
HAL Id: hal-01212303
https://hal.science/hal-01212303

Submitted on 6 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-driven Information Flow Security for
Component-Based Systems

Najah Ben Said, Takoua Abdellatif, Saddek Bensalem, Marius Bozga

To cite this version:
Najah Ben Said, Takoua Abdellatif, Saddek Bensalem, Marius Bozga. Model-driven Information
Flow Security for Component-Based Systems. From Programs to Systems. The Systems perspective
in Computing - ETAPS Workshop, FPS 2014, in Honor of Joseph Sifakis, Apr 2014, Grenoble, France.
pp.1–20, �10.1007/978-3-642-54848-2_1�. �hal-01212303�

https://hal.science/hal-01212303
https://hal.archives-ouvertes.fr

Model-driven Information Flow Security for

Component-Based Systems⋆

Najah Ben Said1, Takoua Abdellatif2, Saddek Bensalem1, and Marius Bozga1

1 UJF-Grenoble 1 / CNRS, VERIMAG UMR 5104, Grenoble, F-38041, France
2 Sousse University, ESSTHS, Hammam Sousse, Tunisia

Abstract. This paper proposes a formal framework for studying infor-
mation flow security in component-based systems. The security policy
is defined and verified from the early steps of the system design. Two
kinds of non-interference properties are formally introduced and for both
of them, sufficient conditions that ensures and simplifies the automated
verification are proposed. The verification is compositional, first locally,
by checking the behavior of every atomic component and then globally,
by checking the inter-components communication and coordination. The
potential benefits are illustrated on a concrete case study about con-
structing secure heterogeneous distributed systems.

Keywords: component-based systems, information flow security, non-interference,
unwinding conditions, automated verification.

1 Introduction

The amount and complexity of nowadays conceived systems and software knows
a continuous increase. Information protection and secure information flow be-
tween these systems is paramount and represent a great design challenge. Model
driven security (MDS) [BDL06] is an innovative approach that tend to solve
system-level security issues by providing an advanced modeling process repre-
senting security requirements at a high level of abstraction. Indeed, MDS guaran-
tees separation of concerns between functional and security requirements, from
early phases of the system development till final implementation.

Information flow security can be ensured using various mechanisms. Amongst
the first approaches considered, ones find access control policies [SSM98,Kuh98],
that allow protecting data confidentiality by limiting access to data to be read
or modified only by authorized users. Unfortunately, these mechanisms have
been proven incomplete and limited since only by preventing the direct access
to data, indirect (implicit) information flows are still possible given rise to the
so called covert channels [SQSL05]. As an alternative, non-interference has been

⋆ The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
ICT-318772 (D-MILS).

studied as a global property to characterize and to develop techniques ensuring
information flow security. Initially defined by Goguen and Meseguer [GM82],
non-interference ensures that the system’s secret information does not affect its
public behavior.

In this work, we adapt the MDS approach to develop a component-based
framework, named secBIP, that guarantees automated verification and imple-
mentation of secure information flow systems with respect to specific definition
of non-interference. In general, component-based frameworks allow the construc-
tion of complex systems by composition of atomic components with communi-
cation and coordination operators. That is, systems are obtained from unitary
atomic components that can be independently deployed and composed with
other components. Component-based frameworks are usually well adopted for
managing key issues for functional design including heterogeneity of components,
distribution aspects, performance issues, etc. Nonetheless, the use of component-
based frameworks is also beneficial for establishing information flow security.
Particularly, the explicit system architecture allows tracking easily intra and
inter-components information flow.

The secBIP framework is built as an extension of the BIP [BBS06,BBB+11]
framework encompassing information flow security. secBIP allows to create sys-
tems that are secure by construction if certain local conditions hold for composed
components. The secBIP extension includes specific annotations for classifica-
tion of both data and interactions. Thanks to the explicit use of composition
operators in BIP, the information flow is easily tracked within models and secu-
rity requirements can be established in a compositional manner, first locally, by
checking the behavior of atomic components and then globally, by checking the
communication and coordination inter-components.

Information flow security has been traditionally studied separately for langua-
ge-based models [SS01,SV98] (see also the survey [SM03]) and trace-based mod-
els [McC88,McL94,ZL97,Man00]. While the former mostly focus on verification
of data-flow security properties in programming languages, the latter is treat-
ing security in event-based systems. In secBIP, we achieve a useful combination
between both aspects, data-flow and event-flow security, in a single semantics
model. We introduce and distinguish two types of non-interference, respectively
event non-interference and data non-interference. For events, non-interference
states that the observation of public events should not allow to deduce any in-
formation about the occurrence of secret events. For data, it states that there is
no leakage of secret data into public ones.

The paper is structured as follows. Section 2 recalls the main concepts of
the component-based framework adopted in this work. In section 3, we formally
introduce the security extension and we provide the two associated definitions
of non-interference, respectively for data flows and event flows. Next, in section
4 we formally establish non-interference based on unwinding relations and we
provide sufficient conditions that facilitate its automatic verification. In section
5, we provide a use-case as illustrative example. Section 6 discusses the related

work and section 7 concludes and presents some lines for future work. All the
proofs of technical results are given in the appendix.

2 Component-Based Design

The secBIP framework is built as an extension of the BIP framework introduced
in [BBS06]. BIP stands for Behavior, Interaction and Priority, that is, the three
layers used for the definition of components and their composition in this frame-
work. BIP allows the construction of complex, hierarchically structured models
from atomic components characterized by their behavior and their interfaces.
Such components are transition systems enriched with data. Transitions are
used to move from a source to a destination location. Each time a transition
is taken, component data (variables) may be assigned new values, computed
by user-defined functions (in C). Atomic components are composed by layered
application of interactions and priorities. Interactions express synchronization
constraints and do the transfer of data between the interacting components.
Priorities are used to filter amongst possible interactions and to steer system
evolution so as to meet performance requirements e.g., to express scheduling
policies.

In this section, we briefly recall the key concepts of BIP which are further
relevant for dealing with information flow security. In particular, we give a for-
mal definition of atomic components and their composition through multiparty
interactions. Priorities are not considered in this work.

2.1 Atomic Components

Definition 1 (atomic component). An atomic component B is a tuple (L,
X, P , T) where L is a set of locations, X is a set of variables, P is a set of ports
and T ⊆ L × P × L is a set of port labelled transitions. For every port p ∈ P ,
we denote by Xp the subset of variables exported and available for interaction
through p. For every transition τ ∈ T , we denote by gτ its guard, that is, a
boolean expression defined on X and by fτ its update function, that is, a parallel
assignment {x := exτ}x∈X to variables of X.

p1

p1

[0 < x]
y := f(x)

p2

l1

l2

p2

Fig. 1. Atomic Component in BIP

Figure 1 provides an example of an atomic
component. It contains two control locations
l1 and l2 and two ports p1 and p2. The tran-
sition labeled with p1 can take place only if
the guard (0 < x) is true. When the transi-
tion takes place, the variable y is recalculated
as some function of x.

Let D be the data domain of variables.
Given a set of variables Y , we call valuation
on Y any function y : Y → D mapping vari-
ables to data. We denote by Y the set of all
valuations defined on Y .

Definition 2 (atomic component semantics). The semantics of an atomic
component B = (L,X, P, T) is defined as the labelled transition system lts(B) =
(QB, ΣB,−→

B
) where the set of states QB = L×X, the set of labels is ΣB = P×X

and the set of labelled transitions −→
B

is defined by the rule:

Atom

τ = ℓ
p
−→ ℓ′ ∈ T x′′

p ∈ Xp

gτ (x) x′ = fτ (x[Xp ← x′′
p])

(ℓ,x)
p(x′′

p)
−−−→

B
(ℓ′,x′)

That is, (ℓ′,x′) is a successor of (ℓ,x) labelled by p(x′′
p) iff (1) τ = ℓ

p
−→ ℓ′

is a transition of T , (2) the guard gτ holds on the current valuation x, (3) x′′
p

is a valuation of exported variables Xp and (4) x′ = fτ (x[Xp ← x′′
p]) meaning

that, the new valuation x′ is obtained by applying fτ on x previously modified
according to x′′

p . Whenever a p-labelled successor exist in a state, we say that p
is enabled in that state.

2.2 Composite Components

Composite components are obtained by composing an existing set of atomic
components {Bi = (Li, Xi, Pi, Ti)}i=1,n trough specific composition operators.
We consider that atomic components have pairwise disjoint sets of states, ports,
and variables i.e., for any two i 6= j from {1..n}, we have Li∩Lj = ∅, Pi∩Pj = ∅,
and Xi ∩Xj = ∅. We denote P =

⋃n

i=1 Pi the set of all the ports, L =
⋃n

i=1 Li

the set of all locations, and X =
⋃n

i=1 Xi the set of all variables.

Definition 3 (interaction). An interaction a between atomic components is
a triple (Pa, Ga, Fa), where Pa ⊆ P is a set of ports, Ga is a guard, and Fa is
an update function. By definition, Pa uses at most one port of every component,
that is, |Pi∩Pa| ≤ 1 for all i ∈ {1..n}. Therefore, we simply denote Pa = {pi}i∈I,
where I ⊆ {1..n} contains the indices of the components involved in a and for
all i ∈ I, pi ∈ Pi. Ga and Fa are both defined on the variables exported by the
ports in Pa (i.e.,

⋃
p∈Pa

Xp).

Definition 4 (composite component). A composite component C = γ(B1,
. . . , Bn) is obtained by applying a set of interactions γ to a set of atomic com-
ponents B1, . . . Bn.

Figure 2 presents a classical Producer-Buffer-Consumer example modeled in
BIP. It consists of three atomic components, namely Producer, Buffer and Con-
sumer. The Buffer is a shared memory placeholder, which is accessible by both
the Producer and the Consumer. It holds into the local variable x the number of
items available. The Buffer interacts with the Producer (res. Consumer) on the
put (resp. get) interaction. On the put interaction, an item is added to the Buffer
and x is incremented. On the get interaction, the Consumer removes an item
from the Buffer, if at least one exists (the guard [x ≥ 1]), and x is decremented.

Producer Buffer Consumer

p
u
t

p
u
t

g
e
t

g
e
t

γ : {{put, put}, {get, get}, {produce}, {consume}}

produce
consume

produce consume

l2

put

l1

l4

l5

get

x = 0

l3

get
[x ≥ 1]
x = x − 1

x = x + 1
put

Fig. 2. BIP model of the Producer-Buffer-Consumer example

Finally, the transitions labeled produce and consume do not require synchroniza-
tion - they are executed alone (on singleton port interactions) by the respective
components.

Definition 5 (composite component semantics). Let C = γ(B1, . . . , Bn)
be a composite component. Let Bi = (Li, Xi, Pi, Ti) and lts(Bi) = (Qi, Σi,−−→

Bi

)

their semantics, for all i = 1, n. The semantics of C is the labelled transition
system lts(C) = (QC , ΣC ,−→

C
) where the set of states QC = ⊗n

i=1Qi, the set of

labels ΣC = γ and the set of labelled transitions −→
C

is defined by the rule:

Comp

a = ({pi}i∈I , Ga, Fa) ∈ γ Ga({xpi
}i∈I) {x′′

pi
}i∈I = Fa({xpi

}i∈I)

∀i ∈ I. (ℓi,xi)
pi(x

′′

pi
)

−−−−→
Bi

(ℓ′i,x
′
i) ∀i 6∈ I. (ℓi,xi) = (ℓ′i,x

′
i)

((ℓ1,x1), . . . , (ℓn,xn))
a
−→
C

((ℓ′1,x
′
1), . . . , (ℓ

′
n,x

′
n))

For each i ∈ I, xpi
above denotes the valuation xi restricted to variables of Xpi

.

The rule expresses that a composite component C = γ(B1, . . . , Bn) can
execute an interaction a ∈ γ enabled in state ((ℓ1,x1), . . . , (ℓn,xn)), iff (1) for
each pi ∈ Pa, the corresponding atomic component Bi can execute a transition
labelled by pi, and (2) the guard Ga of the interaction holds on the current
valuation of variables exported on ports participating in a. Execution of inter-
action a triggers first the update function Fa which modifies variables exported
by ports pi ∈ Pa. The new values obtained, encoded in the valuation x′′

pi
, are

then used by the components’ transitions. The states of components that do not
participate in the interaction remain unchanged.

Any finite sequences of interactions w = a1...ak ∈ γ∗ executable by the
composite component starting at some given initial state q0 is named a trace.
The set of all traces w from state q0 is denoted by traces(C, q0).

3 Information Flow Security

We explore information flow policies [DD77,BLP76,GM82] with focus on the non-
interference property. In order to track information we adopt the classification

technique and we define a classification policy where we annotate the information
by assigning security levels to different parts of secBIP model (data variables,
ports and interactions). The policy describes how information can flow from one
classification with respect to the other.

As an example, we can classify public information as a Low (L) security level
and secret (confidential) information as High (H) security level. Intuitively High
security level is more restrictive than Low security level and we denote it by
L ⊆ H . In general, security levels are elements of a security domain, defined as
follows:

Definition 6 (security domain). A security domain is a lattice of the form
〈S,⊆,∪,∩〉 where:

– S is a finite set of security levels.

– ⊆ is a partial order ”can flow to” on S that indicates that information can
flow from one security level to an equal or a more restrictive one.

– ∪ is a ”join” operator for any two levels in S and that represents the upper
bound of them.

– ∩ is a ”meet” operator for any two levels in S and that represents the lower
bound of them.

H

M2

L

M1

Fig. 3. Example of security domain

As an example, consider the set S =
{L,M1,M2, H} of security levels that are
governed by the ”can flow to” relation L ⊆
M1, L ⊆M2, M1 ⊆ H and M2 ⊆ H . M1 and
M2 are incomparable and we note M1 * M2

andM1 + M2. This security domain is graph-
ically illustrated in Figure 3.

Let C = γ(B1, . . . Bn) be a composite
component, fixed. Let X (resp. P) be the
set of all variables (resp. ports) defined in all
atomic components (Bi)i=1,n.

Let 〈S,⊆,∪,∩〉 be a security domain,
fixed.

Definition 7 (security assignment). A security assignment for component
C is a mapping σ : X ∪ P ∪ γ → S that associates security levels to variables,
ports and interactions such that, moreover, the security levels of ports matches
the security levels of interactions, that is, for all a ∈ γ and for all p ∈ P it holds
σ(p) = σ(a).

In atomic components, the security levels considered for ports and variables
allow to track intra-component information flows and control the intermediate
computation steps. Moreover, inter-components communication, that is, inter-
actions with data exchange, are tracked by the security levels assigned to inter-
actions.

In order to formally introduce the two notions of non-interference for secBIP
models we need few additional notations, as follows. Let σ be a security assign-
ment for C, fixed.

For a security level s ∈ S, we define γ ↓σs the restriction of γ to interactions
with security level at most s that is formally, γ ↓σs= {a ∈ γ | σ(a) ⊆ s}.

For a security level s ∈ S, we define w|σs the projection of a trace w ∈ γ∗

to interactions with security level lower or equal to s. Formally, the projection
is recursively defined on traces as ǫ|σs = ǫ, (aw)|σs = a(w|σs) if σ(a) ⊆ s and
(aw)|σs = w|σs if σ(a) 6⊆ s. The projection operator |σs is naturally lifted to sets
of traces W by taking W |σs = {w|σs | w ∈W}.

For a security level s ∈ S, we define the equivalence ≈σ
s on states of C. Two

states q1, q2 are equivalent, denoted by q1 ≈σ
s q2 iff (1) they coincide on variables

having security levels at most s and (2) they coincide on control locations having
outgoing transitions labeled with ports with security level at most s.

We are now ready to define the two notions of non-interference.

Definition 8 (event non-interference). The security assignment σ ensures
event non-interference of γ(B1, . . . , Bn) at security level s iff,

∀q0 ∈ Q0
C : traces(γ(B1, . . . , Bn), q0)|σs = traces((γ ↓σs)(B1, . . . , Bn), q0)

Event non-interference ensures isolation/security at interaction level. The
definition excludes the possibility to gain any relevant information about the
occurrences of interactions (events) with strictly greater (or incomparable) levels
than s, from the exclusive observation of occurrences of interactions with levels
lower or equal to s. That is, an external observer is not able to distinguish
between the case where such higher interactions are not observable on execution
traces and the case these interactions have been actually statically removed from
the composition. This definition is very close to Rushby’s [Rus92] definition for
transitive non-interference. But, let us remark that event non-interference is not
concerned about the protection of data.

L

L

H

H

L

comp3

comp2comp1

l1

l2

l3
l5

b2

c1

a2

c2

b2

d2

a1

b1

a2

l6

l7

d3

b3
b3

b1

c1

a1

d2

c2
d3

l4

Fig. 4. Example for event non-interference

Example 1. Figure 4 presents a simple illustrative example for event non-interference.
The model consists of three atomic components compi,i=1,2,3. Different security
levels have been assigned to ports and interactions: comp1 is a low security
component, comp2 is a high security component, and comp3 is mixed security
component. The security levels are represented by dashed squares related to in-
teractions, internal ports and variables. As a convention, we apply high (H) level
for secret data and interactions and low(L) level for public ones. The set of traces
is represented by the automaton in Figure 5 (a). The set of projected execution
traces at security level L is represented by the automaton depicted in Figure 5
(b). This set is equal to the set of traces obtained by restricted composition, that
is, using interaction with security level at most L and depicted in Figure 5 (c).
Therefore, this example satisfies the event non-interference condition at level L.

a1a2

b1c2

a1a2

d2d3

b2b3

l3l4l7

l1l4l6

(a)

l1l4l7

l3l4l6 l2l5l7

l2l5l6

a1a2

b1c2

a1a2

l3l4l7

l1l4l6

(b)

l1l4l7

l3l4l6 l2l5l7

l2l5l6
τc1

c1 c1

c1

b1c2b1c2
d2d3

τ

τ

(c)

a1a2

b1c2

l1l4l6

l3l4l6

l2l5l6

c1

Fig. 5. Sets of traces represented as automata

Definition 9 (data non-interference). The security assignment σ ensures
data non-interference of C = γ(B1, . . . , Bn) at security level s iff,

∀q1, q2 ∈ Q0
C : q1 ≈σ

s q2 ⇒
∀w1 ∈ traces(C, q1), w2 ∈ traces(C, q2) : w1|σs = w2|σs ⇒

∀q′1, q
′
2 ∈ QC : q1

w1−−→
C

q′1 ∧ q2
w2−−→
C

q′2 ⇒ q′1 ≈
σ
s q′2

Data non-interference provides isolation/security at data level. The definition
ensures that, all states reached from initially indistinguishable states at security
level s, by execution of arbitrary but identical traces whenever projected at
level s, are also indistinguishable at level s. That means that observation of all

variables and interactions with level s or lower excludes any gain of relevant in-
formation about variables at higher (or incomparable) level than s. Compared to
event non-interference, data non-interference is a stronger property that consid-
ers the system’s global states (local states and valuation of variables) and focus
on their equivalence along identical execution traces (at some security level).

Example 2. Figure 6 presents an extension with data variables of the previous
example from Figure 4. We consider the following two traces w1 = 〈a1a2,b2b3,
c2b1, d2d3, c1, a2a1〉 and w2 = 〈a1a2, b2b3, c2b1, c1, a2a1〉 that start from the initial
state ((l1, u = 0, v = 0), (l4, x = 0, y = 0), (l6, z = 0, w = 0)). Although the
projected traces at level L are equal, that is, w1|

σ
L = w2|

σ
L = 〈a1a2, c2b1, c1, a1a2〉,

the reached states by w1 and w2 are different, respectively ((l2, u = 4, v =
2), (l5, x = 3, y = 2), (l6, z = 1, w = 1)) and ((l2, u = 4, v = 2), (l5, x = 2, y =
2), (l7, z = 1, w = 0)) and moreover non-equivalent at low level L. Hence, this
example is not data non-interferent at level L.

L

L

H

H

w: low
z: highL

u: low
v: high

y=y+1

u=0
v=0

[y>0]

x: low
y: high

u=u+2

x=x+1

y=0
x=0

v=v+1

y=y+x
v=2v w=w+1x=x+1

comp1
comp3

comp2

z=x

z=0
w=0

l1

l2

l3

l4

l5

b2

a2 b2a1

b1

c2
c1

d2

c1

c2

a1

b3

d3
b1

d2

d3
b3a2

l6

l7

Fig. 6. Example for data non-interference

Definition 10 (secure component). A security assignment σ is secure for a
component γ(B1, . . . , Bn) iff it ensures both event and data non-interference, at
all security levels s ∈ S.

4 Automated Verification of Non-Interference

We propose hereafter an automated verification technique of non-interference for
secBIP models based on the so-called unwinding conditions. These conditions
were first introduced by Goguen and Meseguer for the verification of transitive
non-interference for deterministic systems [GM82]. In general, the unwinding
approach reduces the verification of information flow security to the existence
of certain unwinding relation. This relation is usually an equivalence relation on
system states that respects some additional properties on atomic execution steps,
which are shown sufficient to imply non-interference. In the case of secBIP, the

additional properties are formulated in terms of individual interactions/events
and therefore easier to handle.

Let C = γ(B1, . . . , Bn) be a composite component and let σ be a security
assignment for C.

Definition 11 (unwinding relation). An equivalence ∼s on states of C is
called an unwinding relation for σ at security level s iff the two following condi-
tions hold:

1. local consistency
∀q, q′ ∈ QC : ∀a ∈ γ : q

a
−→
C

q′ ⇒ σ(a) ⊆ s ∨ q ∼s q
′

2. output and step consistency
∀q1, q2, q′1 ∈ QC : ∀a ∈ γ :

q1 ∼s q2 ∧ q1
a
−→
C

q′1 ∧ σ(a) ⊆ s⇒

∃q′2 ∈ QC : q2
a
−→
C

q′2∧

∀q′2 ∈ QC : q2
a
−→
C

q′2 ⇒ q′1 ∼s q
′
2

The existence of unwinding relations is tightly related to non-interference.
The following two theorems formalize this relation for the two types of non-
interference defined. Let C be a composite component and σ a security assign-
ment.

Theorem 1 (event non-interference). If an unwinding relation ∼s exists
for the security assignment σ at security level s, then σ ensures event non-
interference of C at level s.

Theorem 2 (data non-interference). If the equivalence relation ≈σ
s is also

an unwinding relation for the security assignment σ at security level s, then σ

ensures data non-interference of C at level s.

The two theorems above are used to derive a practical verification method
of non-interference using unwinding. We provide hereafter sufficient syntactic
conditions ensuring that indeed the unwinding relations ∼s and ≈s exist on
the system states. These conditions aim to effectively reduce the verification
of non-interference to the checking on local constraints on both transitions
(intra-component conditions) and interactions (inter-component conditions). Es-
pecially, they give an direct way to automate the verification.

Definition 12 (security conditions). Let C = γ(B1, . . . , Bn) be a compos-
ite component and let σ be a security assignment. We say that C satisfies the
security conditions for security assignment σ iff:

(i) the security assignment of ports, in every atomic component Bi is locally
consistent, that is:
• for every pair of causal transitions:

∀τ1, τ2 ∈ Ti : τ1 = ℓ1
p1

−→ ℓ2, τ2 = ℓ2
p2

−→ ℓ3 ⇒
ℓ1 6= ℓ2 ⇒ σ(p1) ⊆ σ(p2)

• for every pair of conflicting transitions:

∀τ1, τ2 ∈ Ti : τ1 = ℓ1
p1−→ ℓ2, τ2 = ℓ1

p2−→ ℓ3 ⇒
ℓ1 6= ℓ2 ⇒ σ(p1) ⊆ σ(p2)

(ii) all assignments x := e occurring in transitions within atomic components
and interactions are sequential consistent, in the classical sense:

∀y ∈ use(e) : σ(y) ⊆ σ(x)

(iii) variables are consistently used and assigned in transitions and interactions,
that is,

∀τ ∈ ∪ni=1Ti ∀x, y ∈ X : x ∈ def(fτ), y ∈ use(gτ) ⇒
σ(y) ⊆ σ(pτ) ⊆ σ(x)

∀a ∈ γ ∀x, y ∈ X : x ∈ def(Fa), y ∈ use(Ga) ⇒
σ(y) ⊆ σ(a) ⊆ σ(x)

(iv) all atomic components Bi are port deterministic:

∀τ1, τ2 ∈ Ti : τ1 = ℓ1
p
−→ ℓ2, τ2 = ℓ1

p
−→ ℓ3 ⇒

(gτ1 ∧ gτ2) is unsatisfiable

The first family of conditions (i) is similar to Accorsi’s conditions [AL12] for
excluding causal and conflicting places for Petri net transitions having different
security levels. Similar conditions have been considered in [FG01,FGF09] and
lead to more specific definitions of non-interferences and bisimulations on an-
notated Petri nets. The second condition (ii) represents the classical condition
needed to avoid information leakage in sequential assignments. The third condi-
tion (iii) tackles covert channels issues. Indeed, (iii) enforces the security levels
of the data flows which have to be consistent with security levels of the ports or
interactions (e.g., no low level data has to be updated on a high level port or
interaction). Such that, observations of public data would not reveal any secret
information. Finally, conditions (iv) enforces deterministic behavior on atomic
components.

The relation between the syntactic security conditions and the unwinding
relations is precisely captured by the following theorem.

Theorem 3 (unwinding theorem). Whenever the security conditions hold,
the equivalence relation ≈σ

s is an unwinding relation for the security assignment
σ, at all security level s.

The following result is the immediate consequence of theorems 1, 2 and 3.

Corollary 1. Whenever the security conditions hold, the security assignment σ
is secure for the component C.

5 Case study: Web Service Reservation System

We illustrate the secBIP framework to handle information flow security issues
for a classical example, the web service reservation system proposed in [HV06]. A
businessman, living in France, plans to go to Berlin for a private and secret mis-
sion. To organize his travel, he uses an intelligent web service who contacts two
travel agencies: The first agency, AgencyA, arranges flights in Europe and the
second agency, AgencyB, arranges flights exclusively to Germany. The reserva-
tion service obtains in return specific flight information and their corresponding
prices and chooses the flight that is more convenient for him.

In this example, there are two types of interference that can occur, (1) data-
interference since learning the flight price may reveal the flight destination and
(2) event interference, since observing the interaction with AgencyB can reveal
the destination as well. Thus, to keep the mission private, the flight prices and
interactions with AgencyB have to be kept confidential.

nca,nco,price,id : High

refused

pay_request treat

id
nca,nco,price

approved

payPayment
L

L L LL H H H H H H

H

from,to,dates,L,L[i] : Low
,id,nca,nco,price : High

H L L H H

new_pay_request

refused

yes

pay

fly_list select_fly pay_request approved pay

delv_ticket

L price

no

nca,nco,price
id

ca
nc

el

pay_requestrefusedapproved

search

from,to

dates
dates

dests

cancel

treat

pay approved refused pay_request

delv_ticket

Travel_A

search delv_ticketselect_fly

ca
nc

el
tr

ea
t

treat fly_list accept

select_fly

delv_ticket

search

Travel_B

cancel

fly_list accept

select_flyacceptfly_listsearch

Reservation
new_pay_request dests dates no yes

L,L[i] : Low

l1 l2 l4l3

ti

l9

l12

l14

l10 l11

accept
l13

ti

l4 l5 l6 l7 l8

ti
l3

l2

l1

l3l2l1 l5

l6

l4

l7

ti

ti
ti : High

Fig. 7. Model of Reservation Web Service in secBIP

The modeling of the system using secBIP involves two main distinct steps:
first, functional requirements modeling reflecting the system behavior, and sec-
ond, security annotations enforcing the desired security policy. The model of the
system has four components denoted: Travel A and Travel B who are instances
from the same component and correspond respectively to AgencyA and Agen-
cyB, and components Reservation and Payment. To avoid Figure 7 cluttering,
we did not represent the interactions with Travel A component. Search parame-

ters are supplied by a user through the Reservation component ports dests and
dates to which we associate respectively variables (from, to) and dates. Next,
through search interaction,Reservation component contacts Travel B component
to search for available flights and obtains in return a list L of specific flights with
their corresponding prices. Thereafter, Reservation component selects a ticket ti
from the list L and requests the Payment component to perform the payment.

All the search parameters from, to, dates, as well as the flights list L are set
to low since users are not identified while sending these queries. Other sensitive
data like the selected flight ti, the price variable p and the payment parameters
(identity id, credit card variable cna and code number cno) are set to high.
Internal ports dests and dates as well as search, fly list, accept interactions are set
to low since these interactions (events) do not reveal any information about the
client private trip. However, the select f ly interaction must be set to high since
the observation of the selection event from AgencyB allow to deduce deduce the
client destination. In the case of a selected flight from AgencyA, the select f ly

interaction could be set to low since, in this case, the destination could not be
deduced just from the event occurrence.

We recall that any system can be proven non-interferent iff it satisfies the
syntactic security conditions from Definition 12. Indeed, these conditions hold
for the system model depicted in Figure 7. In particular, it can be easily checked
that all assignments occurring in transitions within atomic component as well
as within interactions are sequential consistent. For example, at the select f ly

interaction we assign a low level security item from the flight list L to a high
security level variable ti, formally ti = L[i]. Besides, the security levels assign-
ments to ports exclude inconsistencies due to causal and conflicting transitions,
in all atomic components.

6 Related Work

Non-interference properties have been already studied using different model-
based approaches. Recently, [SS12] adapted an MDS method for handling in-
formation flow security using UML sequence diagrams. Additionally, Petri-nets
have been extensively used for system modeling and information flow security
verifications tools such as InDico [AWD11] have been developed. A component-
based model has been proposed in [ASRL11] and used to study implementation
issues of secure information flows. Our presented work on secBIP is however
different and original in several respects.

First, secBIP is a formal framework. Unlike UML, system’s runtime behavior
is always meaningfully defined and can be formally analyzed. Moreover, secBIP
provides a system construction methodology for complex systems. Indeed, big
systems are functionally decomposed into multiple sub-components communi-
cating through well-defined interactions. Such a structural decomposition of the
system is usually not available on Petri-nets models.

Second, secBIP handles both event and data-flow non-interference, in a single
semantic model. To the best of our knowledge, these properties have never been

jointly considered for component-based models. Nevertheless, the need to con-
sider together event and data flow non-interference has been recently identified
in the existing literature. The bottom line is that preserving the safety of data
flow in a system does not necessarily preserve safe observability on system’s pub-
lic behavior (i.e., secret/private executions may have an observable impact on
system public events). The issue has been recently considered in [AL12], for data
leaks and information leaks in business processes based on system’s data-flows
and work-flows. Also, [BBMP08] showed that formal verification of the system’s
event behavior is not sufficient to guarantee specific data properties. Further-
more, [FRS05] attempted to fill the gap between respectively language-based
and process calculus-based information security and make an explicit distinc-
tion between preventing the data leakage through the execution of programs
and preventing secret events from being revealed in inter-process communica-
tions.

Third, compared to security-typed programming languages [jif,ZZNM02] and
operating systems [KYB+07,ZBWM08,EKV+05] enforcing information flow con-
trol, secBIP is a component-based modeling approach where non-interference is
established at a more abstract level. Thus, secBIP can be apriori implemented
using different programming languages and is independent from a specific oper-
ating system and execution platform.

Finally, it is worth mentioning that a lot of classical approaches fall short
to handle information flow security [Zda04] for real systems. For secBIP we
privilege a very pragmatic approach and provide simple (syntactic) sufficient
conditions allowing to automate the verification of non-interference. These con-
ditions allow to eliminate a significant amount of security leakages, especially
covert channels, independently from system language or the execution platform.
However, these conditions can be very restrictive in some cases and a system
designer may be interested to relax the non-interference properties.

7 Conclusion and Future Work

We present a MDS framework to secure component-based systems. We for-
mally define two types of non-interference, respectively event and data non-
interference. We provide a set of sufficient syntactic conditions which simplify
verification of non-interference. These conditions are extensions of security typed
language rules applied to our model. The use of our framework has been demon-
strated to secure a web service application.

This work is currently being extended in two directions. First, we are in-
vestigating additional security conditions allowing to relax the non-interference
property and control where downgrading can occur. Second, we are working to-
wards the implementation of a complete design flow for secure systems based on
secBIP. As a first step, we shall implement the verification method presented for
annotated secBIPmodels. Then, use these models for generation of secure imple-
mentations, that is, executable code where the security properties are enforced
by construction, at the generation time.

References

[AL12] Rafael Accorsi and Andreas Lehmann. Automatic information flow analysis
of business process models. In 10th International Conference on Business
Process Management (BPM’12), volume 7481 of LNCS, pages 172–187.
Springer, 2012.

[ASRL11] Takoua Abdellatif, Lilia Sfaxi, Riadh Robbana, and Yassine Lakhnech. Au-
tomating information flow control in component-based distributed systems.
In 14th International ACM Sigsoft Symposium on Component Based Soft-
ware Engineering (CBSE’11), pages 73–82. ACM, 2011.

[AWD11] Rafael Accorsi, Claus Wonnemann, and Sebastian Dochow. Swat: A secu-
rity workflow analysis toolkit for reliably secure process-aware information
systems. In Sixth International Conference on Availability, Reliability and
Security (ARES’11), pages 692–697. IEEE, 2011.

[BBB+11] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mo-
hamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis. Rigorous
component-based design using the BIP framework. IEEE Software, Special
Edition – Software Components beyond Programming – from Routines to
Services, 28(3):41–48, 2011.

[BBMP08] Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and Ioannis Parissis.
Architecting Dependable Systems V, chapter Data Flow-Based Validation
of Web Services Compositions: Perspectives and Examples, pages 298–325.
Springer, 2008.

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling Heterogeneous
Real-time Systems in BIP. In Fourth IEEE International Conference on
Software Engineering and Formal Methods (SEFM’06), pages 3–12. IEEE
Computer Society Press, 2006.

[BDL06] David Basin, Jürgen Doser, and Torsten Lodderstedt. Model driven secu-
rity: from uml models to access control infrastructures. ACM Transactions
on Software Engineering and Methodology, 15:39–91, 2006.

[BLP76] E. D. Bell and J. L. La Padula. Secure computer system: Unified exposition
and Multics interpretation, 1976.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of programs for
secure information flow. Communications of the ACM, pages 504–513, 1977.

[EKV+05] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey,
David Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert
Morris. Labels and Event Processes in the Asbestos Operating System.
SIGOPS Operating Systems Review, 39(5):17–30, 2005.

[FG01] Riccardo Focardi and Roberto Gorrieri. Classification of Security Prop-
erties (Part I: Information Flow). In Revised lectures of IFIP WG 1.7
International School on Foundations of Security Analysis and Design on
Foundations of Security Analysis and Design (FOSAD’00), volume 2171 of
LNCS, pages 331–396. Springer, 2001.

[FGF09] Simone Frau, Roberto Gorrieri, and Carlo Ferigato. Petri net security
checker: Structural non-interference at work. In Formal Aspects in Secu-
rity and Trust, 5th International Workshop (FAST’08), Revised Lectures,
volume 5491 of LNCS, pages 210–225. Springer, 2009.

[FRS05] Riccardo Focardi, Sabina Rossi, and Andrei Sabelfeld. Bridging language-
based and process calculi security. In Foundations of Software Science and
Computation Structures (FOSSACS’05), volume 3441 of LNCS, pages 299–
315. Springer, 2005.

[GM82] Joseph A. Goguen and José Meseguer. Security policies and security mod-
els. In IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[HV06] Dieter Hutter and Melanie Volkamer. Information flow control to secure
dynamic web service composition. In Security in Pervasive Computing
(SPC’06), volume 3934 of LNCS, pages 196–210. Springer, 2006.

[jif] http://www.cs.cornell.edu/jif/.
[Kuh98] D. Richard Kuhn. Role Based Access Control on MLS Systems with-

out Kernel Changes. In ACM Workshop on Role Based Access Control
(RBAC’98), pages 25–32. ACM, 1998.

[KYB+07] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans
Kaashoek, Eddie Kohler, and Robert Morris. Information Flow Control for
Standard OS Abstractions. SIGOPS Operating Systems Review, 41(6):321–
334, 2007.

[Man00] Heiko Mantel. Possibilistic Definitions of Security - An Assembly Kit. In
13th IEEE Workshop on Computer Security Foundations (CSFW’00), page
185. IEEE Computer Society, 2000.

[McC88] Daryl McCullough. Noninterference and the composability of security prop-
erties. In Security and Privacy (SP’88), pages 177–186. IEEE Computer
Society, 1988.

[McL94] John McLean. A general theory of composition for trace sets closed under
selective interleaving functions. In Security and Privacy (SP’94), page 79.
IEEE Computer Society, 1994.

[Rus92] John Rushby. Noninterference, transitivity, and channel-control security
policies. Technical Report CSL-92-2, SRI International, 1992.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1), 2003.

[SQSL05] Jianjun Shen, Sihan Qing, Qingni Shen, and Liping Li. Covert channel
identification founded on information flow analysis. In Computational In-
telligence and Security (CIS’05), volume 3802 of LNCS, pages 381–387.
Springer, 2005.

[SS01] Andrei Sabelfeld and David Sands. A per model of secure information flow
in sequential programs. Higher Order Symbolic Computation, 14(1):59–91,
2001.

[SS12] Fredrik. Seehusen and Ketil Stølen. Dependability and Computer Engi-
neering: Concepts for Software-Intensive Systems, chapter A Method for
Model-driven Information Flow Security, pages 199–229. IGI Global, 2012.

[SSM98] Ravi Sandhu, Ravi S, and Qamar Munawer. How to do discretionary ac-
cess control using roles. In ACM Workshop on Role-based access control
(RBAC’98), pages 47–54. ACM, 1998.

[SV98] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-
threaded imperative language. In Symposium on Principles of Programming
Languages (POPL’98), pages 355–364. ACM, 1998.

[ZBWM08] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing
distributed systems with information flow control. In 5th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI’08), pages
293–308. USENIX Association, 2008.

[Zda04] Steve Zdancewic. Challenges for information-flow security. In Programming
Language Interference and Dependence (PLID’04), 2004.

[ZL97] A. Zakinthinos and E. S. Lee. A general theory of security properties. In
Security and Privacy (SP’97), pages 94–102. IEEE Computer Society, 1997.

[ZZNM02] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. My-
ers. Secure program partitioning. ACM Transactions on Computer Sys-
tems, 20(3):283–328, August 2002.

Appendix

Proof of Theorem 1

Proof. We shall prove traces(γ(B1, . . . , Bn), q0)|σs = traces((γ ↓σs)(B1, . . . ,
Bn), q0) by double inclusion. ”⊇” inclusion: Independently of the unwinding re-
lation, by using elementary set properties it holds that traces((γ ↓σs)(B1, . . . ,

Bn), q0) = traces((γ ↓σs)(B1, . . . , Bn), q0)|σs ⊆ traces(γ(B1, . . . , Bn), q0)|σs .
”⊆” inclusion: This direction is an immediate consequence of the following
Lemma 1. It states that for every trace w in traces(γ(B1, . . . , Bn), q0) its pro-
jection w|σs is also a valid trace in traces(γ(B1, . . . , Bn), q0). But, this also
means that w|σs is a valid trace in traces((γ ↓σs)(B1, . . . , Bn), q0) which proves
the result.

Lemma 1. In the conditions of Theorem 1, for every trace w in traces(γ(B1,

. . . , Bn), q0), for every state q such that q0
w
−→
C

q, the projected trace w|σs is also

a valid trace in traces(γ(B1, . . . , Bn), q0) and moreover, for every state q′ such

that q0
w|σs−−→
C

q′ it holds q ∼s q
′.

Proof. The lemma is proved by induction on the length of the trace w. For the
empty trace w = ǫ verification is trivial: ∼s holds for the initial state q0 ∼s q0
and ǫ = ǫ|σs . By induction hypothesis, let assume the property holds for traces
of length n. We shall prove the property for traces of length n+ 1. Let w′ = wa

be an arbitrary trace of length n+ 1, let w be its prefix (trace) of length n and

let a be the last interaction. Consider states q, q1 such that q0
w
−→
C

q
a
−→
C

q1. By

the induction hypothesis we know that w|σs is a valid trace and for all states q′

such that q0
w|σs−−→
C

q′ it holds q ∼s q
′. We distinguish two cases, depending on the

security level of a:

∼s

q0 q q1
w a

q′
w|σs

∼s

a q′1

σ(a) ⊆ s

q0 q q1
w a

q′
w|σs

σ(a) * s

∼s

Fig. 8. Proof illustration for Lemma 1

– σ(a) * s: In this case, w′|σs = w|σs hence, w′|σs is a valid trace as well,
reaching the same states q′. Moreover, since a is invisible for s, the unwinding
condition (1) ensures that q ∼s q1. By transitivity, this implies that q1 ∼s q

′,
which proves the result.

– σ(a) ⊆ s: In this case, w′|σs = w|σs a. From the unwinding condition (2), since
q ∼s q

′ and a is visible and enabled in q then, a must also be enabled in q′.
Therefore, w|σs can be extended with a from state q′ to some q′1 hence, w′|σs
is indeed a valid trace. Moreover, since q ∼s q

′ the unwinding condition (2)
ensures also that q1 ∼s q

′
1, which proves the result.

Proof of Theorem 2

Proof. Let us consider two equivalent states q1 ≈σ
s q2.

The first condition for data non-interference requires that, for any trace w1 from
q1 there exists a trace w2 from q2 having the same projection at level s, that is,
w1|σs = w2|σs .

We shall prove a slightly stronger property, namely, the trace w2 can be
chosen such that, the successors q′1 and q′2 of respectively q1 by w1 and q2 by
w2 are moreover equivalent, that is, q′1 ≈

σ
s q′2. The proof is by induction on

the length of the trace w1. The base case: for the empty trace w1 = ǫ we take
equally w2 = ǫ we immediately have q′1 = q1 ≈σ

s q2 = q′2. The induction step: we
assume, by induction hypothesis that the property holds for all traces w1 such
that |w1| ≤ n and we shall prove it for all traces w′

1 such that |w′
1| = n+ 1. Let

a be the last interaction executed in w′
1, that is, w

′
1 = w1a with |w1| = n. Let q′′1

be the state reached from q1 by w1. From the induction hypothesis, there exists
a trace w2 that leads q2 into q′′2 such that w1|σs = w2|σs and moreover q′′1 ≈

σ
s q′′2 .

We distinguish two cases, depending on the security level of a:

– σ(a) 6⊆ s: since ≈σ
s is unwinding and q′′1

a
−→
C

q′1 it follows that q′′1 ≈
σ
s q′1. In

this case, we take w′
2 = w2 and q′2 = q′′2 which ensures both w′

1|
σ
s = w1|σs =

w2|σs = w′
2|

σ
s and q′1 ≈

σ
s q′′1 ≈ q′′2 = q′2.

– σ(a) ⊆ s: since ≈σ
s is unwinding and q′′1 ≈

σ
s q′′2 and q′′1

a
−→
C

q′1 there must

exists q′2 such that q′′2
a
−→
C

q′2 and moreover, for any such choice q′1 ≈
σ
s q′2.

Hence, in this case, the trace w′
2 = w2a executed from q2 and leading to q′2

satisfies our property, namely w′
1|

σ
s = w1|

σ
sa = w2|

σ
sa = w′

2|
σ
s and q′1 ≈

σ
s q′2.

The second condition for data non-interference requires that, for any traces
w1 and w2 with equal projection on security level s, that is w1|σs = w2|σs , any
successor states q′1 and q′2 of respectively q1 by w1 and q2 by w2 are also equivalent
at level s. This property is proved also by induction on |w1|+ |w2|, that is, on the
sum of the lengths of traces w1, w2. The base case: for empty traces w1 = w2 = ǫ

we have that q′1 = q1 and q′2 = q2 and hence trivially q′1 ≈
σ
s q′2. The induction

step: we assume, by induction hypothesis that the property holds for any traces
w1, w2 such that |w1|+ |w2| ≤ n and we shall prove it for all traces w′

1, w
′
2 such

that |w′
1| + |w

′
2| = n + 1. We distinguish two cases, depending on the security

levels of the last interactions occurring in w′
1 and w′

2.

w1

w2q1

q1
a1q′′

1

q′′
2

q′
1

≈σ
s

≈σ
s≈σ

s

w1

w2q1

q1

a2

a1q′′
1

q′′
2

q′
1

q′′
2

≈σ
s ≈σ

s ≈σ
s

Fig. 9. Proof illustration for Theorem 2

– at least one of the last interactions in w′
1 or w′

2 has a security level not lower
or equal to s. W.l.o.g, consider that indeed w′

1 = w1a1 and σ(a1) 6⊆ s. This
situation is depicted in Figure 9, (left).
Let q′′1 be the state reached from q1 after w1. Since w

′
1|

σ
s = w′

2|
σ
s and σ(a1) 6⊆ s

it follows that w1|σs = w′
1|

σ
s = w′

2|
σ
s . The induction hypothesis holds then for

w1 and w′
2 because |w1| + |w′

2| = n − 1 and hence we have that q′′1 ≈
σ
s q′2.

Moreover, q′1 is a successor of q′′1 by interaction a1. Since the security level
of a1 is not lower or equal to s, and ≈σ

s is an unwinding relation at level
s, it follows from the local consistency condition that q′′1 ≈

σ
s q1. Then, by

transitivity of ≈σ
s we obtain that q′1 ≈

σ
s q′2.

– the last interactions of both traces w′
1 and w′

2 have security level lower or
equal to s. That is, consider w′

1 = w1a1 and w′
2 = w2a2 with σ(a1) ⊆ s,

σ(a2) ⊆ s. This situation is depicted in Figure 9, (right).
Let q′′1 and q′′2 be the states reached respectively from q1 by w1 and from q2 by
w2. Since σ(a1) ⊆ s,σ(a2) ⊆ s we have w′

1|
σ
s = w1|

σ
s a1, w

′
2|

σ
s = w2|

σ
sa2. From

the hypothesis, w′
1|

σ
s = w′

2|
σ
s , it follows that both a1 = a2 and w1|σs = w2|σs .

Therefore, the induction hypothesis can be applied for traces w1, w2 because
|w1|+ |w2| = n− 2 and hence, we obtain q′′1 ≈

σ
s q′′2 . But now, q

′
1 and q′2 are

immediate successors of two equivalent states q′′1 and q′′2 by executing some
interaction a = a1 = a2, having security level lower or equal to s. Since,
≈σ

s is an unwinding relation at level s, it follows from the step consistency
condition that successors states q′1 and q′2 are also equivalent at level s, hence,
q′1 ≈

σ
s q′2.

Proof of Theorem 3

Proof. Let s be an arbitrary fixed security level. We shall prove that ≈σ
s satisfies

the local, output and step consistency, as required by Definition 11.
local consistency: Let q, q′ ∈ QC be two states such that q

a
−→
C

q′. We must

show that if σ(a) 6⊆ s then q ≈σ
s q′.

All variables x modified by a itself and by the transitions participating in a

are such that σ(a) ⊆ σ(x) (security conditions, (iii)). Then, since σ(a) 6⊆ s, it also
follows that all variables modified have security level greater or incomparable to
s. Conversely, it follows that all variables with security levels lower or equal to
s are not modified by a, hence they have the same values in q in q′.

Regarding control locations, we proceed by contradiction. Let consider that
some component Bi is respectively at ℓi in q and at ℓ′i in q′ and moreover, either

at ℓi or ℓ
′
i there exists transitions with ports having security levels lower or equal

s. Since the location of Bi has changed, it means that it has participated in the

interaction a using some transition τi = ℓi
pi
−→ ℓ′i. Let consider the two situations:

– there exists transitions with security level lower or equal to s at ℓ′i. Let

τ ′i = ℓ′i
p′

i−→ ℓ′′i such a transition. This situation contradicts the security
conditions (i), as τ ′i is causally dependent on τi and has a different, yet not
increased security level i.e., σ(pi) = σ(a) 6⊆ s and σ(p′i) ⊆ s.

– there exists transitions with security level lower or equal to s at ℓi. Let

τ ′i = ℓi
p′

i−→ ℓ′′i such a transition. This situation contradicts again the security
conditions (i): as τi and τ ′i are now conflicting it must be σ(pi) ⊆ σ(p′i) which
contradicts that σ(pi) = σ(a) 6⊆ s and σ(p′i) ⊆ s.

Henceforth, as the two situations lead to contradiction we conclude that,
either ℓi = ℓ′i, or otherwise, neither in ℓi or ℓ

′
i there exists transitions with ports

having security level lower or equal to s. This conclude the proof of q ≈σ
s q′

output and step consistency: Let q1, q2 be two equivalent states q1 ≈σ
s q2.

Let a be an interaction with security level lower or equal to s enabled in q1. We
show that the same interaction is enabled in q2. All components participating in
a use transitions with ports with the same level as a, hence at most s. Therefore,
these components are at control locations where there are outgoing transitions
with level at most s. Then, these components are precisely in the same locations
in q2 since q1 ≈

σ
s q2.

Moreover, all the guards of the interacting transitions as well as the guard
of the interaction use variables with security level lower or equal to σ(a) and
consequently, lower or equal to s (security conditions, (iii)). But again, q1 ≈σ

s q2
implies that all variables with levels lower or equal to s have equal values in
q1 and q2. Hence, the guards used in a have the same evaluation in q1 or q2.
Together with equality on control locations, established earlier, this implies that
a is enabled in q2.

Let now consider two arbitrary states q′1, q
′
2 reached by a from respectively

q1 and q2. We must show that q′1 ≈
σ
s q′2. First, as σ(a) ⊆ s, it follows that, as

explained before, enabledness of a depends exclusively on identical parts of q1
and q2. Moreover, due to security conditions (iv) it follows also that the execution
of a synchronizes exactly the same set of transitions when executed either from
q1 or from q2. Hence, in the successor states q′1 and q′2 all interacting atomic
components have moved towards the same locations. The equality condition on
the control locations is therefore satisfied. Furthermore, using security conditions
(ii) it holds that all variables modified by transitions involved in a, if they have
security values lower or equal to s, they will be assigned the same values. That
is, the assigned expression use only variables with a lower security level, and
hence identical on q1 and q2. This ensures equality of variables with security
level lower or equal to s in q′1 and q′2, which conclude the proof.

