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Abstract. We prove non-uniqueness and study the behaviour of viscosity solu-

tions of a class of uniformly elliptic fully nonlinear equations of Hamilton-Jacobi-

Bellman-Isaacs type, with quadratic growth in the gradient. The crucial a priori

bound for the solutions is proved through an argument which uses a boundary

growth lemma, and consequences such as boundary ”half”-Harnack inequalities,

which are of independent interest. Our results are new even for linear equations.

1 Introduction and Main Results

This note is an account of some recent results on solvability and multiplicity
of solutions of the Dirichlet problem for a uniformly elliptic operator in which
the first order term has the same scaling with respect to dilations as the
second order term. This work can be considered as a continuation of the
paper [13], and is also strongly motivated by a number of very recent papers
on a particular equation of our type, [9], [2], [6]. The purpose of this note is
to state our main theorems in a particular but typical case, and give a sketch
of their proofs; the full presentation will appear in the forthcoming work [14].

Apart from their appearance in a number of applications, this type of
PDE is of theoretical importance, since it represents a class of equations
which is invariant with respect to diffeomorphic changes of dependent and
independent variable. An additional difficulty in the study of these equations
is the ”critical” behaviour of the gradient, in the sense that the first-order
term has the same scaling with respect to dilations as the second-order term,
and thus does not scale out after a ”zoom” in a point.

Even though the results we obtain are valid for general Isaacs operators
as in [13], here for simplicity we will state them only for the equation{

−L0u = c(x)u+ <M(x)∇u,∇u> + h(x) in Ω
u = g(x) on ∂Ω

(1)

where Ω is a C2-smooth bounded domain in RN , and

L0u = aij(x)∂iju+ bi(x)∂iu
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is a linear uniformly elliptic operator whose coefficients have the necessary
regularity to ensure satisfactory theory for the linear problem (M = 0). For
simplicity here we will assume all coefficients in (1) are bounded functions,
A is continuous and λI ≤ A(x) ≤ ΛI, |M(x)| ≤M0, 0 < λ ≤ Λ, M0 ≥ 0.

The equation (1) can be thought of as the ”closure” of the class of linear
elliptic equations with respect to diffeomorphic changes of the dependent
variable (u→ v = ψ(u)) and of the independent variable (x→ y = Ψ(x)).

We have separated the zero order term in the elliptic operator, since the
sign and size of c(x) matter, both for the solvability and for the uniqueness
of solutions.

When reduced to (1), the main theorem in [13] states the following.

1. The problem (1) has a unique solution if c(x) ≤ −c0 < 0.

2. There exists δ0 > 0 depending on λ, Λ, ‖b‖n, diam(Ω), such that if

max {M0‖h‖Ln , ‖c+‖Ln , M0

(
max
∂Ω

g
)
‖c+‖Ln } ≤ δ0

then (1) has a solution. This hypothesis cannot be improved in general.
The solution is unique if c+ = 0.

3. If c ≡ c0 ∈ (0, δ0), L0 = ∆, M = µ0I, µ0 > 0, g = h = 0, then (1) has
at least two solutions.

The possibility of extending the result in 3. above, that is, to show non-
uniqueness in general when c is not nonpositive was left as an open question
in [13]. This question was taken up in a number of recent works, which we
now describe in a little more detail. In the following we also assume for
simplicity that the boundary data g = 0 on ∂Ω, and that c(x) 	 0 in Ω. Of
course we always need to assume that the problem with c ≡ 0 has a solution
(as we know, such a solution is unique, and its existence is implied by an
upper bound on M0‖h‖Ln).

In [6] it was shown that if the second order operator L0 is the Laplacian,
and M(x) = µ(x)I, where the function µ is such that |µ(x)| ≥ µ1 > 0, then
(1) has at least two solutions if c(x) ≤ C0, for some explicit constant C0.
That paper extends the earlier work [9] and further develops the topological
degree method used in [14] and [2]. The behaviour of the solutions with
respect to a parameter which measures the size of c(x) is also studied in [6],
through a Rabinowitz-type bifurcation method.

The following diagrams from [6] are worth reproducing. Consider the
model problem for a given parameter λ ∈ R{

−∆u = λc(x)u + µ(x)|∇u|2 + h(x) in Ω
u = 0 on ∂Ω

(2)
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mu>>0 mu=0 mu<0

Here we have mapped the parameter λ on the horizontal axis, and the
value of the solution of (2) for some point in the domain on the vertical axis.
These diagrams correspond to the cases µ >> 0, µ = 0 and µ << 0 respec-
tively, and are valid for instance if h 	 0. The main difficulty in establishing
their validity is to obtain uniform a priori bounds for the solutions, for all
λ in any interval of the form [0, A] if µ < 0, and in any interval of the form
[a,A], 0 < a ≤ A <∞, if µ > 0.

As can be seen from the above pictures, it might be complicated to un-
derstand the behaviour of solutions if we assume only µ(x) 	 0 (instead of
µ(x) ≥ µ1 > 0). This question for the model equation (2) was studied in the
very recent work [15], where it was shown that a necessary condition for an
a priori bound when µ(x) ≥ 0 is that the intersection of the supports of c(x)
and µ(x) contains a ball. It was also shown that this condition is sufficient
if (i) the spatial dimension n = 2; (ii) or if we assume n = 3 and a growth
assumption on c and µ close to ∂Ω; (iii) or if n ≤ 4 and µ(x) ≥ µ1 > 0 on
supp(c).

In all previous works the results were restricted to the model equation
(2), since the obtention of the a priori bounds crucially depended on the fact
that the second order operator in the equation is the Laplacian. In [9] a
variational argument of ”mountain-pass” type was used, in [2] and [6] the
weak-Sobolev formulation of the system (3)-(4) below is tested by the first
eigenfunction and the solution itself, and in [15] interpolation and elliptic
estimates for the Laplacian in weighted Lebesgue spaces were used.

It is our goal here to present another method for obtaining a priori bounds,
which depends only on the uniform ellipticity of the operator, and thus gives
the above described results for any operator L0. We prove the upper bound
by using a growth lemma (quantitative strong maximum principle) combined
with a weak Harnack inequality and a local maximum principle. A supple-
mentary difficulty is that boundary versions of these results do not appear
to be available, and need to be proved. This can be done by a modification
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of the original Krylov’s argument for proving boundary regularity for elliptic
equations. Furthermore, when µ(x) ≥ 0 we prove the uniform bound under
the hypothesis µ(x) ≥ µ1 > 0 on supp(c) in any dimension, thus extending
and joining the results for the Laplacian from [6] and [15] (see (iii) above).

It is also interesting that the bound in the case µ ≤ 0 turns out to be
equivalent to the validity of the strong maximum principle for a coercive
elliptic inequality with a superlinear nonlinearity which satisfies the Vazquez
condition.

Theorem 1 Assume M(x) ≥ µ1I or M(x) ≤ −µ1I on supp(c), µ1 > 0.
If the problem (1) with c = 0 has a solution u0, then (1) has at least two

solutions for 0 � c(x) ≤ δ0, where δ0 depends on the ellipticity, the upper
bounds for the coefficients of the equation, and on the domain.

If M(x) ≥ µ1I on supp(c) and u0 	 0 then the first diagram in Fig.1 is
valid. If M(x) ≤ −µ1I on Ω and u0 	 0 then the third diagram is valid.

In the proof of this theorem we use the following boundary estimates
which are clearly of independent interest. We assume we have a domain with
a flat portion of the boundary {xn = 0}, and denote with B+

R a half-ball in
the domain centered at a point on this portion. We set B0

R = ∂B+
R∩{xn = 0}.

Proposition 1.1 (boundary quantitative strong maximum principle, BQSMP)
Assume u is a solution of −L0u ≥ 0, u ≥ 0 in B+

2 , and u = 0 on B0
2 . Then

there exists ε > 0 depending on λ, Λ and ‖b‖Lp such that

inf
B+

1

u

xn
≥ c

(∫
B+

1

(−L0u)ε

)1/ε

.

Proposition 1.2 (boundary weak Harnack inequality, BWHI) Assume that
−L0u ≥ f , u ≥ 0 in B+

2 , u = 0 on B0
2 . Then there exists ε > 0 such that(∫

B+
3/2

(
u

xn

)ε)1/ε

≤ C

(
inf
B+

3/2

u

xn
+ ‖f−‖Ln(B+

2 )

)
.

Proposition 1.3 (boundary local maximum principle, BLMP) Assume that
−L0u ≤ d(x)u + f in B+

2 , u = 0 on B0
2 , d ∈ Lq, for some q > n. Then for

each p > 0

sup
B+

1

u+

xn
≤ C

(∫
B+

3/2

(u+)p

)1/p

+ ‖f+‖Ln(B+
2 )


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The first two of these propositions can be proved by using Krylov’s origi-
nal idea for proving boundary regularity, which consists in writing a equation
for u/xn that degenerates in a special way, and for which the fundamental
”growth lemma” can still be proved. See [14] for details. An interior QSMP
in this convenient form can be found in [10], the interior versions of WHI
and LMP for instance in [8]. Of course the BLMP above is a consequence of
the boundary Lipschitz estimate and the usual LMP (u+ is a subsolution in
a full ball if we extend u = 0 outside Ω).

It is interesting to notice that the combination of BWHI and BLMP yields
the full boundary Harnack inequality, a result which is very well known,
and goes back to [5], [3]. However, in all texts where this inequality has
appeared it has been proved by a method different from the above splitting
into separate results for supersolutions and subsolutions.

It is also worth noting that inequalities called ”boundary weak Harnack
inequalities” have appeared in a different form, which is sufficient for a proof
of Hölder regularity up to the boundary (see for instance [8], Theorems 8.26
and 9.27). However, that inequality is void for a function which vanishes on
the boundary and does not imply the full boundary Harnack inequality.

Sketch of the proof of the theorem. First, we observe that if c < λ1(L0,Ω)
then we can assume without loss of generality that M(x) ≥ 0, h ≥ 0, u0 ≥ 0
and we can search for positive solutions of our equation. This is done by
observing that the difference of u and the solution of L0v = c(x)v+h satisfies
an equation (with a modified operator L̃0) in which these hypotheses are
verified.

Next, we observe that if there exists an unbounded sequence of solutions,
then there also exists a sequence of solutions uk and points xk such that
uk(xk)→∞, and xk → x0 ∈ Ω is such that for any ball B centered at x0 we
have

∫
B∩Ω

c > 0. This is because for any domain G ⊂ {c ≡ 0} we can apply
the comparison principle in G to the functions u− sup∂G u and u0 − infΩ u0.

So we see we need to prove an a priori bound in a ball B (resp. a half-
ball if x0 ∈ ∂Ω) such that c 	 0 in B and 0 < µ1 ≤ µ(x) ≤ µ2 in Ω, by the
hypothesis of the theorem.

We make a classical exponential change of the dependent variable u, set-
ting vi = µ−1

i (eµiu − 1), i = 1, 2.
In B, for large values of u

−L1v1 ≥ f1(x, v1) ∼ c0 c(x) v1 log(v1) (3)

−L2v2 ≤ f2(x, v2) ∼ C0 c(x) v2 log(v2) (4)

v2 ∼ vA1 , A = µ2/µ1

vi = 0 on ∂Ω ∩B.
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To simplify, and since we only want to give the main idea of the proof here,
we do not write the full expression of fi; what actually matters is the above
asymptotic behaviour for large values of u (resp. vi). We observe at this
point that a priori bounds for this system of inequalities do not seem to be
provable by classical methods such as the Gidas-Spruck rescaling method.
This is because we may have c(x0) = 0, and, on the other hand, if we write
this system as a system in only one of the functions vi, then one of the
operators will become degenerate.

Let us assume we are in the more difficult case, when B is a half-ball,
with ∂Ω ∩ B ⊂ {xn = 0} (after a ”flattening” diffeomorphic change of the
independent variable, which only changes the coefficients of the equation).

Then the first inequality (3) and the BQSMP imply

inf
B+

1

v1

xn
≥ c0 inf

B+
1

v1

xn
log

(
inf
B+

1

v1

xn

) (∫
B+

1

cεx1+ε
n

)

This implies that inf
B+

1

v1

xn
≤ C. Then −L1v1 ≥ 0 (which follows from (3))

and the BWHI imply(∫
B+

1

(v1)ε
)1/ε

≤ C

(∫
B+

1

(
v1

xn

)ε)1/ε

≤ C.

Now we apply the BLMP to the second inequality (4), in which d(x) =
C0c(x) log(v2) (note log(v2) ∼ A log(v1)). Since for large values of v1 we have
(log(v1))n+1 ≤ Cvε1, we obtain from LMP and what we already proved

sup
B+

1

v2 ≤

(∫
B+

1

(v2)ε/A
)A/ε

≤ C

(∫
B+

1

(v1)ε
)A/ε

≤ C.

which establishes the required a priori bound, in terms of the ellipticity,
bounds on the coefficients, and a lower bound on

∫
B
cε. We remark it would

have been enough to use instead of the BQSMP a ”growth lemma” which
says that a positive supersolution is uniformly bounded below by a constant
which depends on the measure of the set where the right-hand side of the
inequality is strictly positive.

Observe we did not need to reason by contradiction in order to obtain
the a priori bound, nor had we to rescale the solutions or use any passage to
the limit. We also do not need to assume any continuity of the coefficients
of the equation, including the leading terms aij.
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It should be noted that interior Harnack inequalities (but not QSMP)
have been used for proving a priori bounds on compact subsets of a domain,
for instance in [1], [12], in conjunction with variational structure or rescaling
arguments, which require more regularity and that an equation (as opposed
to two one-sided inequalities) be satisfied by the solution.

It is worth observing that the results (i) and (ii) from the paper [15]
which we quoted above can be understood differently, by applying the above
argument in which one uses the weak Harnack inequality applied to the
function u (which is itself superharmonic) instead of v1, and the exact best
exponent ε in this inequality (which is known for the Laplacian), in order
to see what is the best regularity one can get for d(x) = c(x)u(x) in the
inequality −∆v2 ≤ f2(x, v2) ∼ Cc(x)u(x)v2, so that d ∈ Lq with q > n/2.
This leads us to the conjecture that (i) and (ii) from [15], as quoted above,
cannot be improved.

Finally, let us sketch the proof of the a priori bound in the ”negative”
case M(x) ≤ −µ1I in Ω. In other words, we want to prove an upper bound
for subsolutions of{

−L0u ≤ c(x)u − µ1|∇u|2 + h(x) in Ω
u = 0 on ∂Ω

(5)

By setting v = µ−1
1 (1− eµiu) we see that v < 1 is a subsolution of

−L1v ≤ c(1− v)| log(1− v)|+ h(1− v) =: f(x, v) in Ω

v = 0 on ∂Ω

Here the function f(x, v(x)) is bounded in Ω for v0 ≤ v ≤ 1, where v0 is
any fixed subsolution of the above inequality. So by the standard Lipschitz
bound at ∂Ω we have v ≤ Cdist(x, ∂Ω). Denote with v̄ the supremum of all
subsolutions v ∈ (v0, 1) of the last inequality. Then by Perron’s method v̄ is
also a subsolution. By the Lipschitz bound v 6≡ 1.

Now, the existence of an unbounded sequence of subsolutions of (5) means
precisely that z = 1− v 6≡ 0 is a nonnegative supersolution of

−L2z ≥ c0| log(z)|z

and z vanishes somewhere in Ω. This is impossible by Vazquez’s strong
maximum principle [16] (and its extension to nonlinear inequalities, see for
instance [11], [7]), since one over the square root of the primitive of t log(t)
is not integrable at zero.
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