄) = span{µ, v1µ, v2µ, v3µ, |v|2µ}
and the projection Π̄0 onto ker(L̄) is given by

Π̄0(f) =

(∫
f dx dv

)
µ+

3∑

j=1

(∫
vjf dx dv

)
vjµ+

(∫ |v|2 − 3

6
f dx dv

) |v|2 − 3

6
µ.

Hereafter we denote Π̄ := I − Π̄0 the projection onto the orthogonal of ker(L̄). Recall the
factorization for the homogeneous operator L = A+ B in (2.8), then we write

L̄ = A+ B̄, B̄ := B − v · ∇x.

6.2. Functional spaces. We denote by L2
x,v = L2

x,v(T
3
x ×R3

v) the standard Lebesgue space on

T3
x × R3

v. For a velocity weight function m = m(v) : R3
v → R+, we then define the weighted

Lebesgue spaces L2
x,v(m) and weighted Sobolev spacesHn

xL
2
v(m), n ∈ N, associated to the norms

‖f‖L2
x,v(m) = ‖mf‖L2

x,v
, ‖f‖2Hn

xL
2
v(m) :=

∑

0≤j≤n

‖∇j
x(mf)‖2L2

x,v
.

We similarly define the weighted Sobolev space Hn
x,v(m), n ∈ N, through the norm

(6.2) ‖f‖Hn
x,v(m) := ‖mf‖Hn

x,v
,

where Hn
x,v = Hn

x,v(T
3
x × R3

v) denotes the usual Sobolev space on T3
x × R3

v. We also define the

space H1
x,v(m), for an admissible weight m, as the space associated to the norm defined by

(6.3) ‖f‖2H1
x,v(m) := ‖mf‖2L2

x,v
+ ‖∇x(mf)‖2L2

x,v
+ ‖〈v〉α∇v(mf)‖2L2

x,v
,
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with

(6.4) α := α(m) := max
{
γ + σ,

γ

2
+
σ

4

}
< 0.

We easily observe that

(6.5) H1
x,v(m) ⊂ H1

x,v(m) ⊂ H1
x,v(〈v〉αm),

and also that, for any γ ∈ [−3,−2),

α =
γ

2
+
σ

4
if σ ∈ [0, 4/3], α = γ + 2 if σ = 2,

where we recall that σ has been defined at the beginning of Section 2.3. We remark that we shall
use the spaces H1

x,v(m) (instead of H1
x,v(m)) in order to obtain weakly dissipative estimates for

B̄, and the reason for that will be explained in Lemma 6.4.
Recall the space H1

v,∗(m) defined in (3.1), then we define the space H2
x(H

1
v,∗(m)) associated

to the norm

(6.6) ‖f‖2H2
x(H

1
v,∗(m)) :=

∑

0≤j≤2

‖∇j
xf‖2L2

x(H
1
v,∗(m)) :=

∑

0≤j≤2

∫

T3
x

‖∇j
xf‖2H1

v,∗(m).

When furthermore m is a polynomial weight function, we also define the negative weighted
Sobolev space H2

x(H
−1
v,∗(m)) in duality with H2

x(H
1
v,∗(m)) with respect to the H2

xL
2
v(m) duality

product, more precisely

‖f‖H2
x(H

−1
v,∗(m)) := sup

‖φ‖H2
x(H1

v,∗(m))≤1

〈f, φ〉H2
xL

2
v(m)

:= sup
‖φ‖H2

x(H1
v,∗(m))≤1

∑

0≤j≤2

〈∇j
x(mf),∇j

x(mφ)〉L2
x,v
,

and observe that ‖f‖H2
x(H

−1
v,∗(m)) = ‖mf‖H2

x(H
−1
v,∗)

.

6.3. Weak coercivity estimate of L̄. Starting from the weak coercivity estimate (2.6) for
the homogeneous linearized operator L in L2

v(µ
−1/2), we can exhibit an equivalent norm to the

usual norm in H1
x,v(µ

−1/2) such that L̄ is weakly coercive related to that norm. Our method
of proof follows the method developed in [35] for proving (strong) coercivity estimate and then
spectral gap estimate in the case of the linearized Landau equation for harder potentials. We
also refer to [21, 45] where related arguments have been introduced.

Lemma 6.1. There exists a Hilbert norm ‖ · ‖H̃1
x,v(µ

−1/2) (which associated scalar product is

denoted by 〈·, ·〉H̃1
x,v(µ

−1/2)) equivalent to ‖ · ‖H1
x,v(µ

−1/2) such that, for any f ∈ H1
x,v(µ

−1/2),

there holds

(6.7) 〈L̄f, f〉H̃1
x,v(µ

−1/2) . −‖Π̄f‖2
H̃1

x,v(〈v〉
(γ+2)/2µ−1/2)

.

Proof. We only sketch the proof presenting the main steps, and we refer to [35] for more details.
We define

Lh = µ−1/2 L(µ1/2h).

Observe that f = µ1/2h satisfies Lh = µ−1/2Lf and 〈Lh, h〉L2
v
= 〈Lf, f〉L2

v(µ
−1/2). Following

[21, Section 2] we can decompose L = A+K such that the following properties holds:

(i) Generalized coercivity estimate (see (2.6)): there holds, for some constant λ > 0,

〈Lh, h〉L2
v
≤ −λ‖h−ΠLh‖2H1

v,∗∗
,

where ΠL is the projection onto ker(L) in L2
v, and we denote

‖h‖2H1
v,∗∗(ω)

:= ‖〈v〉 γ+2
2 h‖2L2

v(ω)
+ ‖〈v〉 γ

2 ∇̃vh‖2L2
v(ω)

.
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(ii) [21, Lemma 5]: For θ ∈ R and δ > 0, there holds

〈〈v〉2θKh, h〉L2
v
. δ‖h‖2H1

v,∗∗(〈v〉
θ) + C(δ)‖h‖2L2

v(〈v〉
θ),

and also
〈〈v〉2θLh1, h2〉L2

v
. ‖h1‖H1

v,∗∗(〈v〉
θ) ‖h2‖H1

v,∗∗(〈v〉
θ).

(iii) [21, Lemma 6]: For θ ∈ R and η > 0, there holds ( for some λ,C > 0)

〈〈v〉2θ∇v(Ah),∇vh〉L2
v
≤ −λ‖∇vh‖2H1

v,∗∗(〈v〉
θ) + ηC‖h‖2H1

v,∗∗(〈v〉
θ) + η−1C‖µh‖2L2

v
,

and also

〈〈v〉2θ∇v(Kh),∇vh〉L2
v
. η‖h‖2L2

xH
1
v,∗∗(〈v〉

γ+2) + η‖∇vh‖2L2
xH

1
v,∗∗(〈v〉

γ+2) + η−1‖µh‖2L2
x,v
.

We now consider the inhomogeneous operator L̄ := L− v · ∇x, we denote ΠL̄ the projection
onto ker(L̄) in L2

x,v and we consider a solution h to the evolution equation ∂th = L̄h with

initial datum h(0) = h0 ∈ ker(L̄)⊥. Thanks to (i) and the fact that ∇x commutes with L̄, we
immediately have

1

2

d

dt

(
‖h‖2L2

x,v
+ ‖∇xh‖2L2

x,v

)
≤ −λ‖h−ΠLh‖2L2

x(H
1
v,∗∗)

− λ‖∇xh−ΠL(∇xh)‖2L2
x(H

1
v,∗∗)

.

We next look to the v-derivative.
We first compute

1

2

d

dt
‖〈v〉γ+2 ∇vh‖2L2

x,v
= 〈〈v〉2(γ+2)∇v(Kh),∇vh〉L2

x,v
+ 〈〈v〉2(γ+2)∇v(Ah),∇vh〉L2

x,v

− 〈〈v〉2(γ+2)v · ∇x(∇vh),∇vh〉L2
x,v

− 〈〈v〉2(γ+2)∇xh,∇vh〉L2
x,v

=: T1 + T2 + T3 + T4.

Terms T1 and T2 satisfy estimates of point (iii) above, moreover, we easily observe that T3 = 0
and we also get

T4 . η‖∇vh‖2L2
x,v(〈v〉

3γ/2+3) + η−1‖∇xh‖2L2
x,v(〈v〉

γ/2+1).

We know observe that

‖µh‖L2
x,v

. ‖h‖L2
x,v(〈v〉

3γ/2+3), ‖∇vh‖L2
x,v(〈v〉

3γ/2+3) . ‖∇vh‖L2
xH

1
v,∗∗(〈v〉

γ+2),

‖h‖L2
xH

1
v,∗∗(〈v〉

γ+2) . ‖h‖L2
x,v(〈v〉

3γ/2+3) + ‖∇vh‖L2
xH

1
v,∗∗(〈v〉

γ+2).

Therefore, putting together previous estimates and taking η > 0 small enough, we already
obtain, for (other) constants λ,C > 0,

d

dt
‖〈v〉γ+2 ∇vh‖2L2

x,v
≤ −λ‖∇vh‖2L2

x(H
1
v,∗∗(〈v〉

γ+2)) + η−1C‖h‖2L2
x,v(〈v〉

3γ/2+3) + η−1C‖∇xh‖2L2
x,v(〈v〉

γ/2+1).

We also compute the evolution of the mixed term

d

dt
〈〈v〉γ+2 ∇xh,∇vh〉L2

x,v
= −‖〈v〉 γ+2

2 ∇xh‖2L2
x,v

+ 2〈〈v〉γ+2 ∇xLh,∇vh〉L2
x,v

+ 〈(∇v〈v〉γ+2)∇xLh, h〉L2
x,v
,

Thanks to (i) and ∇xLh = L(∇xh−ΠL(∇xh)), for any η > 0, it follows that

〈〈v〉γ+2 ∇xLh,∇vh〉L2
x,v

+ 〈(∇v〈v〉γ+2)∇xLh, h〉L2
x,v

. η−1‖∇xh−ΠL(∇xh)‖2L2
x(H

1
v,∗∗(〈v〉

(γ+2)/2))

+ η‖∇vh‖2L2
x(H

1
v,∗∗(〈v〉

(γ+2)/2)) + η‖h‖2L2
x(H

1
v,∗∗(〈v〉

(γ+2)/2))

We finally introduce the norm

|||h|||2 := ‖h‖2L2
x,v

+ α1‖∇xh‖2L2
x,v

+ α2‖〈v〉γ+2 ∇vh‖2L2
x,v

+ α3〈〈v〉γ+2 ∇xh,∇vh〉L2
x,v
,
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for positive constants αi with α3 < 2
√
α1 α2, so that |||h|||2 is equivalent to

‖h‖2L2
x,v

+ ‖∇xh‖2L2
x,v

+ ‖〈v〉γ+2∇vh‖2L2
x,v
.

Observe that ΠLh has zero mean on the torus T3 hence Poincaré’s inequality implies

‖ΠLh‖2L2
x,v(ω)

+ ‖ΠLh‖2L2
x(H

1
v,∗∗(ω))

. ‖∇xh‖2L2
x,v(ω)

,

and splitting h = (h−ΠLh) + ΠLh we get

‖h‖2L2
x,v(〈v〉

3γ/2+3) . ‖h−ΠLh‖2L2
x,v(〈v〉

3γ/2+3) + ‖∇xh‖2L2
x,v(〈v〉

3γ/2+3)

‖h‖2L2
x(H

1
v,∗∗(〈v〉

(γ+2)/2)) . ‖h−ΠLh‖2L2
x(H

1
v,∗∗(〈v〉

(γ+2)/2)) + ‖∇xh‖2L2
x,v(〈v〉

3γ/2+3).

Finally, gathering previous estimates we obtain

d

dt
|||h|||2 ≤ −λ‖h−ΠLh‖2L2

x(H
1
v,∗∗)

− α1λ‖∇xh−ΠL(∇xh)‖2L2
x(H

1
v,∗∗)

− α2λ‖∇vh‖2L2
x(H

1
v,∗∗(〈v〉

γ+2)) − α3‖∇xh‖2L2
x,v(〈v〉

(γ+2)/2)

+ α2η
−1C‖h−ΠLh‖2L2

x,v(〈v〉
3γ/2+3) + α2η

−1C‖∇xh‖2L2
x,v(〈v〉

3γ/2+3)

+ α2η
−1C‖∇xh‖2L2

x,v(〈v〉
(γ+2)/2) + α3ηC‖h−ΠLh‖2L2

x(H
1
v,∗∗(〈v〉

(γ+2)/2)) + α3ηC‖∇xh‖2L2
x,v(〈v〉

(γ+2)/2)

+ α3ηC‖∇vh‖2L2
x(H

1
v,∗∗(〈v〉

(γ+2)/2)) + α3η
−1C‖∇xh−ΠL(∇xh)‖2L2

x(H
1
v,∗∗(〈v〉

(γ+2)/2)).

We choose the constants αi, η > 0 small enough, and we get

d

dt
|||h|||2 . −‖h−ΠLh‖2L2

x(H
1
v,∗∗)

− α1‖∇xh−ΠL(∇xh)‖2L2
x(H

1
v,∗∗)

− α3‖∇xh‖2L2
x,v(〈v〉

(γ+2)/2) − α2‖∇vh‖2L2
x(H

1
v,∗∗(〈v〉

γ+2)).

Because ΠL̄h = 0, the function ΠLh has zero mean on the torus T3
x and Poincaré’s inequality

implies

‖h‖2L2
x,v(〈v〉

(γ+2)/2) . ‖h−ΠLh‖2L2
x,v(〈v〉

(γ+2)/2) +
α3

2
‖∇xh‖2L2

x,v(〈v〉
(γ+2)/2).

We put together the two last estimates and we get

d

dt
|||h|||2 . −‖h‖2L2

x,v(〈v〉
(γ+2)/2) − ‖∇xh‖2L2

x,v(〈v〉
(γ+2)/2) − ‖∇vh‖2L2

x,v(〈v〉
3(γ+2)/2)

. −|||〈v〉(γ+2)/2h|||2.

Coming back to the function f = µ1/2h and defining

‖f‖H̃1
x,v(µ

−1/2) := |||µ−1/2f |||,

we have ∂tf = L̄f and

〈L̄f, f〉H̃1
x,v(µ

−1/2) =
d

dt
‖f‖2

H̃1
x,v(µ

−1/2)
. −‖f‖2

H̃1
x,v(〈v〉

(γ+2)/2µ−1/2)
,

from which (6.7) immediately follows. �
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6.4. Weak dissipativity properties on B̄. We prove in this section weak dissipativity proper-
ties of B̄ using the analogous results already proven in Lemmas 2.3 and 2.4 for the homogeneous
operator B.

Lemma 6.2. Letm be an admissible weight function such that m ≻ 〈v〉(γ+3)/2 and n ∈ N. There
existM,R > 0 large enough such that B̄ is weakly dissipative in Hn

xL
2
v(m) in the following sense:

• If m ≺ µ−1/2, there holds

(6.8) 〈B̄f, f〉Hn
xL

2
v(m) . −‖〈v〉 γ

2 ∇̃vf‖2Hn
xL

2
v(m) − ‖〈v〉 γ

2 ∇̃v(mf)‖2Hn
xL

2
v
− ‖〈v〉 γ+σ

2 f‖2Hn
xL

2
v(m).

• If µ−1/2 � m ≺ µ−1, there holds

(6.9) 〈B̄f, f〉Hn
xL

2
v(m) . −‖〈v〉 γ

2 ∇̃v(mf)‖2Hn
xL

2
v
− ‖〈v〉 γ+σ

2 f‖2Hn
xL

2
v(m).

Proof. Since the operator B̄ commutes with ∇x we only need to treat the case n = 0. The proof
follows the same argument as for the homogeneous case in Lemma 2.3 thanks to the divergence
structure of the transport operator. �

We define the operator

(6.10) B̄mg = mB̄(m−1g) = Bmg − v · ∇xg,

where we recall that Bm is defined in (2.17), as well as its formal adjoint operator B̄∗
m that

verifies

(6.11) B̄∗
mφ = B∗

mφ+ v · ∇xφ,

with B∗
m defined in (2.18). Observe that if f satisfies ∂tf = B̄f , then g = mf satisfies ∂tg = B̄mg

and 〈B̄f, f〉H1
x,v(m) = 〈B̄mg, g〉H1

x,v
. Moreover, we have by duality

∀ t ≥ 0, 〈SB̄m
(t)g, φ〉Hn

xL
2
v
= 〈g, SB̄∗

m
(t)φ〉Hn

xL
2
v
.

Lemma 6.3. Let m,ω be admissible polynomial weight functions such that m ≻ 〈v〉(γ+3)/2,
1 � ω ≺ m〈v〉−(γ+3)/2 and n ∈ N. We can choose M,R large enough such that B̄∗

m is weakly
dissipative in Hn

xL
2
v in the sense

〈B̄∗
mφ, φ〉Hn

x L
2
v(ω)

. −‖〈v〉 γ
2 ∇̃vφ‖2Hn

xL
2
v(ω)

− ‖〈v〉 γ+σ
2 φ‖2Hn

xL
2
v(ω)

.

Proof. The proof follows the same arguments as in the proof of Lemma 2.4, thanks to the
divergence structure of the transport operator and since ∇x commutes with B∗

m. �

We turn now to weakly dissipative properties of B̄ in the spaces H1
x,v(m) defined in (6.3).

Lemma 6.4. Let m be an admissible weight function such that m ≻ 〈v〉(γ+3)/2. For any η > 0,
we define the norm

‖f‖2
H̃1

x,v(m)
:= ‖mf‖2L2

x,v
+ ‖∇x(mf)‖2L2

x,v
+ η‖〈v〉α∇v(mf)‖2L2

x,v
,

and its associated scalar product 〈·, ·〉H̃1
x,v(m), which is equivalent to the standard H1

x,v(m)-norm

defined in (6.3). There exist M,R, η > 0 such that B̄ is weakly dissipative in H1
x,v(m) in the

sense

〈B̄f, f〉H̃1
x,v(m) . −‖f‖2

H̃1
x,v(m〈v〉(γ+σ)/2)

− ‖〈v〉 γ
2 ∇̃v(mf)‖2L2

x,v

− ‖〈v〉 γ
2 ∇̃v(∇x(mf))‖2L2

x,v
− η‖〈v〉 γ

2 +α ∇̃v(∇v(mf))‖2L2
x,v
.
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Proof. We remark that we have introduced the spaces (6.3), in which the term ∇v(mf) has a
weight 〈v〉α with α < 0, in order to treat the terms coming from the derivative in the v-variable
of the transport operator. In what follows we shall denote λ,C > 0 positive constants that can
change from line to line.

For the sake of simplicity, we shall equivalently prove that

d

dt

(
‖gB̄m

‖2L2
x,v

+ ‖∇xgB̄m
‖2L2

x,v
+ η‖〈v〉α∇vgB̄m

‖2L2
x,v

)

. −
(
‖〈v〉 γ+σ

2 gB̄m
‖2L2

x,v
+ ‖〈v〉 γ+σ

2 ∇xgB̄m
‖2L2

x,v
+ η‖〈v〉 γ+σ

2 +α∇vgB̄m
‖2L2

x,v

)

− ‖〈v〉 γ
2 ∇̃vgB̄m

‖2L2
x,v

− ‖〈v〉 γ
2 ∇̃v(∇xgB̄m

)‖2L2
x,v

− η‖〈v〉 γ
2 +α ∇̃v(∇vgB̄m

)‖2L2
x,v
,

for any solution gB̄m
to the equation ∂tgB̄m

= B̄mgB̄m
, so that, with gB̄m

= mfB̄, fB̄ is a solution

to ∂tfB̄ = B̄fB̄. We now use the shorthand g = gB̄m
and split the proof into three steps.

Step 1. We first obtain from Lemma 6.2 (for M,R > 0 large enough)

(6.12)
d

dt
‖g‖2L2

x,v
. −‖〈v〉 γ

2 ∇̃vg‖2L2
x,v

− ‖〈v〉 γ+σ
2 g‖2L2

x,v

and

(6.13)
d

dt
‖∇xg‖2L2

x,v
. −‖〈v〉 γ

2 ∇̃v(∇xg)‖2L2
x,v

− ‖〈v〉 γ+σ
2 ∇xg‖2L2

x,v
.

Step 2. We write

1

2

d

dt
‖〈v〉α∇vg‖2L2

x,v
=

∫

x,v

∇v(Bmg) · ∇vg 〈v〉2α −
∫

x,v

∇xg · ∇vg 〈v〉2α.

where we have

∇v(Bmg) = Bm(∇vg) + (∇v āij)∂ijg + (∇vβj)∂jg + (∇vδ −M∇vχR)g.

We first compute ∫

x,v

∇v(Bmg) · ∇vg 〈v〉2α =: T1 + T2 + T3 + T4,

where

T1 =

∫
(Bm∇vg) · ∇vg 〈v〉2α, T2 =

∫
(∇vāij) ∂ijg∇vg 〈v〉2α,

T3 =

∫
(∇vβj) ∂jg∇vg 〈v〉2α, T4 =

∫
(∇vδ −M∇vχR)g∇vg 〈v〉2α.

From Lemma 6.2, we have

T1 ≤ −λ‖〈v〉 γ
2 +α ∇̃v(∇vg)‖2L2 +

∫
{ζ̃m −MχR} |∇vg|2 〈v〉2α.

Terms T3 and T4 are easy to estimate. As in the proof of Lemma 2.2, we can compute explicitly
βj(v) and δ(v), thus we easily deduce

|∇vβj(v)|+ |∇vδ(v)| . 〈v〉γ+σ−1.

Therefore

T3 + T4 .

∫
{〈v〉γ+σ−1 +

M

R
1R≤|v|≤2R} |∇vg|2 〈v〉2α +

∫
{〈v〉γ+σ−1 +

M

R
1R≤|v|≤2R} g2 〈v〉2α.

Thanks to Lemma 2.2, for M,R > 0 large enough, we have

T1 + T3 + T4 ≤ −λ‖〈v〉 γ
2 +α ∇̃v(∇vg)‖2L2

x,v
− λ‖〈v〉 γ+σ

2 +α∇vg‖2L2
x,v

+ C‖〈v〉 γ+σ−1
2 +α g‖2L2

x,v
.
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Performing an integration by parts, we first obtain

T2 = −
∫
(∇v b̄j) ∂jg∇vg 〈v〉2α −

∫
(∇v āij) ∂jg ∂i∇vg 〈v〉2α −

∫
(∇vāij) ∂jg∇vg ∂i〈v〉2α

=: U + V +W.

Thanks to Lemma 2.1, we easily have

U +W . ‖〈v〉 γ
2 +α∇vg‖2L2

x,v
.

We make another integration by parts for V (now with respect to ∇v), we get

V =

∫
(∆v āij) ∂ig ∂jg 〈v〉2α +

∫
(∇v āij) ∂ig ∂j∇vg 〈v〉2α +

∫
(∇v āij) ∂ig ∂jg∇v〈v〉2α,

and we recognize that the middle term is equal to −V , so that

V =
1

2

∫
(∆v āij) ∂ig ∂jg 〈v〉2α +

1

2

∫
(∇v āij) ∂ig ∂jg∇v〈v〉2α . ‖〈v〉 γ

2 +α∇vg‖2L2
x,v
.

We finally obtain (for M,R > 0 large enough)

(6.14)

∫

x,v

∇v(Bmg) · ∇vg 〈v〉2α ≤ −λ‖〈v〉 γ
2 +α ∇̃v(∇vg)‖2L2

x,v
− λ‖〈v〉 γ+σ

2 +α∇vg‖2L2
x,v

+ C‖〈v〉 γ+σ−1
2 +α g‖2L2

x,v
+ C‖〈v〉 γ

2+α ∇̃vg‖2L2
x,v
.

By Cauchy-Schwarz inequality, we also get

(6.15)

∫

x,v

∇xg · ∇vg 〈v〉2α ≤ Cη−1/2‖〈v〉 γ+σ
2 ∇xg‖2L2

x,v
+ Cη1/2‖〈v〉2α− γ+σ

2 ∇vg‖L2
x,v
.

Remark that the first term in the right-hand side of (6.15) can be controlled by the second term
in the right-hand side of (6.13), as well as

2α− γ + σ

2
=
γ

2
if

γ

2
+
σ

4
≥ γ + σ,

2α− γ + σ

2
=
γ + σ

2
+ α =

3

2
(γ + σ) if

γ

2
+
σ

4
< γ + σ.

As a consequence, the last term in (6.15) can be controlled by the first term in the right-hand
side of (6.12) or by the second term in the right-hand-side of (6.14).

Step 3. Putting together previous estimates, it follows that for any η > 0,

d

dt
‖g‖2

H̃1
x,v

≤ −λ‖〈v〉 γ+σ
2 g‖2L2

x,v
+ ηC‖〈v〉 γ+σ−1

2 +α g‖2L2
x,v

− λ‖〈v〉 γ
2 ∇̃vg‖2L2

x,v
+ ηC‖〈v〉 γ

2 +α ∇̃vg‖2L2
x,v

− λ‖〈v〉 γ+σ
2 ∇xg‖2L2

x,v
+ η1/2C‖〈v〉 γ+σ

2 ∇xg‖2L2
x,v

− λ‖〈v〉 γ
2 ∇̃vg‖2L2

x,v
− ηλ‖〈v〉 γ+σ

2 +α∇vg‖2L2
x,v

+ η3/2C‖〈v〉2α− γ+σ
2 ∇vg‖2L2

x,v

− λ‖〈v〉 γ
2 ∇̃v(∇xg)‖2L2

x,v
− ηλ‖〈v〉 γ

2+α ∇̃v(∇vg)‖2L2
x,v
,

and we conclude the proof by taking η > 0 small enough. �

Corollary 6.5. Let m0,m1 be admissible weight functions such that m1 ≻ m0 ≻ 〈v〉(γ+3)/2.
There hold

(6.16) ‖SB̄(t)‖H2
xL

2
v(m1)→H2

xL
2
v(m0) . Θm1,m0(t), ∀ t ≥ 0,

(6.17) ‖SB̄(t)‖H1
x,v(m1)→H1

x,v(m0) . Θm1,m0(t), ∀ t ≥ 0,
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Let m0,m1,m be admissible polynomial weight functions such that m � m1 ≻ m0 ≻ 〈v〉(γ+3)/2.
Then there holds

(6.18) ‖SB̄∗
m
(t)‖H2

xL
2
v(ω1)→H2

xL
2
v(ω0) . Θm1,m0(t), ∀ t ≥ 0,

where ω1 := m/m0 and ω0 := m/m1.

Proof. The proof follows the same arguments of Lemma 3.1, using the weakly dissipative esti-
mates of Lemmas 6.2, 6.3 and 6.4. �

6.5. Regularisation properties of SB̄ and (ASB̄)
(∗n). We start proving regularisation prop-

erties of the semigroup SB̄ in some large weighted Lebesgue and Sobolev spaces in the spirit
of Hérau’s quantitative version [22] of the Hörmander hypoellipticity property of the kinetic
Fokker-Planck equation.

Lemma 6.6. Let m,m1 be admissible polynomial weight functions such that 〈v〉3/2 ≺ m1 ≺ m
with m1 ≺ µ−1/2. Then the following regularity estimates hold:

(i) For any n ∈ N∗, there holds

(6.19) ∀ t > 0, ‖SB̄(t)‖L2
x,v(m)→Hn

x,v(m1〈v〉γ/2) .
Θm,m1(t)

t3n/2 ∧ 1
.

(ii) For any ℓ ∈ N, there holds

(6.20) ∀ t > 0, ‖SB̄(t)‖Hℓ
x(H

−1
v,∗(m))→Hℓ

xL
2
v(m1〈v〉γ/2) .

Θm,m1(t)

t1/2 ∧ 1
.

Proof. We split the proof into two steps.

Step 1. Proof of (i). We only prove (6.19) in the case n = 1, the other cases can be obtained by
iterating the case n = 1. In what follows we shall denote λ,C > 0 positive constants that can
change from line to line.

Let us denote m0 := m1〈v〉γ/2 and ft = SB̄(t)f . Define g0t = m0ft and g1t = m1ft, which
verify g0t = SB̄m0

(t)g0 and g1t = SB̄m1
(t)g1. We define the functional

F(t) := ‖g1t ‖2L2
x,v

+ α1 t ‖∇vg
0
t ‖2L2

x,v
+ α2 t

2 〈∇xg
0
t ,∇vg

0
t 〉L2

x,v
+ α3 t

3 ‖∇xg
0
t ‖2L2

x,v
,

and choose αi, i = 1, 2, 3 such that 0 < α3 ≤ α2 ≤ α1 ≤ 1 and α2
2 ≤ α1α3. We already observe

that we have the following lower bounds

(6.21) ∀ t ∈ [0, 1], F(t) & ‖g1t ‖2L2
x,v

+ α3 t
3 ‖∇x,vg

0
t ‖2L2

x,v
& α3t

3 ‖g0t ‖2H1
x,v
,

and also

(6.22) ∀ t ∈ [0, 1], F(t) & ‖g1t ‖2L2
x,v

+ α1 t ‖∇vg
0
t ‖2L2

x,v
& α1t ‖g0t ‖2L2

x(H
1
v )

& α1t ‖g0t ‖2L2
x(H

1
v,∗)

,

where we have used the embedding L2
x(H

1
v ) ⊂ L2

x(H
1
v,∗) in the last inequality.

We derive the functional F in time to obtain

d

dt
F(t) =

d

dt
‖g1t ‖2L2

x,v
+ α1 ‖∇vg

0
t ‖2L2

x,v
+ α1 t

d

dt
‖∇vg

0
t ‖2L2

x,v

+ 2α2 t 〈∇xg
0
t ,∇vg

0
t 〉L2

x,v
+ α2 t

2 d

dt
〈∇xg

0
t ,∇vg

0
t 〉L2

x,v

+ 3α3 t
2 ‖∇xg

0
t ‖2L2

x,v
+ α3 t

3 d

dt
‖∇xg

0
t ‖2L2

x,v
.
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Recall that B̄m is defined in (6.10), so that we compute

d

dt
〈∇xg

0,∇vg
0〉L2

x,v
=

∫
∇x(B̄mg0) · ∇vg

0 +∇v(B̄mg0) · ∇xg
0

=

∫
āij∂ij(∇xg

0)∇vg
0 + βj ∂j(∇xg

0)∇vg
0 + (δ −MχR)∇xg

0 ∇vg
0 − v · ∇x(∇xg

0)∇vg
0

+

∫
āij∂ij(∇vg

0)∇xg
0 + βj ∂j(∇vg

0)∇xg
0 + (δ −MχR)∇vg

0∇xg
0 − v · ∇x(∇vg

0)∇xg
0

+

∫
(∇v āij)∂ijg

0 ∇xg
0 + (∇vβj) ∂jg

0 ∇xg
0 +∇v(δ −MχR)g

0 ∇xg
0 − |∇xg

0|2.

Gathering terms and integrating by parts in last expression, we obtain (with the same type of
arguments as in step 2 of Lemma 6.4)

d

dt
〈∇xg

0,∇vg
0〉L2

x,v
= −2

∫
āij∂i(∇xg

0) ∂j(∇vg
0
v) +

∫
{−∂jβj + c̄+ 2δ − 2MχR}∇xg

0 ∇vg
0

+

∫
∇v(βj − b̄j) ∂jg

0∇xg
0 − ‖∇xg

0‖2L2
x,v
.

From that equation, we deduce

(6.23)

d

dt
〈∇xg

0
t ,∇vg

0
t 〉L2

x,v
≤ C‖〈v〉 γ

2 ∇̃v(∇xg
0
t )‖L2

x,v
‖〈v〉 γ

2 ∇̃v(∇vg
0
t )‖L2

x,v

+ C‖〈v〉 γ
2 ∇xg

0
t ‖L2

x,v
‖〈v〉 γ

2 ∇vg
0
t ‖L2

x,v
− ‖∇xg

0
t ‖2L2

x,v
.

Recall that from Lemma 6.2, we already have

(6.24)
d

dt
‖g1t ‖2L2

x,v
≤ −λ‖〈v〉 γ

2 ∇̃vg
1
t ‖2L2

x,v
− λ‖〈v〉 γ

2 g1t ‖2L2
x,v
.

Moreover, thanks to the proof of Lemma 6.4, we get

(6.25)

d

dt
‖∇vg

0
t ‖2L2

x,v
≤ −λ‖〈v〉 γ

2 ∇̃v(∇vg
0
t )‖2L2

x,v
− λ‖〈v〉 γ

2 ∇vg
0
t ‖L2

x,v

+ C‖〈v〉 γ−1
2 g0t ‖2L2

x,v
+ C‖〈v〉 γ

2 ∇̃vg
0
t ‖2L2

x,v

+ C‖∇xg
0
t ‖L2

x,v
‖∇vg

0
t ‖L2

x,v
.

Using Lemma 6.2 and the fact that ∇x commutes with B̄, we also have

(6.26)
d

dt
‖∇xg

0
t ‖2L2

x,v
≤ −λ‖〈v〉 γ

2 ∇̃v(∇xg
0
t )‖2L2

x,v
− λ‖〈v〉 γ

2 ∇xg
0
t ‖2L2

x,v
.

Let us denote D1 := λ(‖〈v〉 γ
2 ∇̃vg

1
t ‖2L2

x,v
+ ‖〈v〉 γ

2 g1t ‖2L2
x,v

) the absolute value of the dissipative

terms in (6.24), D2 := λ(‖〈v〉 γ
2 ∇̃v(∇vg

0
t )‖2L2

x,v
+ ‖〈v〉 γ

2 ∇vg
0
t ‖L2

x,v
) the absolute value of the

dissipative terms in (6.25), D3 := ‖∇xg
0
t ‖2L2

x,v
the absolute value of the dissipative terms in

(6.23), and finally D4 := λ(‖〈v〉 γ
2 ∇̃v(∇xg

0
t )‖2L2

x,v
+ ‖〈v〉 γ

2 ∇xg
0
t ‖2L2

x,v
) the absolute value of the

dissipative terms in (6.26). Observe that

‖∇vg
0
t ‖2L2

x,v
+ ‖〈v〉 γ

2 ∇̃vg
0
t ‖2L2

x,v
. D1.
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Gathering estimates (6.23), (6.24), (6.25) and (6.26), we obtain, for any t ∈ (0, 1],

d

dt
F(t) ≤ (−1 + Cα1 + Cα1t)D1 + (Cα1t+ Cα2t+ Cα2t

2)D
1/2
1 D

1/2
3

− α1tD2 − α2t
2D3 + Cα2t

2D
1/2
2 D

1/2
4 + Cα3t

2D3 − α3t
3D4

≤ (−1 + Cα1)D1 + Cα1tD
1/2
1 D

1/2
3

− α1tD2 + (−α2 + Cα3)t
2D3 + Cα2t

2D
1/2
2 D

1/2
4 − α3t

3D4.

Using Cauchy-Schwarz inequality we first get, for some 0 < α4 < α3 to be chosen later,

α1tD
1/2
1 D

1/2
3 .

α2
1

α3
D1 + α3t

2D3, α2t
2D

1/2
2 D

1/2
4 .

α2
2

α4
tD2 + α4t

3D4,

from which it follows, for t ∈ (0, 1],

d

dt
F(t) ≤ (−1 + Cα1 + C

α2
1

α3
)D1 + t(−α1 + C

α2
2

α4
)D2 + t2(−α2 + Cα3)D3 + t3(−α3 + Cα4)D4.

Let ǫ ∈ (0, 1). We choose α1 = ǫ > α2 = ǫ3/2 > α3 = ǫ5/3 > α4 = ǫ11/6 so that α2
2 ≤ α1 α3.

Taking ǫ > 0 small enough, we easily conclude to

(6.27) ∀ t ∈ (0, 1],
d

dt
F(t) ≤ 0.

This implies, coming back to the function ft = SB̄(t)f and using (6.21),

∀ t ∈ (0, 1], t3 ‖SB̄(t)f‖2H1
x,v(m1〈v〉γ/2) . ‖f‖2L2

x,v(m1)
,

which already gives (6.19) for small times t ∈ (0, 1]. For large times t > 1 and m ≻ m1 (recall
that m1〈v〉γ/2 ≻ 〈v〉(γ+3)/2) we write, using first the last estimate and next (6.16),

‖SB̄(t)f‖H1
x,v(m1〈v〉γ/2) = ‖SB̄(1)(SB̄(t− 1)f)‖H1

x,v(m1〈v〉γ/2)

. ‖SB̄(t− 1)f‖L2
x,v(m1)

. Θm,m1(t)‖f‖L2
x,v(m),

which completes the proof of (6.19). In a similar way, using (6.27) together with (6.22) (instead
of (6.21)) and (6.16), we obtain

(6.28) ‖SB̄(t)‖L2
xL

2
v(m)→L2

x(H
1
v,∗(m1〈v〉γ/2)) .

Θm1,m0(t)

t1/2 ∧ 1
, ∀ t > 0.

Step 2. Proof of (ii). We only need to prove (6.20) for ℓ = 0, since the operators ∇x and B̄
commute.

Define ω0 := 1, ω1 := 〈v〉|γ|/2 and ω := m/(m1〈v〉γ/2) so that 1 ≺ ω ≺ m〈v〉−(γ+3)/2. Let us
denote ft = SB̄(t)f and φt = SB̄∗

m
φ. Arguing as in Step 1, we define the functional

R(t) := ‖φt‖2L2
x,v(ω1)

+ a1t‖∇vφt‖2L2
x,v(ω0)

+ a2t
2〈∇xφt,∇vφt〉2L2

x,v(ω0)
+ a3t

3‖∇xφt‖2L2
x,v(ω0)

,

and we can choose appropriate constants a1, a2, a3 > 0 such that it follows

‖SB̄∗
m
(t)‖L2

xL
2
v(ω)→L2

x(H
1
v,∗(ω1〈v〉γ/2)) .

Θm1,m0(t)

t1/2 ∧ 1
, ∀ t > 0,

Last estimate implies by duality

‖SB̄(t)‖L2
x(H

−1
v,∗(m))→L2

xL
2
v(m1〈v〉γ/2) .

Θm1,m0(t)

t1/2 ∧ 1
, ∀ t > 0,

which completes the proof. �

As a consequence of Lemma 2.5, we also obtain an analogous result for high-order Sobolev
spaces.
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Corollary 6.7. For any θ ∈ (0, 1) and n ∈ N, there hold A ∈ B(Hn
xL

2
v, H

n
xL

2
v(µ

−θ)) and
A ∈ B(Hn

x,v, H
n
x,v(µ

−θ)).

We finally obtain the following regularity properties, as a consequence of Corollary 6.5,
Lemma 6.6 and Corollary 6.7.

Corollary 6.8. Let m, ν be admissible weight functions such that 〈v〉(γ+3)/2 ≺ m ≺ ν and
µ−1/2 ≺ ν ≺ µ−1. There hold

(6.29) ∀ t > 0, ‖(ASB̄)
(∗2)(t)‖L2

x,v(ν)→H1
x,v(ν)

.
e−λt

2/|γ|

t1/2 ∧ 1
,

and

(6.30) ∀ t > 0, ‖(SB̄A)(∗4)(t)‖L2
x,v(m)→H2

x,v(m) . e−λt
2/|γ|

.

Proof. We define m1 := m〈v〉|γ|/2 ≻ 〈v〉3/2 and observe that with the choice of the weight ν we

have Θν,m1(t) = e−λt
2/|γ|

.

Step 1. Thanks to Corollary 6.5 and Corollary 6.7, we already have,

‖ASB̄(t)‖L2
x,v(ν)→L2

x,v(ν)
. ‖A‖L2

x,v(m)→L2
x,v(ν)

‖SB̄(t)‖L2
x,v(ν)→L2

x,v(m) . Θν,m(t)

and

‖SB̄A(t)‖L2
x,v(m)→L2

x,v(m) . ‖SB̄(t)‖L2
x,v(ν)→L2

x,v(m) ‖A‖L2
x,v(m)→L2

x,v(ν)
. Θν,m(t)

so that, for any j ∈ N∗,

‖(ASB̄)
(∗j)(t)‖L2

x,v(ν)→L2
x,v(ν)

, ‖(SB̄A)(∗j)(t)‖L2
x,v(m)→L2

x,v(m) . Θν,m(t),

and similarly

‖(ASB̄)
(∗j)(t)‖H1

x,v(ν)→H1
x,v(ν)

, ‖(SB̄A)(∗j)(t)‖H1
x,v(m)→H1

x,v(m) . Θν,m(t).

Step 2. We prove (6.29). We first write

‖(ASB̄)
(∗2)(t)‖L2

x,v(ν)→H1
x,v(ν)

.

∫ t/2

0

‖ASB̄(t− s)ASB̄(s)‖L2
x,v(ν)→H1

x,v(ν)
ds

+

∫ t

t/2

‖ASB̄(t− s)ASB̄(s)‖L2
x,v(ν)→H1

x,v(ν)
ds =: I1 + I2.

Using Corollary 6.5, (6.19) of Lemma 6.6, Corollary 6.7 and Step 1, we have

I1 .

∫ t/2

0

‖A‖H1
x,v(m1〈v〉γ/2)→H1

x,v(ν)
‖SB̄(t− s)‖L2

x,v(ν)→H1
x,v(m1〈v〉γ/2) ‖ASB̄(s)‖L2

x,v(ν)→L2
x,v(ν)

ds

.

∫ t/2

0

Θν,m1(t− s)

(t− s)3/2 ∧ 1
Θν,m(s) ds . Θν,m1(t/2)

∫ t/2

0

Θν,m(s)

(t− s)3/2 ∧ 1
ds .

Θν,m1(t)

t1/2 ∧ 1
.

For the other term I2, we use again Corollary 6.5, (6.19) of Lemma 6.6, Corollary 6.7 and Step
1, but in a different order, to obtain

I2 .

∫ t

t/2

‖ASB̄(t− s)‖H1
x,v(ν)→H1

x,v(ν)
‖A‖H1

x,v(m1〈v〉γ/2)→H1
x,v(ν)

‖SB̄(s)‖L2
x,v(ν)→H1

x,v(m1〈v〉γ/2) ds

.

∫ t

t/2

Θν,m(t− s)
Θν,m1(s)

s3/2 ∧ 1
ds . Θν,m1(t/2)

∫ t

t/2

Θν,m(t− s)

s3/2 ∧ 1
ds .

Θν,m1(t)

t1/2 ∧ 1
,

and the proof of (6.29) is complete.
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Step 3. We now turn to the proof of (6.30). We claim that, for any j ∈ N, there holds

(6.31) ‖(SB̄A)(∗(j+1))(t)‖L2
x,v(m)→Hn

x,v(m) .
Θν,m1(t)

t3n/2−j ∧ 1
,

so that we can conclude to (6.30) by choosing j = 3 when n = 2.
The case j = 0 follows directly from Lemma 6.6 and Corollary 6.7, and we prove the claim by

induction. Suppose that (6.31) holds for some j then we compute, splitting again the integral
into two parts,

‖(SB̄A)(∗(j+2))(t)‖L2
x,v(m)→Hn

x,v(m) .

∫ t/2

0

‖(SB̄A)(∗(j+1))(t− s)SB̄A(s)‖L2
x,v(m)→Hn

x,v(m) ds

+

∫ t

t/2

‖SB̄A(t− s)(SB̄A)(∗(j+1))(s)‖L2
x,v(m)→Hn

x,v(m) ds

=: T1 + T2.

In a similar way as in Step 2, using Corollary 6.5, (6.19) of Lemma 6.6, Corollary 6.7 and Step 1,
we obtain

T1 .

∫ t/2

0

‖(SB̄A)(∗(j+1))(t− s)‖L2
x,v(m)→Hn

x,v(m) ‖SB̄A(s)‖L2
x,v(m)→L2

x,v(m) ds

.

∫ t/2

0

Θν,m1(t− s)

(t− s)3n/2−j ∧ 1
Θν,m(s) ds .

Θν,m1(t)

t3n/2−(j+1) ∧ 1
.

Moreover,

T2 .

∫ t

t/2

‖SB̄A(t− s)‖L2
x,v(m)→L2

x,v(m) ‖(SB̄A)(∗(j+1))(s)‖L2
x,v(m)→Hn

x,v(m) ds

.

∫ t

t/2

Θν,m(t− s)
Θν,m1(s)

s3n/2−j ∧ 1
ds .

Θν,m1(t)

t3n/2−(j+1) ∧ 1
,

which completes the proof. �

6.6. Decay of the semigroup SL̄. With the results above we obtain the decay of the semigroup
SL̄Π̄ in large spaces as considered in the statement of Theorem 1.1.

We first write a semigroup factorization. Recall that L̄ = A+ B̄ and that Π̄ commutes with
L̄. For any ℓ, n ∈ N∗, we can write the iterated Duhamel formulas

Π̄SL̄ =
∑

0≤j≤ℓ−1

Π̄SB̄ ∗ (ASB̄)
(∗j) + Π̄SL̄ ∗ (ASB̄)

(∗ℓ)

SL̄Π̄ =
∑

0≤i≤n−1

(SB̄A)(∗i) ∗ SB̄Π̄ + (SB̄A)(∗n) ∗ SL̄Π̄,

and then deduce

(6.32)

SL̄Π̄ =
∑

0≤j≤ℓ−1

Π̄SB̄ ∗ (ASB̄)
(∗j) +

∑

0≤i≤n−1

(SB̄A)(∗i) ∗ SB̄Π̄ ∗ (ASB̄)
(∗ℓ)

+ (SBA)(∗n) ∗ SL̄Π̄ ∗ (ASB̄)
(∗ℓ).

Theorem 6.9. Let m0,m1 be two admissible weight functions such that 〈v〉(γ+3)/2 ≺ m0 ≺ m1

and m0 � µ−1/2. Then we have the uniform in time bound

(6.33) t 7→ ‖SL̄(t)Π̄‖H2
xL

2
v(m0)→H2

xL
2
v(m0) ∈ L∞(R+),

as well as the decay estimate

(6.34) ‖SL̄(t)Π̄‖H2
xL

2
v(m1)→H2

xL
2
v(m0) . Θm1,m0(t) ∀ t ≥ 0.
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Let m0,m1 be admissible polynomial weight functions such that 〈v〉3/2 ≺ m0 ≺ m1. Then the
following regularity estimate holds

(6.35) ‖SL̄(t)Π̄‖H2
x(H

−1
v,∗(m1))→H2

xL
2
v(m0〈v〉γ/2) .

Θm1,m0(t)

t1/2 ∧ 1
, ∀ t > 0.

Proof. We fix an admissible weight function ν such that µ−1/2 ≺ ν ≺ µ−1 with ν ≻ m1, and
split the proof into five steps.

Step 1. Decay in the small function space. Let us denote E0 = H1
x,v(µ

−1/2) and E1 = H1
x,v(ν).

Arguing exactly as in Proposition 3.3, using Lemma 6.1 and Lemma 6.4 we obtain

∀ t ≥ 0, ‖SL̄(t)Π̄‖E1→E0 . e−λt
2

|γ|
.

Step 2. Factorization. We write the factorization identity thanks to (6.32)

(6.36)

SL̄Π̄ =
∑

0≤j≤2

Π̄SB̄ ∗ (ASB̄)
(∗j) +

∑

0≤i≤3

(SB̄A)(∗i) ∗ SB̄Π̄ ∗ (ASB̄)
(∗3)

+ (SB̄A)(∗4) ∗ SL̄Π̄ ∗ (ASB̄)
(∗3)

=:
∑

0≤j≤2

Sj1 +
∑

0≤i≤3

Si2 + S3.

Step 3. Proof of (6.33). Let us denote X0 = H2
xL

2
v(m0) and X2 = H2

xL
2
v(ν). Thanks to

Corollary 6.8, we already have

t 7→ ‖(ASB̄)
(∗2)(t)‖X2→E1 ∈ L1(R+), t 7→ ‖(SB̄A)(∗4)(t)‖E0→X0 ∈ L1(R+).

From Corollary 6.5 and Corollary 6.7, it also holds, for any i, j ≥ 1,

t 7→ ‖SB̄(t)‖X2→X0 , t 7→ ‖(ASB̄)
(∗j)(t)‖X2→X2 , t 7→ ‖(SB̄A)(∗i)(t)‖X0→X0 ∈ L1(R+),

moreover

t 7→ ‖SB̄(t)‖X0→X0 , t 7→ ‖ASB̄‖X0→X2 ∈ L∞(R+).

Gathering these previous estimates and using the factorization (6.36), we first get

‖S0
1(t)‖X0→X0 ∈ L∞

t (R+),

Moreover, for 1 ≤ j ≤ 2 and 0 ≤ i ≤ 3, we also have

‖Sj1(t)‖X0→X0 . ‖SB̄(t)‖X2→X0 ∗ ‖(ASB̄)
(∗(j−1))(t)‖X2→X2 ∗ ‖ASB̄(t)‖X0→X2

∈ L1
t (R+) ∗ L1

t (R+) ∗ L∞
t (R+) ⊂ L∞

t (R+),

and

‖Si2(t)‖X0→X0 . ‖(SB̄A)(∗i)(t)‖X0→X0 ∗ ‖SB̄(t)‖X2→X0 ∗ ‖(ASB̄)
(∗2)(t)‖X2→X2 ∗ ‖ASB̄(t)‖X0→X2

∈ L1
t (R+) ∗ L1

t (R+) ∗ L1
t (R+) ∗ L∞

t (R+) ⊂ L∞
t (R+).

Finally, using Step 1, it follows

‖S3(t)‖X0→X0 . ‖(SB̄(t)A)(∗4)‖E0→X0 ∗ ‖SL̄(t)Π̄‖E1→E0 ∗ ‖(ASB̄)
(∗2)(t)‖X2→E1 ∗ ‖ASB̄(t)‖X0→X2

∈ L1
t (R+) ∗ L1

t (R+) ∗ L1
t (R+) ∗ L∞

t (R+) ⊂ L∞
t (R+),

which completes the proof of (6.33).

Step 4. Proof of (6.34). Let us denote X0 = H2
xL

2
v(m0), X1 = H2

xL
2
v(m1) and X2 = H2

xL
2
v(ν).

From Corollary 6.8 it follows

t 7→ Θ−1
m1,m0

(t)‖(ASB̄)
(∗2)(t)‖X2→E1 ∈ L1(R+), t 7→ Θ−1

m1,m0
(t)‖(SB̄A)(∗4)(t)‖E0→X0 ∈ L1(R+).
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Thanks to Corollary 6.5 and Corollary 6.7, it also holds, for any i, j ≥ 1,

t 7→ Θ−1
m1,m0

(t)‖SB̄(t)‖X2→X0 ∈ L1(R+),

t 7→ Θ−1
m1,m0

(t)‖(ASB̄)
(∗j)(t)‖X2→X2 ∈ L1(R+),

t 7→ Θ−1
m1,m0

(t)‖(SB̄A)(∗i)(t)‖X0→X0 ∈ L1(R+),

and also

t 7→ Θ−1
m1,m0

(t)‖SB̄(t)‖X1→X0 , t 7→ Θ−1
m1,m0

(t)‖ASB̄‖X1→X2 ∈ L∞(R+).

We deduce (6.34) by writing the factorization (6.36) and using the above estimates. Indeed,
with Θ := Θm1,m0 , we have

Θ−1‖SLΠ‖X1→X0

. Θ−1‖SB̄‖X1→X0

+
∑

1≤j≤2

(Θ−1‖SB̄‖X2→X0) ∗ (Θ−1‖(ASB̄)
∗(j−1)‖X2→X2) ∗ (Θ−1‖ASB̄‖X1→X2)

+
∑

0≤i≤3

(Θ−1‖(SB̄A)∗i‖X0→X0) ∗ (Θ−1‖SB̄‖X2→X0) ∗ (Θ−1‖(ASB̄)
∗2‖X2→X2 ) ∗ (Θ−1‖ASB̄‖X1→X2)

+ (Θ−1‖(SB̄A)∗4‖E0→X0) ∗ (Θ−1‖SL̄‖E1→E0) ∗ (Θ−1‖(ASB̄)
∗2‖X2→E1) ∗ (Θ−1‖ASB̄‖X1→X2).

Step 5. Proof of (6.35). Let us denote Z1 = H2
x(H

−1
v,∗(m1)), X̃0 = H2

xL
2
v(m0〈v〉γ/2), and also

Θ̃m1,m0(t) = Θm1,m0(t)/(t
1/2 ∧ 1). From Corollary 6.8 it follows

t 7→ Θ̃−1
m1,m0

(t)‖(ASB̄)
(∗2)(t)‖X2→E1 ∈ L1(R+), t 7→ Θ̃−1

m1,m0
(t)‖(SB̄A)(∗4)(t)‖E0→X̃0

∈ L1(R+).

Thanks to Corollary 6.5 and Corollary 6.7, it also holds, for any i, j ≥ 1,

t 7→ Θ̃−1
m1,m0

(t)‖SB̄(t)‖X2→X̃0
∈ L1(R+),

t 7→ Θ̃−1
m1,m0

(t)‖(ASB̄)
(∗j)(t)‖X2→X2 ∈ L1(R+),

t 7→ Θ̃−1
m1,m0

(t)‖(SB̄A)(∗i)(t)‖X̃0→X̃0
∈ L1(R+),

and also, using Lemma 6.6-(ii),

t 7→ Θ̃−1
m1,m0

(t)‖SB̄(t)f‖Z1→X̃0
∈ L∞(R+), t 7→ Θ̃−1

m1,m0
(t)‖ASB̄(t)‖Z1→X2 ∈ L∞(R+).

We deduce (6.35) by writing the factorization (6.36) and using the above estimates similarly as
in Step 4. �

6.7. Summary of the decay and dissipativity results for L̄. We introduce the appropriate
functional spaces and we summarize the decay and dissipativity properties of the semigroup SL̄

which will be useful in the next section.

From now on, for a given admissible weight function m such that m ≻ 〈v〉2+3/2, we define

(6.37) X := H2
xL

2
v(m), Y := H2

x(H
1
v,∗(m)), Z := H2

x(H
−1
v,∗(m)), X0 := H2

xL
2
v.

We also define the norm ||| · |||X on Π̄X , and its associated scalar product 〈〈·, ·〉〉X , given by

(6.38) |||g|||2X := η‖g‖2X +

∫ ∞

0

‖SL̄(τ)g‖2X0
dτ,

for η > 0 small enough.
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Theorem 6.10. Consider an admissible weight function m such that m ≻ 〈v〉2+3/2. With the
above assumptions and notations, the norm ||| · |||X is equivalent to the initial norm ‖ · ‖X on
Π̄X , and moreover, there exists η > 0 small enough such that

〈〈L̄Π̄f, Π̄f〉〉X . −‖Π̄f‖2Y , ∀ f ∈ X L̄
1 ,(6.39)

t 7→ ‖SL̄(t)Π̄‖Y→X0 ‖SL̄(t)Π̄‖Z→X0 ∈ L1(R+),(6.40)

where we recall that X L̄
1 is the domain of L̄ when acting on X .

The same remark as for Corollary 3.7 also works here.

Proof. The proof follows exactly the same arguments as in Proposition 3.6 and Corollary 3.7.
First of all, the equivalence of the norms follows as in Proposition 3.6 since m ≻ 〈v〉3/2.

Let us prove (6.40). We fix admissible polynomial weight functionsm0,m1 such that 〈v〉(γ+3)/2 ≺
m0 ≺ m1 � 〈v〉γ/2m. Thanks to estimate (6.34) in Theorem 6.9 together with the embeddings
H2
xL

2
v(m0) ⊂ X0 and Y ⊂ H2

xL
2
v(m1) we first obtain

‖SL̄(t)Π̄‖Y→X0 . Θm1,m0(t), ∀ t ≥ 0.

We know consider admissible polynomial weight functions m′
0,m

′
1 so that 〈v〉3/2 ≺ m′

0 ≺ m′
1 �

m. Thanks to (6.35) in Theorem 6.9 and the embeddings H2
xL

2
v(m

′
0〈v〉γ/2) ⊂ X0 and Z ⊂

H2
x(H

−1
v,∗(m

′
1)), it follows

‖SL̄(t)Π̄‖Z→X0 .
Θm′

1,m
′
0
(t)

t1/2 ∧ 1
, ∀ t > 0.

We then deduce (6.40) by arguing similarly as in the proof of Corollary 3.7. �

6.8. Nonlinear estimate. From the nonlinear estimate for the homogeneous case established
in Lemma 4.3 and Corollary 4.4, we deduce the following estimate.

Lemma 6.11. Let m be an admissible weight function such that m ≻ 〈v〉2+3/2. Then

(6.41) 〈Q(f, g), h〉X .
(
‖f‖X ‖g‖Y + ‖f‖Y ‖g‖X

)
‖h‖Y .

As a consequence

(6.42) ‖Q(f, g)‖Z . ‖f‖X ‖g‖Y + ‖f‖Y ‖g‖X .

Proof. We proceed similarly as in [14, Lemma 3.5] and thus only sketch the proof. We remark
however that the estimates here are somewhat simpler than in [14], where the authors considered
different spaces (with 3 derivatives in x and different weight functions in the x-derivatives)
because there the weight function coming from the gain term of the linearized operator was
weaker than the weight function appearing here in the loss term coming from the nonlinear
estimates. For the most difficult term, we have thanks to Lemma 4.3,

〈∇2
xQ(f, g),∇2

xh〉L2
x,v(m) = 〈Q(∇2

xf, g) + 2Q(∇xf,∇xg) +Q(f,∇2
xg),∇2

xh〉L2
x,v(m)

.

∫

T3

(
‖∇2

xf‖L2(m) ‖g‖H1
∗(m) + ‖∇2

xf‖H1
∗(m) ‖g‖L2(m)

+‖∇xf‖L2(m) ‖∇xg‖H1
∗(m) + ‖∇xf‖H1

∗(m) ‖∇xg‖L2(m)

+‖f‖L2(m) ‖∇2
xg‖H1

∗(m) + ‖f‖H1
∗(m) ‖∇2

xg‖L2(m)

)
‖∇2

xh‖H1
∗(m) dx.

Using first the Cauchy-Schwarz inequality in the x variable and next the two Sobolev embeddings
H2
x ⊂ L∞

x and H1
x ⊂ L4

x, we straightforwardly obtain that the above RHS term is bounded by
the RHS term in (6.41). The proof of (6.42) is then straightforward. �
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6.9. Proof of the main result. For a solution F to the inhomogeneous Landau equation (1.1),
we consider the perturbation f = F − µ that verifies

(6.43)

{
∂tf = L̄f +Q(f, f)

f0 = F0 − µ.

Observe that, thanks to the conservation laws, there holds Π̄0f(t) = Π̄0f0 = 0 and also that
Π̄0Q(f(t), f(t)) = 0 for any t ≥ 0.

Proof of Theorem 1.1. Consider the spaces and norms defined in (6.37) and (6.38). The proof
then follows the same arguments as in the proof of the spatially homogeneous version of The-
orem 1.1 presented in Section 5, by using the dissipative, decay and regularity estimates of
Theorem 6.10 and the nonlinear estimates in Lemma 6.11.

For the sake of clarity we sketch the proof below.
Let f satisfy (6.43). Thanks to Theorem 6.10 and Lemma 6.11, arguing as in the proof of

Proposition 5.1, we obtain the following uniform in time a priori estimate

d

dt
|||f |||2X ≤ (C|||f |||X −K)‖f‖2Y ,

for some constants C,K > 0. For ε0 > 0 small enough, the existence and uniqueness of a solution
f for equation (6.43) such that (1.12) holds are then a consequence of this last estimate together
with standard arguments (as already presented in the proof of the spatially homogeneous version
of Theorem 1.1 in Section 5). Moreover, using the above estimate for different weight functions
〈v〉2+3/2 ≺ m̃ ≺ m, the proof of the decay result (1.13) follows exactly as in the spatially
homogeneous version of Theorem 1.1. �

We conclude the section by presenting a proof of our improvement of the speed of conver-
gence to the equilibrium for solutions to the spatially inhomogeneous Landau equation in a non
perturbative framework.

Proof of Corollary 1.4. Under the assumptions (1.15) and (1.16), [17, Theorem 2 & Section I.5]
implies that

‖f(t)‖L1
x,v

. 〈t〉−θ,
for some explicit constant θ > 0. We then write the interpolation inequality

‖f‖H2
x,v(m

α) . ‖f‖β1

H3
x,v

‖f‖β2

L1
x,v

‖f‖1−β1−β2

L1
x,v(m) ,

where α, β1, β2 ∈ (0, 1) are explicit constants. We conclude taking t0 > 0 large enough so
that ‖f(t0)‖H2

xL
2
v(m

α) ≤ ε0, applying Theorem 1.1 and observing that Θmα(t) ≃ Θm(t) (up to
changing the constants in (1.9)). �
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[5] Bátkai, A., Engel, K.-J., Prüss, J., and Schnaubelt, R. Polynomial stability of operator semigroups.
Math. Nachr. 279, 13-14 (2006), 1425–1440.

[6] Batty, C. J. K., Chill, R., and Tomilov, Y. Fine scales of decay of operator semigroups. J. Eur. Math.
Soc. 18, 4 (2016), 853–929.

[7] Batty, C. J. K., and Duyckaerts, T. Non-uniform stability for bounded semi-groups on Banach spaces.
J. Evol. Equ. 8, 4 (2008), 765–780.



44 K. CARRAPATOSO AND S. MISCHLER
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