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PONTRYAGIN PRINCIPLES IN INFINITE HORIZON IN
PRESENCE OF ASYMPTOTICAL CONSTRAINTS

JOEL BLOT AND THOI NHAN NGO

ABSTRACT. We establish necessary conditions of optimality for discrete-time
infinite-horizon optimal control in presence of constraints at infinity. These
necessary conditions are in form of weak and strong Pontryagin principles. We
use a functional analytic framework and multipliers rules in Banach (sequence)
spaces. We establish new properties on Nemytskii operators in sequence spaces.
We also provide sufficient conditions of optimality.

MSC 2010: 49J21, 65K05, 39A99.
Key words: infinite-horizon optimal control, discrete time

1. INTRODUCTION

The aim of this paper is to establish necessary conditions of optimality in the
form of Pontryagin principles for the following Optimal Control problem

Maximize K(y,u):= Z:;OS B (ye, ur)
when  y = (ys)ren € (R™)N, w := (ur)en € UY
Yo =1, im0 Yt = Yoo, w is bounded
Vt € N, yir1 = g(ye, ue)

(P)

where 8 € (0,1), U C R? is nonempty, ¢ : R® x U — R is a function, 1 and y., are
fixed vectors of R", g : R® x U — R" is a function, and (R™)N (respectively U")
denotes the set of the sequences in R™ (respectively U). In comparison with existing
results on bounded processes, the specificity of the present work is the presence of
the asymptotical constraint on the state variable: lim;_, o ¥+ = Yoo; its meaning is
that the optimal state of the problem stays near a ”good” state value on the long
run.

Such problem in discrete time and infinite horizon arises in several fields of
applications, for instance in optimal growth macroeconomic theory and in optimal
management of forests and fisheries; see the references in [5].

Our approach is functional analytic; we translate our problems as static of opti-
mization in suitable Banach sequence spaces.

Now we describe the contents of the paper. In Section 2 we introduce a problem
of optimal control which is equivalent to the initial problem in order to use classical
sequence spaces: ¢o(N,R™) the space of the sequences into R™ which converge to
zero at infinity, and ¢°°(N, U) the space of the sequences into U which are bounded.
In Section 3 we study properties of operators and functionals on sequence spaces. A
first novelty is a characterization of the operators which send ¢o(N,R™) x £>°(N, U)
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2 BLOT AND NGO

into ¢o(N,R™) (Theorem BI]). The other results use this characterization and ex-
isting results on Nemytskii operators from £*°(N,R™) x ¢*°(N,U) into £*°(N,R™).
Section 4 is devoted to the solutions which converge toward zero of a linear dif-
ference equation. These results are useful to establish regularity properties of the
differential of operators which formalize the nonlinear difference equation which
governs the system.

In Section 5 we establish a variation of a Karush-Kuhn-Tucker theorem which is
useful for weak Pontryagin principles and we recall a result which is useful for strong
Pontryagin principles.

In Section 6 and Section 7 (respectively Section 8 and Section 9) we establish weak
(respectively strong) Pontryagin principles.

In Section 10 and Section 11, we establish results of sufficient condition of optimal-
ity.

2. AN EQUIVALENT PROBLEM

In this section we formulate a problem which is equivalent to Problem (P) for
which we can work in classical Banach sequence spaces.
We consider the following Optimal Control problem

Maximize J(z,u) = 3,0 Btd(ze,uy)
(P1) when = (2;)ien € co(N,R™), u := (us)ien € £°(N,U)
Trog =0

Vt € Nyzyp1 = fa, uy).

When we choose ¢ : R" xU — R as ¢(x, u) = (2 + Yoo, u), f(z,u) = g(T+ Yoo, u) —
Yoo, Tt = Yt — Yoo for all t € N, 0 = n — yo, Problem (P1) is equivalent to Problem
(P). And so our strategy for the sequel of the paper is to work on (P1) and to
translate the results on (P1) into results on (P).

For the properties of ¢o(N,R™) we refer to Section 15.3 in [2], and for those of the
space £>°(N, U) we refer to Section 15.7 in [2].

3. NONLINEAR OPERATORS AND FUNCTIONALS

This section is devoted to the study of several operators between sequence spaces;
notably the Nemytskii operators (also called superposition operators), and to the
study of the functionals which define the criterium of our maximization problems.
We establish results of continuity and of Fréchet differentiability.

Theorem 3.1. Let X, V, W be three real normed spaces, U be a nonempty subset
of V, and F : X x U — W be a mapping such that, for all x € X, the partial
mapping F(x,-) transforms the bounded subsets of U into bounded subsets of W.
Then the following assertions are equivalent.

(i) Vz € ¢o(N, X), Yu € £°(N,U), (F(xt,ut))ten € co(N, W).

(ii) For all nonempty bounded subset B in U, limy_o(sup,cpg ||F(z,u)||) = 0.

Proof. (i=1ii) Let B be a nonempty bounded subset of U. Let z € ¢o(N, X).
From the assumption on F', we know that, for all t € N, we have sup, g || F(z+, u)| <
400. Therefore, for all ¢ € N, there exists u; € B such that

1
0 < sup || F(ae,w)|| < ||[F(xe, ue)|| + ——.
< sup [ Fla )] < 1P (o un)ll+
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Since, for all t € N, u; € B, we have u € £*°(N,U). Then using (i), we obtain
limy s 4 oo || F' (24, ue)|] = 0, and from the previous inequality we obtain
limy—s oo (SUp,e g || F (24, w)||) = 0, and since we work in normed spaces we can use
the sequential characterization of the limit and assert that we obtain (ii).

(ii = 1) Let z € ¢o(N, X) and u € ¢*°(N,U). Then the subset B := {u; : t € N}
is bounded, and, for all ¢ € N, the following inequality holds:

0 < [[F (2, ue)|| < sup [|[F(ze, )],
ueB

and from (ii), since limy_, o x; = 0, we obtain lim;_, 4 o (sup,¢cp || F(2¢, u)||) = 0,
and from the previous inequality we deduce lim; 40 || F(x¢,us)|| = 0, ie. the
sequence (F(xy,ut))ren belongs to co(N,Y). O

Remark 3.2. Assertion (i) of Theorem [31] permits to define the Nemytskii oper-
ator

Np :co(N, X) x £2(N,U) — co(N, W), Np((21)ten, (ut)ien) = (F(zt, ut))ten

Remark 3.3. We set Bg := {v € V : |v|| < R} when R € (0,+00). In the
setting of Theorem[31l, the assumption on F is equivalent to the following condition:
Ve € X, VR € (0,+00), sup,cp.nv [|1F(z,u)|]| < +o0, and the assertion (ii) is
equivalent to: YR € (0, +00), limy o(sup, e gnu | F(z,u)|) = 0.

Also note that assumption (ii) and the continuity of F(-,u) for all w € U imply
F(0,u) =0 for all u € U, since, for all u € R, {u} is a nonempty bounded subset
and 0 = lim, o | F(z,uw)|| = || F(0,u)].

Remark 3.4. In the setting of Theorem[3.1), if in addition we assume that dimV <
400 and U 1is closed, using the relative compactness of bounded subsets of U, if
F(z,-) € CO(U,W) (the space of continuous mappings from U into W), F(x,")
transforms the bounded sets into bounded sets.

Theorem 3.5. Let U be a nonempty closed subset of R%. Let F € CO(R™ x U,R™)
such that limg 0 (sup,e g, v | F(x,u)|]) =0 for all R € (0, +00).

Then we have the continuity of the Nemytskii operator on F, i.e.

Np € CO(CQ(N, Rn) X fOO(N, U), Co(N, Rm))

Proof. First using Remark 3.4] the assumption of Theorem B.1] is fulfilled. Us-
ing Remark B3] assertion (ii) of Theorem Bl is fulfilled, and using Theorem B]
and Remark B2 the operator Np is well defined from ¢o(N,R™) x £>°(N,U) into
co(N,R™). Since the bounded subsets of R™ x U are relatively compacts, we can
defined the other Nemytskii operator

N L°(N,R™) x £2°(N,U) — £°(N,R™), Np((z¢)een, (ue)ien) = (F (s, ur))en-

Since ¢>°(N,R"™) x £*°(N,U) is isometrically isomorphic to ¢>°(N,R™ x U), as a
consequence of Theorem Al.1 in [3] (p. 22), we can assert that N} is continuous,
and then N is continuous as a restriction of a continuous operator. (I

Let X, V, W be real Banach spaces, and U be a nonempty subset of V. Let
F: X xU — W be a mapping. we say that F' is of class C! on X x U when there
exist an open subset U; in V such that U C U; and a mapping F; € C1(X x Uy, W)
such that Fy |, , = F. Such a definition is common in the differential theories; see

e.g. [ (p. 1).
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Remark 3.6. When Fy,F, € CY(X x Uy, W) such that Fiico = Fogy = F,
when U is star-shaped with respect to u®, when u,u® € U and 2° € X, note that, for
all 0 € (0,1), we have Fy (20, (1 — 0)u® + Ou) = Fp(2°, (1 — 0)u® + 0u) = F(2°, (1 —
0)u’+0u). Therefore we have Do Fy(z°, u®)(u—u’) = %‘970F1 (20, (1-0)u’ +0u) =
d%le:oFQ(zO’ (1 = 0)u® + Ou) = DaFy(2°, u®)(u — u), and so DaF (2, u®)(u — u®)
does not depend of the extension of F.

Recall that U is star-shaper with respect to u® means that, for allu € U, the segment
[u®, u] is included in U, [12] (p. 93).

When V' and W are normed spaces, £(V,W) denotes the space of the linear
continuous functions from V into W, and when L € £(V, W), we write |L|¢ :=
sup{||Lv[| : v € V, [Jv]| < 1}.

Theorem 3.7. Let U be a nonempty closed subset of R*. Let F : R® x U — R™
be a mapping which satisfies the following assumptions.

(i) F e CY{R" x U,R™).

(ii) There exists u® € U such that F(0,u°) = 0 and U is star-shaped with respect

to u®.

(ili) limg—o(supyep | DF (z,u)|g) = 0 for all nonempty bounded subset B C U.
Then Np € C'(co(N,R™) x £°(N,U), co(N,R™)), and for all x € co(N,R"?), u €
(=(N,U), dz € co(N,R"), du € ¢>°(N,R?), we have

DNp(z,u)(dx,0u) = (DF (2, ut)(0xs,0ur))ren
= (D1F(z¢,ut)0zs + DoF (x4, us)0Us)ten

where Dy and Dy denote the partial Fréchet differentiations.

Proof. Let B C U be nonempty and bounded. Let R € (0, +00) such that ||u|| < R
when u € B U {u’}. Using the mean value theorem, we have, for all x € R" and
for all u € B,

[F@u)ll < [[F(@,u’)] +supyepo o [|1D2F (2, 0)]| - ]
< IF (@, u0)|l + supye ppap [|1D2F (2, 0)] - lv]
< 1P u®) +supyeppnu IDF (2, v)] - R
which implies

sup [|[F(z, u)|| < [ F(z,u’)[|+ sup |[[DF(z,0)|- R,
u€eB veEBRrNU

and therefore, using assumptions (iii) and (ii) and the continuity of F, we obtain

lin%(sup | F(z,u)||) = 0 when B # (), B C R? is bounded. (3.1)
=0 weB

Since F' is continuously Fréchet differentiable, F' is continuous, and then, with
(1), we can apply Theorem to F' and assert that N is well defined from
co(N,R™) x £°(N,U) into ¢o(N,R™) and it is continuous, i.e.

Np € C%co(N,R™) x £2°(N,U), co(N,R™)). (3.2)

Using Theorem A1.2 of [3] (p. 24) to the operator Nj defined in the proof of
the previous theorem, we can assert that N1 is continuously Fréchet differen-
tiable from (*°(N,R™) x {*(N,U) into ¢>°(N,R™) and, for all z € {*(N,R"),
u € (*(N,U), dx € I*°(N,R"), du € {*(N,R?%), we have DF(z,u)(éx,du) =
(DF(z4,us) (674, 0us))ien. Since N is a restriction to a vector subspace of N1, we
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obtain that Np is continuously Fréchet differentiable from co(N,R™) x £>°(N,U)
into ¢o(N,R™) and the formula of its differential is identical to this one of N}. O

The following result is useful to translate the properties of the dynamical system
which governs (P1) into the language of operators between sequence spaces.

Corollary 3.8. Let U be a nonempty closed subset of R?. Let f : R" x U — R™ be
a mapping which satisfies the assumptions (i, ii, i) of Theorem[3.]. We consider
the operator T (z,u) := (xt41 — (@1, ut) )ten-

Then T € CHeo(N,R™) x £>°(N,U), co(N,R")) and for all x € co(N,R"), u €
(®(N,U), dz € co(N,R"), du € £>°(N,R?), we have

DT (z,u)(0z,0u) = (dxi41 — Df(2e,u) (02, 6ur))ren
= (0xt41 — D1f(2e,us)dxs — Do f (21, us)dus)sen.

Proof. Since f satisfies the assumptions of TheoremB.1), we have Ny € C*'(co(N,R™) x
(N, U), co(N,R™)). We set A(z,u) := (z¢41)teny when z € ¢o(N,R") and u €
>*(N,U). Then A is well defined and is linear. Since ||A(z,u)]lco < [|Z]|oo <
l|lzllo + |lllocc, A is continuous, and consequently it is of class C'. Moreover
we have for all z € c¢o(N,R"?), u € (*(N,U), éx € co(N,R"?), su € £>(N,R?),
DA(z,u)(dz, du) = A(dz, du) = (dx¢+1)ten. Note that 7 = A — Ny which implies
that 7 is continuously Fréchet differentiable, and using Theorem B.7 we obtain

DT (z,u)(0z,0u) = DA(z,u)(0z,du) — DN¢(z,u)(dz, du)
= (0z441 — Df(ze,up) (e, 5Ut))teN-
O

Remark 3.9. We consider the operator F : co(N.,R™) — ¢o(N,R") defined by
F(a') := z where zy := 0 and z; := x}, when t € N,. We introduce the sequence
g € co(N,R™) by setting op := o and oy := 0 when t € N,.. We consider the oper-
ator € 1 co(N,,R™) — ¢o(N,R™) defined by E(z') := F(2') + 0. Then F is linear
continuous, £ is affine continuous, and consequently these operators are continu-
ously Fréchet differentiable, and for all 2’ € co(N.,R™) and éz’ € c¢o(N.,R™), we
have DS(;C_’)(S_;C’ = D]:(QC_I)(S_@'/ = ]:(6_551) = (07555/17555/27' ’ )

Proposition 3.10. Let U be a nonempty closed subset of R%. let f : R" x U — R™
be a mapping which satisfies the following properties.
(a) feCOR" x UR"™).
(b) f(0,u) =0 for allueU.
(c) For allu e U, for allz € R, Dy f(x,u) exists and
le('7 ’U,) € CO(an ’Q(Rna ]Rn))
(d) Dif transforms the nonempty bounded subsets of R™ x U into bounded
subsets of L(R™,R™).
(e) limyo(sup,ep | D1f(z,u)||e) =0 for all nonempty bounded subset B C U.
Then the operator T (z,u) := (Tt41 — f(zt, ut) )ten satisfies the following properties.
(@) T € C%co(N,R") x £2(N,U), co(N,R"))
(8) For dll (z,u) € co(N,R"™) x £°(N,U), D17 (z,u) exists and for all u €
0 (Nv U); DlT('v Q) € OO(CO(Nv Rn)a ’S(CO(Na Rn)a CO(Na Rn)))
Proof. Let B be a nonempty bounded subset of U. We fix R € (0,+00). For all
x € R™ such that ||z|| < R, using (b), (c) and the mean value theorem we obtain

1f (@, w)ll < 1£(0, uw)]| + s%p]llle(z,U)lls-llxllé Sup [D1f(z,u)lle - [zl =
z€|0,x z€|0,x
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sup | f(z,u)|| < sup sup [|Dyf(z,u)lle - [|l2]|
uEB lz|[<RueB

which implies, using (d), the following property.
lim (sup £ (, w)ll) = 0. (3:3)

Therefore, from (a) and [B.3]) we obtain the conclusion («).
When we fix u € £*°(N, U), using Theorem A1.2 in [3], we obtain the conclusion

(8)- O
After the operators, we consider the criterion of Problem (P1).

Proposition 3.11. Let U be a nonempty closed subset of R%. Let ¢ € C1(R"x U, R)
and B € (0,1). We consider J(z,u) := 3,55 B ¢ (x4, ur) when z € co(N,R™) and
u € {°(N,U). Then J € C'(co(N,R") x £>°(N,U),R) and for all z € co(N,R"),
u € (®(N,U), éx € co(N,R"), du € £*°(N,R?), we have

DJ(z,u)(dz,du) = Z B (D1d(we, ur)dme + Da(e, ur)duy).
t=0

Proof. We consider the Nemytskii operator
Ny : 02°(N,R™) x £2(N,U) = £2(N,R), Ny (2,u) = (¢(1, ur))ren-

Using Theorem A1.2 in [3], we know that Nj € C*(£>°(N,R")x (> (N, U), £>°(N,R))
and for all z € (*°(N,R"), u € (*(N,U), dx € (*°(N,R"), ju € £>°(N,R?), we have
DN¢1> (z,u)(0z, 6u) = (D1d(¢, ur)0xs + Dag(21, ur)ous)ten-

We also consider the other Nemytskii operator
Ny : co(N,R"?) x £2°(N,U) — £(N,R), Ny(z,u) = (¢, ut))ren-
Since Ny is a restriction of Nj we have Ny € C'(co(N,R") x £>(N,U), £>°(N,R))
and for all z € co(N,R"), u € ¢*°(N,U), éx € c¢o(N,R"), du € £*°(N,R%), we have
DNy (z,u)(0z,0u) = (D1¢(xs, us)dxs + Dod(ws, up)dus)ien-

Since 3 € (0,1), (B%)ten € £*(N,R) (the space of the absolutely convergent real
series). We define the linear functional

—+o0
L(z) =Y Bz = (B ien: 2)r o
t=0

where z € (*°(N,R) and (-, )1 g denotes the duality bracket between ¢!(N,R) and
> (N,R). Using [2] (Theorem 15.22, p. 503), we know that L is linear continuous
on /*(N,R), and consequently we have L € C*(¢*°(N,R),R), and for all z and dz
in £(N,R), we have DL(z)dz = L(3z) = 3, 55(8* - 62). Since J = Lo Ny, J is
continuously differentiable as a composition of continuously differentiable mappings,

and using the chain rule of the differential calculus, for all z € ¢o(N,R"), u €
(°°(N,U), dz € co(N,R"), du € £>°(N,R?), we obtain
DJ(z,u)(dz,0u) = DL(Ny(z,u))D(Ng(z, u)(dz, ou)
L(D(Ng(z,u)(dz, ou)
;;08 B (D1 ¢(xr, ur)dxy + Dop(wy, ur)duy).
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Using similar arguments we establish the following result.

Proposition 3.12. Let U be a nonempty subset of R, 3 € (0,1) and ¢ € C°(R™ x
U,R) such that Dip(x,u) exists for all (z,u) € R™ x U and, for all u € U,
D1é(-,u) € COR™, £(R™, R™).

Then J € C%co(N,R") x £2°(N,U),R), and for all z € co(N,R"), for all u €
(°(N,U), D1J(z,u) exists and D1J(-,u) € C°(co(N,R™), £(co(N,R"™),R)). More-
over, for all x € co(N,R"™), for all u € £>*(N,U), for all dz € co(N,R™), we have

—+o0
Dlj(L 2)5_517 = Z ﬂtDlgb(xt, Ut)5$t-

t=0
4. LINEAR DIFFERENCE EQUATIONS

We establish a result on the existence of a solution of a nonhomogeneous lin-
ear equation which belongs to ¢o(N,,R™) when the second member belongs to
¢o(Ny, R™). These results permit to obtain useful properties on the operator which
represents the dynamical system of Problem (P1).

Proposition 4.1. Let (Ay)ien, be a sequence in £(R™,R™) and e € ¢o(N,,R"™).
We consider the following Cauchy problem

Zip1 = Azt e
DFE
o { 22

We assume that sup,cy, ||A¢lle < 1. Then the solution of (DE) belongs to co(N,,R™).

Proof. We denote by z the solution of (DE). Doing a straightforward calculation
we obtain, for all t € N, that

-1
Zip1 = (Ae - A1)+ Z(At - Aigr)e; + ey
i=1

Let M > 0 such that sup,cy,

Atlle < M < 1. Therefore we have

lzerall < (TTimy AN ICH + S Tk N o) lledll + fleel
< MU+ (T2 M lelloo + llell
= MYCll+ (o MP)lello
< max{|[¢[], lelloc} Spmo M* < max{|[¢], llefloc} 257 < +00

which proves that z € £>°(N,,R").
From the definition of z, using limsup,_, , . [|2| < 400, we deduce
ze1ll < [ Aelle - [[ze]l + lleal] < M - [[z¢]] + [lec]| =

limsup, , o [|z¢]] = limsup,_, | o [|2e41]] < M -limsup, |  [|2:]| + 0 =
(1= M)limsup,_, o [|z]| <0 = limsup,_, [|2[| =0

since 1 — M > 0, and therefore we obtain lim;_, o 2, = 0. [l

Corollary 4.2. Let (By)ien, be a sequence in £(R™,R™) and d € co(N,,R™). We
consider the following Cauchy problem

(DEl){ wip1 = Brwg+di
w1 = g

We assume that there exists t. € Ny such that SUD; >,
Then the solution of (DE1) belongs to co(N., R™).

Bille < 1.
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Proof. For all t € Ny, we set A; := By, and e; := dy1y, -
Then we have sup,cy [|A¢]lg < 1. We denote by w the solution of (DE1). We

set z; 1= wiqe, for all t € N. Then we have z:41 = Wep14+, = Byt Weger, +
divit, = Agzy + e for all t € N and 21 = wy, 1. Using Proposition 1] we obtain
limy 400 2¢ = 0, ie. limy—y 4 oo wiye, = 0 which implies lim;—, 4 oo wy = 0. O

5. STATIC OPTIMIZATION

In this section we establish a result in the form of a Karush-Kuhn-Tucker theorem
in abstract Banach spaces, and we recall a result issued from the book of Toffe and
Tihomirov [9]. The first result is useful to prove our weak Pontryagin principles,
and the second one is useful to prove our strong Pontryagin principles.

Lemma 5.1. Let X, V, W be real Banach spaces, and U be a nonempty subset of
V. Let J € CHX xU,R) and T € CHX x U, W). Let (2,4) be a solution of the
following optimization problem
Maximize J(z,u)
when z € X, uel,T'(z,u)=0.

We assume that D1I'(&,14) is invertible and that U is star-shaped with rerspect to
u. Then there exists M € W* which satisfies the following conditions.

(i) D1J(&,4) + M o D1T'(&,4) = 0.

(ii) Yu e U, (D23 J(&,4) + M o DoT'(&, 1), u — @) < 0.
Proof. Let U; be an open subset of V such that &/ C U; and such that there exists
Iy € CYX x Uy,W) such that Ty, , = I'. Since DiT'1(&,4) = DiI(&,4) is
invertible, we can use the implicit function theorem and assert that there exist Nz

an open neighborhood of # in X', N an open convex neighborhood of 4 in U, and
a mapping m € C*(Ng, ;) such that
{(@,u) € Nz x Ng : T1(z,u) =0} = {(7(u),u) : u € Ny}

Differentiating I'y (7(u), u) = 0 at @& we obtain D11 (&, @) o D(4) 4+ D2T'1(2,4) = 0
which implies

Dr(a) = —(D1T(2,4)) ! o Dol'(&, ). (5.1)
Since (#,4) is a solution of the initial problem, 4 is a solution of the following
problem

Maximize B(u)
{ when w e N, NU

where B(u) = J(n(u),u). Since B is differentiable (as a composition of differen-
tiable mappings) and Nz N is also star-shaped with respect to @, a necessary
condition of optimality for the last problem is

Vu € No NU, (DB(4),u —a) <0 (5.2)

since 0 > limg o4 #(B(4+6(u — @) — B(d)) = (DB(4),u — 4). When u € U, there
exists 6, € (0,1) such that (1 —6,)a + 0,u € Ny NU. Using (5.2) we obtain

0. - (DB(0),u — @) = (DB(1),0,(u — 4)) = (DB(@), [(1 — 6,)u + O,u] — @) <0,
and so we obtain
Yu e U, (DB(4),u — ) <O0. (5.3)
Using the chain rule we obtain
DB(4) = D1J(&,4) o Dm(4) + D2 J (2, 4). (5.4)
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We define
M = —DyJ(&,40) o (DiT(,4))"" € W*. (5.5)
From (50 we obtain
D1 J(&,4) + M o DiT'(Z,4) = 0. (5.6)
Using (5.4) and (5.0) we obtain DB(4) = —D1J (2, 4) 0 (D1T(2,4)) "t o Dol'(2, 4) +
Dy J(&,1) = M o DoI'(2,4) + D2 J (&, 1), and therefore, from (53] we obtain
Yu € U, (Do J (&, 4) + M o DoT(#, 1), u — 1) < 0. (5.7)
(]

Remark 5.2. There exist several results like this one in the books [8] and [13] which
use the convexity of U. In the necessary conditions of optimality we prefer to avoid
the convezity of the sets; it is why we have established this lemma.

As a corollary of the extremal principle in mixed problems (Theorem 3, p. 71 in
[9]), we obtain the following result.

Lemma 5.3. Let X, V, W be real Banach spaces, and U be a nonempty subset of
V. Let J: XxU—->RandT : X xU — W be mappings. Let (&,4) be a solution
of the following optimization problem
Maximize J(z,u)
when z € X, uel,T'(z,u)=0.

We assume that the following conditions are fulfilled.

(a) For allu €U, [z T(z,u)] and [x — J(x,u)] are of class C* at 3.

(b) There exists a neighborhood N of & in X such that, for all z € N, for all

u',u” €U, for all 6 € [0,1], there exists u € U which satisfies the following

conditions
{ P(z,u) = (1-0T(z,u)+0T(z,u")
J(z,u) > 1-6)T(x,u)+60T(x,u").
(¢) The codimension of ImD1I'(&,4) in W is finite.
(d) The set {D\I'(&,0)x + T'(Z,u) : @ € X,u € U} contains a neighborhood of
the origine of W.
Then there exists M € W* which satisfies the two following conditions.
(i) D1J(2,4) + M o D1T'(2,4) = 0.
(ii) For allu e U, J(&,0) + MT(z,4) > J(&,u) + MT(&,u).

6. WEAK PONTRYAGIN PRINCIPLE FOR (P1)

We start by a translation of Problem (P1) into a more simple abstract optimiza-
tion problem in Banach spaces. We define the functional Jy(2/,u) := J(E(2'),u)
and the nonlinear operator 7i(z/,u) := T(E(z'),u). Then we can translate (P1)
into the following problem.

Maximize Ji(z/,u)
(P2) when 2/ € ¢o(N,,R"),u € {*°(N,U)
Ti(2l, u) = 0.
We consider the following list of assumptions.

(A1) U is a nonempty closed subset of R,
(A2) ¢ € CY(R™ x U,R) and f € C*(R"™ x U,R").
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A3) There exists u® € U such that f(0,u°) = 0 and U is star-shaped with
( ; p
respect to u’.
A4) lim,_,o(sup Df(z,u)|e) = 0 for all nonempty bounded subset B C U.
ueB

Recall that £1(N, R"™*) can be assimilated to the dual topological space of co(N, R"),
i.e. an element of £!(N, R™*) can be considered as a continuous linear functional on
co(N,R™), [2] (Theorem 15.9, p. 498).

Lemma 6.1. We assume (A1-A4) fulfilled. Let (z',@) be a solution of (P2).
Then there erists q € L(N,R™) which satisfies the two following conditions.

(i) DiJi(2/,@) +qoDiTi(a, i) = 0.
(ii) For all u € =*(N,U), (Do Ji (2!, @) + g o DoTi (2, i), u — @) <O0.

Proof. Using Remark and Proposition .11}, J; is of class C! as a composition
of mappings of class C'. Using Remark 3.9 and Corollary B.8, 7; is of class C! as
a composition of operators of class C!.

We set B := {i; : t € N}. Then B is nonempty bounded in U since @& € (N, U).
For all t € N,, we have

ID1f (2", i) | e < | DF(@s, t)l|e < sup | Df(&}, )]
ueB

and therefore, using (A4), we obtain lim; o || D1f(2's,)|[c = 0. Therefore
there exists t. € N such that sup,>, ||D1f(2'¢,7:)||e < 1. Note that to solve
equation (DE1) of Section 4, with By := D1 f(z's,1;) when t € N,, is equivalent
to solve the equation DT (z/,@)dz’ = e where ¢ € ¢p(N,R") and the unknown
variable is dz’ € ¢o(N,, R™). We can use Corollary 2] and assert that D77 (z’, @)
is surjective and it is clearly injective, and consequently DTy (2, &) is also invertible.

Therefore we can use Lemma 5.l and assert that there exists a Lagrange multiplier
q € co(N,R")* = ¢*(N,R™) which satisfies the announced conclusions. O

Theorem 6.2. We assume (A1-A4) fulfilled. Let (Z, @) be a solution of (P1). Then
there exists p € £'(N,,R™) such that the following relations hold.

(AE].) Pt = Pt+1 © le(.ft,ﬂt) + Dl(b(j?tvﬂt) fO’I’ all t S N*
(WM1) (pry10Daf (&, 0)+ Dap(Zy, tr),u—1tz) <0 for allu € U, for all t € N.

Proof. We define &’ by setting 2/, := &; when t € N,. Since (Z,a) is a solution of
(P1), («/,4) is a solution of (P2). Then Lemma [51] provides q € (*(N,R™) such
that
DiAi(2h2) + o DiTi(e i) = 0 } 61)
(Do Ji(2/, ) + qo DoTa(zl, i), u—a) < 0 '

for all u € £>°(N,U). Now we translate these conditions to obtain the conclusions
of our theorem. Using Remark [3.9] Proposition B.11] and the chain rule we obtain

DiJi(a, )dx' = DiJ(E(x)),4)DE(a)dx = DyJ(&, &) F(3z')
= B°Di(0,10)0 + 3,5 B Do (i, r)da,
and therefore we have

—+o0
DyJi(a, w)dx’ = B' D1 (@, in)du;. (6.2)

t=1
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Using the same arguments we have DyJ) (2, &)0u = DoJ(E(2'), &)du which implies

+oo
Dzjl(i, @)du = ZﬂtD2¢(:it,ﬁt)5ut. (6.3)

t=0
Using Corollary B.8 and Remark [3.9] and the chain rule we obtain
DiTi(a!, @)éx! = DiT(E(a), &) DE(a!)da!
= DiT(Z,a)F(02')
(6z1 — D1f(0,10)0, (6z¢+1 — D1 f (&4, Ue)dme)ren. ),

and therefore we have
Dl,Tl(iv @)5—‘%/ = (555/17 (&C:H-l - le(i'tv at)éxw/f)tEN*)- (6'4)

Using the same arguments, we obtain Dgﬂ(i, @)ou = DgT(E(i),Q)&_u =
DyT (z,4)du which implies

DoTi (2!, @)du = (—Daof (&, it )0us)ten. (6.5)

Using (6.I) we calculate go D17y (i, @)ox’ = {qo,6x)) + Ez;of<qt, dxh 1) — Zz;olo qio
D f (g, t)dah = 375 (g, 004 41) — 3202 @ 0 D f (e, i)y = 3 (g, 0f) —
S 7%(gs 0 Dy f (&4, ), 62;) which implies

+oo
qo DyTi(a!,)dz =) (gi—1 — qe © D1 f (&4, 1), 02}). (6.6)

t=1

Using (6.1)), (6:2) and (6.6]) we obtain

+oo +oo
> B Di¢(Er, )0l =Y (g1 — g o Dif (&, ), 64). (6.7)
=1 =1

We fix ¢ € N, we set 0z}, = 0 when s # ¢t and dx} varies in R™, then from the last
equation we obtain 3'D1¢ (%, 4:) = q—1 — qi © D1f(#4,0¢), which implies, for all
t € Ny,
Ge—1 = 0 D1 f (¢, ) + B D1g(de, ). (6.8)
We define p € ¢*(N,, R™) by setting p; := ¢;—1. Then (6.8) implies (AE1).
From (6.3) we obtain

—+o0
> {ar o Daf (1, i), — i) + (g0 DaTi (2, )u — i) <0
t=0
for all u € £>°(N,U), therefore from (6.1]) and (63) we obtain
—+o0 —+oo
> a0 Daf (e, i), u — ) + Y BHDad(@r, i), up — i) <0
=0 t=0

for all w € £>°(N,U). We fix t € N, we take us = s when s # ¢, and u; varies in U.
Then we obtain (q; o Do f (&, 0t ) + B Da(4, Ut), ur — @) < 0 which implies, for all
t € N and for all u; € U

(gt 0 Do f (¢, 14) + B* Dagp(&y, i), us — 0y) < 0. (6.9)
Replacing ¢; by py+1 in this last equation we obtain (WM1). O
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Remark 6.3. In Theorem [6.2, (AFE1) means Adjoint Equation for (P1), (WM1)
means Weak Mazimum principle for (P1). Since p € (*(N.,R™), note that and the
transversality condition at infinity for problem (P1), lims_, 1o pr = 0, is satisfied.

7. WEAK PONTRYAGIN PRINCIPLE FOR (P)

In this section we translate the main result of Section 6 on (P1) into a result on

(P).

We introduce the following conditions

(B1) U is a nonempty closed subset of RY,

(B2) ¢ € CL(R" x U,R) and g € CL(R" x U, R™).

(B3) There exists u’ € U such that g(yoo,u’) = Yoo and U is star-shaped with
respect to u’.

(B4) limy_,y_ (sup,ep [[Dg(y,u)|) = 0 for all nonempty bounded subset B C U.

Theorem 7.1. We assume (B1-B4) fulfilled. let (§,4) be a solution of Problem
(P). Then there exists p € £* (N, R™) such that the following relations hold.

(AE) pi = pi1 0 Dig(ge, ) + B* D1 (G, s) for all t € N,
(WM)  (psr10 Dag(§s, 0z) + B Datp (s, tig),u — @) <0 for allu € U, for allt € N

Proof. Using Section 2, since (§, @) is a solution of (P), (&, ) is a solution of (P1)
with #; = s — yeo. For all j € {1,2,3,4}, (Bj) implies (Aj) and so the conclusions
of Theorem hold. We conserve the same p, and we translate to see that (AE1)
implies (AE) and (WM1) implies (WM). O

8. STRONG PONTRYAGIN PRINCIPLE FOR (P1)

First we introduce the Hamiltonian of Pontryagin which is defined, for all t € N,
as follows

H; :R" x U x R™ = R, Hy(z,u,p) := B'¢(x,u) + (p, f(2,u)).
Note that the condition (WM1) of Theorem B2 is equivalent to the condition
(D2Hy (24, Gty pro1), ue — Gg) <0

for all w € U and for all ¢ € N. In this section we want replace (WM1) by the
strengthened condition Hy (&4, tig, pr1) = maxyey He(Zt, u, pry1) for allt € N. Note
that (WM1) can be viewed as a first-order necessary condition of the optimality of
Ht(.ft, '7pt+l) at ﬂt onU.

We consider the following conditions

(C1) U is a nonempty compact subset of R?.

(C2) ¢ € CO(R" x U,R) and f € C°(R"™ x U,R").

(C3) For all w e U, f(0,u) =0.

(C4) For allu € U, D1 f(x,u) and D1¢(x,u) exist for all z € R™, and D1 f(-,u) €
CO(R™, £(R"™,R™)), and D16(-,u) € CO(R™, R"™).

(C5) D;f transforms the nonempty bounded subsets of R™ x U into bounded
subsets of £(R™, R™).

(C6) For all nonempty bounded subset B C U, limg_o(sup,cp || D1.f(z, uv)|e) =
0.
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(C7) For all t € N, for all z, € R™, for all u}, u} € U and for all § € (0,1), there
exists u; € U such that

{ Oz, ue) > (1= 0)p(we, up) + 0d(as, uff)
flas,u) = (1—=0)f(xe,ul) +0f (e, ull).

Lemma 8.1. Under the assumptions (C1-C7) let (z',4) be a solution of Problem
(P2) defined in Section 5. Then there exists ¢ € (*(N,R™) which satisfies the
following properties.

(1) DyJi(a!, @) + gDy Ti (2, @) = 0.
(2) Ji(a!, ) +(g, Nt (2!, &) o0 = maxyepoov,v) (J1(2, w) + (g, N3 (2!, 1)) ey 01)-

Proof. We want to use Lemma B3 with 7 = J;, T' = T;.

Since (C1-C6) imply that U is closed and that the conditions (a, b, ¢, d, e) of
Proposition 310 hold, we obtain that 7 and D7 (-,u) are continuous, and using
Remark we obtain that 7; and D;7;(-,u) are continuous. Using Proposition
BI2 from (C2) and (C4) we obtain that J and D;J(-,u) are continuous, and using
Remark we obtain that J; and D;Ji(-,u) are continuous. And so the assump-
tion (a) of Lemma [5.3 is fulfilled.

Since U is bounded, from (C7) we obtain assumption (b) of Lemma 53]
Proceeding as in the proof of Lemma [l from (C6), with B; := Dy f(Z4, Ut), we
obtain the assumptions of Corollary [4.2] which implies that

Dy Ti(z', @) is surjective from ¢o(N,., R”) onto ¢o(N, R"), and since it is clearly injec-
tive, it is invertible. Using the Isomorphism Theorem of Banach, this invertibility
implies the assumptions (c¢) and (d) of Lemma [5.3]

Consequently we can use Lemmalb.3]and we obtain the conclusions with g = M. O

Theorem 8.2. Under the assumptions (C1-C7), let (&,4) be a solution of Problem
(P) defined in Section 5. Then there exists p € (' (N,,R™) which satisfies the
following properties.

(AE].) Dlgb(ﬁ:t,ﬁt) +pt+1 e} le(.ft,’ljbt) =0 fOT all t S N*

(MP1)  ¢(Z¢,Ut) + (pes1, [ (B, Ut)) = maxuer (9(2t, u) + (Pee1, f(Zt,u))) for all
teN.

Proof. Proceeding as in the proof of Theorem [6.2] conclusion (1) of Lemma [B1]im-
plies (AE1). A straightforward translation of conclusion (2) of Lemma [81] provides
(MP1). O

9. STRONG PONTRYAGIN PRINCIPLE FOR (P)

In this section we translate the strong Pontryagin principle on (P1) into a result
on (P).
We consider the following conditions.
(D1) U is a nonempty compact subset of R<.
(D2) ¢ € C°(R™ x U,R) and g € CO(R™ x U,R").
(D3) For all u € U, g(Yoo, t) = Yoo-
(D4) For all (y,u) € R™ x U, D19(y,u) and D1g(y,u) exist and, for all u € U,
D19(-,u) € CO(R™, R™), D1g(-,u) € CO(R™, £R",R")).
(D5) D;g transforms the nonempty bounded subsets of R™ x U in bounded sub-
sets of £(R™,R™).
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(D6) limy_y_ (sup,cp | D19(y,u)|le) = 0 for all nonempty bounded subset B of
U.

(D7) For all t € N, for all y, € R™, for all uj, uy € U and for all § € (0,1), there
exists uy € U such that

{ V(ye,ue) > (1= 0)(ye, uy) + 09 (ye, uf)
9, ue) = (1 —0)g(ys, uy) + 0g(ye, uy).

Theorem 9.1. Under the assumptions (D1-D7) let (§,4) be a solution of Problem
(P). Then there exists p € {*(N,,R"™) which satisfies the following properties.

(AE) D1(§¢,0t) + pre1 0 D1g(Ge, 0:) = 0 for all t € N,.
(MP) (G, @)+ (Peg1, 9(Je, Ur)) = maxyev (V(Ge, w)+ (Pet1, 9(G¢, w))) for allt € N.

Proof. Using Section 2, since (§, @) is a solution of Problem (P), (Z,4) is a solution
of Problem (P1). For all j € {1,...,7} note that (Cj) implies (Dj). Therefore the
assumptions of Theorem [R.2] are fulfilled, and so its conclusions hold. Using Section
2, we conserve ¢ and p, we set Ty = J; — Yoo for all t € N and the translation of
(AE1) gives (AE) and the translation of (MP1) gives (MP). O

10. SUFFICIENT CONDITIONS FOR (P1)

In this section we establish a resullt of sufficient condition of optimality which
uses the adjoint equation and the weak maximum principle and the concavity of
the Hamiltonian with respect the state variable and the control variable.

Theorem 10.1. Let U be a nonempty convex subset of R, g € (0,1), 0 € R™ and
two mappings ¢ : R" x U = R and f: R" x U — R™.
Let (2,4) € co(N,R"™) x £>°(N,U) and p € £*(N,,R™). Assume that the following
conditions hold. B
(l) .ft+1 = f(.ft, ﬁt) fO’I’ allt € N, and ii?o =0.

(ii) ¢ € CH(R™ x U,R) and f € CY(R" x U,R").
(iii) ¢ transforms bounded subsets of R™ x U into bounded subsets of R.
(IV) Pt = Pt41 0 le({%t, ﬁt) =+ BtDl(b({%t, ’llt) fO’f’ all t € N*
(V) (peg1 0 Dof (&, Gr) + Dadp(&4, G),u — Gy) <0 for all w € U, for all t € N.

) The function [(z,u) = (pit1, f(z,u)) + Blé(x,u))] is concave on R™ x U
for allt € N.

Then (&,4) is a solution of (P1).

(vi

Proof. Let (z,u) be an admissible process for (P1), i.e. z € c¢o(N,R"), u €
(>*(N,U), 141 = f(z¢,u) for all t € N, and zg = 0. From (iii), since {p(x¢,uy) :
t € N} is bounded, J(z,u) = 375 Bl¢(xt,us) exists in R. From (i) and (iv) we
obtain

D1Hy(&4, G, pei1) = pr- (10.1)
From (vi) we obtain, for all t € N,

Hi((&¢, Gy, pes1) — He(x, ug, Des1) (10.2)
—(D1Hy(2¢, Uy, pry1), B — 1) — (DaHi (24, Tgy pry1), G — ug) > 0. '

From (v) the following relation holds for all t € N
<D2Ht(iit, ﬁt;pt+1); ﬁt - Ut> Z 0. (103)
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For all t € N we have

B d(2e, ) — Bro(xr,ur) = He(Ze, Gty pev1) — Pes1, [(@e, Gr))
—Hy(z, ug, pry1) + (pevas f (@, ue)
= Hy(%¢, 0, pe1) — He(2t, ue, pro1)
— (D1, Tep1 — Teg1)-

Then, using (I01]) and [I03) we obtain

6t¢(§3ta ﬁt) - 6t¢(33ta Ut) > Ht(i“t, ﬁt,ptﬂ) - Ht($t7ut,pt+1)
—(DoHy (&, Uy, ra1), Uy — ug)
—(D1Hy1 (Zpg1, U1, Peg2), Tog1 — Tegr)

which implies

Bt (T, ty) — Br (e, ue) >

Hy(Zt, U, per1) — He(e, ug, peea)
(D1H(Z4, g, pry1), T — )
—(D2Hy(Z4, Ut pry1), Uy — ug)]
+[(D1Hy (&4, Ug, prg1), B¢ — x4)

—(D1Hp 1 (Zp 41, Uo g1, Deg2) Tep1 — Tog1)]

and using (I0.2) we obtain
Bt¢(513"t, ) — ﬁ%(%z; ut)

Y%

(D1 H (&, U, peyr), Te — T4)
—(D1Hep1 (Zeq1, Upg1, Peg2), el — Teg1)]

Therefore, using (I0.I]), we obtain, for all T € N,,

S Bl o(E, ) — o B (i u) > (DyHo(o,d0,p1),0 — o)
—(pry1,Er41 — Tr41) =

T T

> BG(adn) = Y (e w) > —(pri1, Brin — 3740). (10.4)
t=0 t=0

Since p € £1(N,,R™), we have limp_, oo pr41 = 0, and since Z,z € ¢o(N,R™) we
have limT_H_Oo (jT—i-l _$T+1) = 0 which implies limT_H_OO (— <pT+17 jT—i—l —{ET+1>) =
0, and then, from (I04)), doing T — +oo we obtain J(&,4) — J(z,u) > 0. And so
we have proven that (Z,4) is a solution of (P1). O

Remark 10.2. The structure of the previous proof is inspired by the proof of Theo-
rem 5.1 in [5]. Note that our assumption (iii) permits to avoid to assume that U is

compact. Moreover note that we can replace the assumption (iii) by the condition:
U is closed.

Remark 10.3. Note that under our assumptions, the process (&,4) is also solution
of the following problem

Mawimize o0 Bt (e, u)
when  z € (®(N,R"),u € (>(N,U)
and Vi € N, xp1 = f(og,ur),@o = 0

since, in the previous proof, when we obtain (107)), having T and z bounded is
sufficient to obtain limp_, 4 oo (— (P71, Z7+1 — T741)) = 0 and consequently to have
the optimality of (Z,4) for the last problem.
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11. SUFFICIENT CONDITIONS FOR (P)

This section is devoted to the translation of the result of sufficient condition of
optimality on (P1) into an analogous result on (P).
When y., € R", we denotes by ¢, (N,R") the set of the sequences y in R™ such
that lim;— 4 oo Y+ = Yoo. It is a complete affine subset of £°°(N, R").

Theorem 11.1. Let U be a nonempty convex subset of R4, 8 € (0,1), 0, yso € R™,
and two mappings ¥ : R*" XU = R and g : R" xU — R™. Let (§,4) € ¢y, (N,R™) x
(>°(N,U) and p € £*(N,,R™) which satisfy the following conditions.
(i) For allt € N, 41 = g(9¢,0t), and §o = 1.
(i) ¥ € C*(R™ x U,R) and g € C*(R™ x U,R").
(iii) ¢ transforms bounded subsets of R™ x U into bounded subsets of R.
(V) Pt = pit1 0 D1g(§e, @) + B D13p(, @) for all t € N,
) <pt+1 o Dgg(’yh’&t) + BtDQ’l/)(gt, ﬁt), u— ’&> < 0 fO’I’ all u € U, fOT allt e N
) The function [(y,u) — (pis+1, 9(y,w)) + Bt (y,u)] is concave on R™ x U for
allt € N.

Then (y,4) is a solution of (P).

(vi

(vii

Proof. Using Section 2, &4 = ¢ — Yoo for all t € N, we see that (2, 4) € ¢o(N,R™) x
(N, U) satisfies all the assumptions of Theorem [[0.1l And so (&,4) is a solution
of (P1) which implies that (§,4) is a solution of (P). O
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