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Abstra
t. In this arti
le, we bring a new light on the 
on
ept of the inf-
onvolution operation

⊕ and provides additional informations to the work started in [1℄ and [2℄. It is shown that any

internal law of group metri
 invariant (even quasigroup) 
an be 
onsidered as an inf-
onvolution.

Consequently, the operation of the inf-
onvolution of fun
tions on a group metri
 invariant is in

reality an extension of the internal law of X to spa
es of fun
tions on X . We give an example of

monoid (S(X),⊕) for the inf-
onvolution stru
ture, (whi
h is dense in the set of all 1-Lips
hitz
bounded from bellow fun
tions) for whi
h, the map argmin : (S(X),⊕) → (X, .) is a (single

valued) monoid morphism. It is also proved that, given a group 
omplete metri
 invariant

(X, d), the 
omplete metri
 spa
e (K(X), d∞) of all Katetov maps from X to R equiped with

the inf-
onvolution has a natural monoid stru
ture whi
h provides the following fa
t: the group

of all isometri
 automorphisms AutIso(K(X)) of the monoid K(X), is isomorphi
 to the group

of all isometri
 automorphisms AutIso(X) of the group X . On the other hand, we prove that

the subset KC(X) of K(X) of 
onvex fun
tions on a Bana
h spa
e X , 
an be endowed with a


onvex 
one stru
ture in whi
h X embeds isometri
ally as Bana
h spa
e.
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1 Introdu
tion.

This arti
le brings some additional informations to the study of the inf-
onvolution stru
ture

developed in [1℄ and [2℄. Given a set X , a map α : X ×X → X and two real valued fun
tions

f and g de�ned on X . The inf-
onvolution of f and g with respe
t the map α is de�ned as

follows

f ⊕
︸︷︷︸

α

g(x) := inf
y,z∈X/α(y,z)=x

{f(y) + g(z)} ; ∀x ∈ X. (1)

Histori
ally, the inf-
onvolution appeared as a tool of fun
tional analysis and optimization

and starts with the works of Ma
 Shane [10℄, Fen
hel, Moreau and Ro
kafellar; see [9℄ for refer-

en
es, see also the book of J.-B. Hiriart-Urruty and C. Lemare
hal [5℄. We proved in [1℄ and [2℄,

that the inf-
onvolution also enjoys a remarkable algebrai
 properties. For example, we proved

that the set (Lip1+(X),⊕) of all no negative and 1-Lips
hitz fun
tions de�ned on a 
omplete

metri
 invariant group (X, d), is a monoid and its group of unit is isometri
ally isomorphi
 to

X . This result means that the monoid stru
ture of (Lip1+(X),⊕) 
ompletely determines the

group stru
ture of X whenever X is an group metri
 invariant.

In this paper, we give additional lighting to the understanding of the inf-
onvolution op-

eration. Indeed, it seems that the inf-
onvolution is not an �external� operation to the spa
e

X a
ting on it, but is in reality a 
anoni
al extension of the internal law of X to the spa
e

Lip1+(X), whenever X is a group metri
 invariant. In oder words, any internal law of metri


invariant group (even quasigroup) is an inf-
onvolution. This approa
h is motivated by Propo-

sition 1 and Theorem 1 below.

A metri
 spa
e (X, ., d) equipped with an internal law . : (y, z) 7→ y.z de�ned from X ×X
into X is said to be metri
 invariant, if

d(x.y, x.z) = d(y.x, z.x) = d(y, z) ∀x, y, z ∈ X.

Note that every group is metri
 invariant for the dis
reet metri
. For examples of not trivial

group metri
 invariant, see [2℄ (For informations on group 
omplete metri
 invariant see [7℄).

Let us denote by γ : x ∈ X 7→ δx the Kuratowski operator, where δx : t ∈ X 7→ d(x, t). We

denote by X̂ the image of X under the Kuratowski operator, X̂ := γ(X). The set X̂ is endowed

with the sup-metri


d∞(γ(a), γ(b)) := sup
x∈X

|γ(a)(x)− γ(b)(x)|.

It is well known and easy to see that the Kuratowski operator γ is an isometry: for all a, b ∈ X

d∞(γ(a), γ(b)) = d(a, b).

We de�ne the inf-
onvolution on X̂ as in the formula (1). For two element γ(a), γ(b) ∈ X̂,

(γ(a)⊕ γ(b)) (x) := inf
y,z∈X/y.z=x

{γ(a)(y) + γ(b)(z)} .

We obtain the following result whi
h say that (X, .) and (X̂,⊕) has in general the same

algebrai
 stru
ture. Re
all that a quasigroup is a nonempty magma (X, .) su
h that for ea
h

pair (a, b) the equation a.x = b has a unique solution on x and the equation y.a = b has a unique
solution on y. A loop is an quasigroup with an identity element and a group is an asso
iative

loop.

Proposition 1 Let (X, ., d) be a metri
 invariant spa
e. Then, the following assertions are

equivalent.

(1) (X, .) is a quasigroup (respe
tively, loop, group, 
ommutative group)
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(2) (X̂,⊕) is a quasigroup (respe
tively, loop, group, 
ommutative group).

In this 
ase, the Kuratowski operator γ : (X, ., d) → (X̂,⊕, d∞) is an isometri
 isomorphism

of quasigroups (respe
tively, loops, groups, 
ommutative groups).

We then ask whether the operation ⊕ of (X̂,⊕) naturally extends to the whole spa
e

(Lip1+(X),⊕). An answer is given by the following result. The part (1) ⇒ (2) was estab-

lished in [1℄ for Bana
h spa
es in 
onvex setting and in [2℄ in the group framework (as well as

the des
ription of the group of unit of (Lip1+(X),⊕)).

Theorem 1 Let (X, ., d) be a 
omplete metri
 invariant quasigroup. Then the following asser-

tions are equivalent.

(1) (X, .) is a (
ommutative) group.

(2) (Lip1+(X),⊕) is a (
ommutative) monoid.

In this 
ase, the identity element of (Lip1+(X),⊕) is γ(e) where e is the identity element of

X and its group of unit is X̂ whi
h is isometri
ally isomorphi
 to X.

The Proposition 1 and Theorem 1 are in our opinion the arguments showing that the monoid

stru
ture of (Lip1+(X),⊕) is in reality a natural extension of the group stru
ture of (X, .) to
the set Lip1+(X).

We use the following result in the proof of Theorem 1. This result is the key of this algebrai


theory of the inf-
onvolution. The part I) ⇒ II) was proved in [2℄. The part II) ⇒ I) is new.
A more general form in metri
 spa
e framework not ne
essarily group is given in se
tion 2.

Theorem 2 Let (X, ., d) be a group 
omplete metri
 invariant and let a ∈ X. Let f and g be

two lower semi 
ontinuous fun
tions on (X, d). Then, the following assertions are equivalent

I) the map x 7→ f ⊕ g(x) has a strong minimum at a

II) there exists (ỹ, z̃) ∈ X ×X su
h that ỹ z̃ = a and : f has a strong minimum at ỹ and g
has at strong minimum a z̃.

Theorem 2 also gives the following 
orollary. Consider the following submonoid of Lip1(X)

S(X) :=
{
f ∈ Lip1(X)/ f has a strong minimum

}

and the metri
 ρ de�ned for f, g ∈ Lip1(X) by

ρ(f, g) = sup
x∈X

|f(x)− g(x)|

1 + |f(x)− g(x)|

For a real-valued fun
tion f with domain X , argmin(f) is the set of elements in X that realize

the global minimum in X ,

argmin(f) = {x ∈ X : f(x) = inf
y∈X

f(y)}.

For the 
lass of fun
tions f ∈ S(X), argmin(f) = {xf} is a singleton, where xf is the strong

minimum of f . We identify the singleton {x} with the element x.

Corollary 1 Let (X, ., d) be a group 
omplete metri
 invariant having e as identity element.

Then, (S(X), ρ) is a dense subset of Lip1(X) and for all f, g ∈ S(X) we have

argmin (f ⊕ g) = argmin (f).argmin (g).
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In other words, the map argmin : (S(X),⊕, ρ) → (X, ., d) is 
ontinuous monoid morphism and

onto. We have the following 
ommutative diagram, where I denotes the identity map on X and

γ the Kuratowski operator

(X, .)
γ
//

I
%%❑

❑

❑

❑

❑

❑

❑

❑

❑

(S(X),⊕)

argmin

��

(X, .)

We are also interested on the monoid stru
ture of the set K(X) of Katetov fun
tions. There
are lot of literature on the metri
 and the topologi
al stru
ture of this spa
e (See for instan
e

[3℄, [6℄ and [8℄). We give in this se
tion some results about the monoid stru
ture of K(X) when
X is a group, and the 
onvex 
one stru
ture of the subset KC(X) of K(X) (of 
onvex fun
tions)
when X is a Bana
h spa
e. Let (X, d) be a metri
 spa
e; we say that f : X → R is a Katetov

map if

|f(x)− f(y)| ≤ d(x, y) ≤ f(x) + f(y); ∀x, y ∈ X. (2)

These maps 
orrespond to one-point metri
 extensions of X . We denote by K(X) the set of
all Katetov maps on X ; we endow it with the sup-metri


d∞ (f, g) := sup
x∈X

|f(x)− g(x)| < +∞

whi
h turns it into a 
omplete metri
 spa
e. Re
all that X isometri
ally embeds in K(X) via
the Kuratowski embedding γ : x → δx, where δx(y) := d(x, y), and that one has, for any

f ∈ K(X), that d∞(f, γ(x)) = f(x). It is shown in Se
tion 7 that (K(X),⊕) has a monoid

stru
ture and KC(X) has a 
onvex 
one stru
ture. We obtain the following analogous to the

Bana
h-Stone theorem whi
h say that the metri
 monoid (K(X),⊕, d∞), 
ompletely determine

the 
omplete metri
 invariant group (X, d). Note that in the following result, any monoid

isometri
 isomorphism has the 
anoni
al form. We do not know if this is the 
ase for other

monoids as the set of all 
onvex 1-Lips
hitz bounded from bellow fun
tions de�ned on Bana
h

spa
e (See Problem 2. in [1℄).

Theorem 3 Let (X, d) and (Y, d′) be two 
omplete metri
 invariant groups. Then, a map

Φ : (K(X),⊕, d∞) → (K(Y ),⊕, d∞) is a monoid isometri
 isomorphism if, and only if there

exists a group isometri
 isomorphism T : (X, d) → (Y, d′) su
h that Φ(f) = f ◦ T−1
for

all f ∈ K(X). Consequently, AutIso(K(X)) (the group of all isometri
 automorphism of the

monoid K(X)) is isomorphi
 as group to AutIso(X) (the group of all isometri
 automorphism

of the group X).

2 The inf-
onvolution on 
omplete metri
 spa
e.

The main theorem of this se
tion (Theorem 4) extend [Theorem 3, [2℄℄ and [Corollary 3, [2℄℄

to 
omplete metri
 invariant spa
e. In [Theorem 3, [2℄℄ and [Corollary 3, [2℄℄, only the part

I) ⇒ II) was proved in the group 
ontext. Here, we give a ne
essarily and su�
ient 
ondition

in the more general metri
 
ontext.

We need some notations and de�nitions. Let X be a set and α : X ×X → X be a map.

Given x ∈ X we denote by ∆α(x) the following set depending on α

∆α(x) := {(y, z) ∈ X ×X : α(y, z) = x} ⊂ X ×X.

Note that ∆α(α(s, t)) 6= ∅ for all s, t ∈ X . We also denote by ∆1,α(x) (respe
tively, ∆2,α(x))
the proje
tion of ∆α(x) on the �rst (respe
tively, the se
ond) 
oordinate:

∆1,α(x) := {y ∈ X/∃zy ∈ X : α(y, zy) = x} ⊂ X.
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∆2,α(x) := {z ∈ X/∃yz ∈ X : α(yz, z) = x} ⊂ X.

De�nition 1 Let (X, d) be metri
 spa
e and α : X × X → X, be a map. We say that α is

d-invariant at x ∈ X, if ∆α(x) 6= ∅ and there exists L1, L2, L
′
1, L

′
2 > 0 su
h that

L2d(y1, y2) ≤ d(α(y1, z), α(y2, z)) ≤ L1d(y1, y2); ∀y1, y2 ∈ ∆1,α(x); z ∈ ∆2,α(x).

and

L′
2d(z1, z2) ≤ d(α(y, z1), α(y, z2)) ≤ L′

1d(z1, z2); ∀z1, z2 ∈ ∆2,α(x); y ∈ ∆1,α(x).

The set ∆α(x) is endowed with the metri
 indu
ed by the produ
t metri
 topology of X ×X
i.e d̃ ((y, z), (y′, z′)) := d(y, y′) + d(z, z′) for all (y, z), (y′, z′) ∈ X ×X .

Proposition 2 Let (X, d) be metri
 spa
e and α : X ×X → X be a map. Suppose that α is

d-invariant at x ∈ X. Then the restri
tion of α to the set ∆α(x) is 
ontinuous.

Proof. Let (y, z), (y0, z0) ∈ ∆α(x). Then,

d(α(y, z), α(y0, z0)) ≤ d(α(y, z), α(y, z0)) + d(α(y, z0), α(y0, z0))

≤ L′
1d(z, z0) + L1d(y, y0)

≤ max(L′
1, L1) (d(z, z0) + d(y, y0))

This inequality shows that the restri
tion of α to the set ∆α(x) is 
ontinuous.

For two fun
tions f and g on X , we de�ne the map ηf,g depending on f and g by

ηf,g : X ×X → R ∪ {+∞}

(y, z) 7→ f(y) + g(z)

Note that the inf 
onvolution of f and g at x ∈ X , with respe
t to the law α, 
oin
ide with
the in�nimum of ηf,g on ∆α(x)

f ⊕
︸︷︷︸

α

g(x) := inf
y,z∈X/α(y,z)=x

{f(y) + g(z)} := inf
(y,z)∈∆α(x)

ηf,g(y, z).

Exemples 1 The De�nition 1 is satis�ed in the following 
ases.

1) Let (X, ‖.‖) be a ve
tor normed spa
e and α : X ×X → X be the map de�ned by α(y, z) :=
y+z. In this 
ase, the inf-
onvolution 
orrespond to the 
lassi
al de�nition of the inf-
onvolution

on ve
tor spa
e and we have ∆1,α(x) = ∆2,α(x) = X for all x ∈ X and α satis�es

‖α(y, x)− α(z, x)‖ = ‖α(x, y)− α(x, z)‖ = ‖y − z‖; ∀x, y, z ∈ X.

2) Let (C, ‖.‖) be a 
onvex subset of a ve
tor normed spa
e (X, ‖.‖) and let λ ∈]0, 1[ be a �xed

real number. Let α : C × C → C be the map de�ned by α(y, z) := λy + (1 − λ)z. Then,

{(x, x)} ⊂ ∆α(x) and ∆α(x) = {(x, x)} if, and only if x is an extreme point of C and we have

‖α(y, x)− α(z, x)‖ = λ‖y − z‖; ∀x, y, z ∈ C.

and

‖α(x, y)− α(x, z)‖ = (1− λ)‖y − z‖; ∀x, y, z ∈ C.

3) If (X, ., d) is a metri
 group, (. is the law of internal 
omposition of X) and α : (y, z) 7→ y.z,
then ∆1,α(x) = ∆2,α(x) = X for all x ∈ X . Moreover, α is d-invariant at x for ea
h x ∈ X if

and only if, (X, ., d) is metri
 invariant. We re
all that a metri
 group is said to be metri
 in-

variant, if d(y.x, z.x) = d(x.y, x.z) = d(y, z) for all x, y, z ∈ X . Every group is metri
 invariant

for the dis
reet metri
. We 
an �nd examples of group metri
 invariant in [2℄.
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4) However, there exists examples of metri
 monoids (M,d) with a law . whi
h is not metri


invariant but su
h that . is d-invariant at ea
h element of the group of unit ofM (See Proposition

5 and Remark 1).

De�nition 2 Let (X, d) be a metri
 spa
e, we say that a fun
tion f has a strong minimum at

x0 ∈ X, if infX f = f(x0) and for all ǫ > 0, there exists δ > 0 su
h that

0 ≤ f(x)− f(x0) ≤ δ ⇒ d(x, x0) ≤ ǫ.

A strong minimum is in parti
ular unique. By dom(f) we denote the domain of f , de�ned by

dom(f) := {x ∈ X : f(x) < +∞}. All fun
tions in the arti
le are supposed su
h that dom(f) 6=
∅.

In what follows, an element α(y, z) ∈ X will simply be noted by yz and the inf-
onvolution

of two fun
tions f and g will simply be denoted by

f ⊕ g(x) := inf
yz=x

{f(y) + g(z)} .

For a ∈ X , we say that f ⊕ g(a) is strongly attained at (y0, z0), if the restri
tion of ηf,g to the

set ∆α(a) has a strong minimum at (y0, z0) ∈ ∆α(a).

Theorem 4 Let (X, d) be a 
omplete metri
 spa
es. Let α : X×X → X, be a map (α(y, z) :=
yz for all y, z ∈ X ×X). Let f and g be two lower semi 
ontinuous fun
tions on (X, d). Let

a ∈ X and suppose that the map α is d-invariant at a. Then, the following assertions are

equivalent.

I) the map x 7→ f ⊕ g(x) has a strong minimum at a ∈ X

II) there exists (ỹ, z̃) ∈ ∆α(a) i.e ỹ z̃ = a, su
h that : f has a strong minimum at ỹ and g has

at strong minimum a z̃.

Moreover, in this 
ase, we have

(1) the restri
ted map ηf,g : ∆α(a) → R ∪ {+∞} has a strong minimum at (ỹ, z̃) ∈ ∆α(a) i.e
f ⊕ g(a) is strongly attained at (ỹ, z̃).

(2) f(x)− f(ỹ) ≥ f ⊕ g(xz̃)− f ⊕ g(a) and g(x)− g(z̃) ≥ f ⊕ g(ỹx)− f ⊕ g(a) for all x ∈ X.

Proof. First, from the de�nition of the inf-
onvolution, for all y, y′, z, z′ ∈ X ,

f ⊕ g(yz′) ≤ f(y) + g(z′) (3)

f ⊕ g(y′z) ≤ f(y′) + g(z). (4)

By adding both inequalilies (3) and (4) above we obtain

f ⊕ g(yz′) + f ⊕ g(y′z) ≤ (f(y) + g(z)) + (f(y′) + g(z′)) . (5)

I) ⇒ II). Repla
ing f by f − 1
2f ⊕ g(a) and g by g − 1

2f ⊕ g(a), we 
an assume without loss

of generality that f ⊕ g has a strong minimum at a and f ⊕ g(a) = 0. Let (yn)n; (zn)n ⊂ X be

su
h that for all n ∈ N∗
, ynzn = a and

0 = f ⊕ g(a) ≤ f(yn) + g(zn) < f ⊕ g(a) +
1

n
.

in other words

0 ≤ f(yn) + g(zn) <
1

n
. (6)

By appllaying (5) with y = yn; z = zn; y
′ = yp and z

′ = zp we have

f ⊕ g(ynzp) + f ⊕ g(ypzn) ≤ (f(yn) + g(zn)) + (f(yp) + g(zp))

6



Using the above inequality and (6) we obtain

0 = 2(f ⊕ g(a)) ≤ f ⊕ g(ynzp) + f ⊕ g(ypzn) ≤
1

n
+

1

p
. (7)

Sin
e x 7→ f ⊕ g has a strong minimum at a, then d(x, a) → 0 whenever f ⊕ g(x) → 0. On the

other hand, f ⊕ g(x) ≥ f ⊕ g(a) = 0 for all x ∈ X . Thus from (7), we get that f ⊕ g(ynzp) → 0
and f ⊕ g(ypzn) → 0 when n, p → +∞. We dedu
e that d(ynzp, a) → 0, when n, p → +∞.

Sin
e ypzp = a for all p ∈ N and α is d-invariant at a, then d(yn, yp) ≤ 1
L2

d(ynzp, ypzp) =
1
L2

d(ynzp, a) → 0, when n, p → +∞. Hen
e (yn)n is a Cau
hy sequen
e and so 
onverges to

some point ỹ ∈ X sin
e (X, d) is 
omplete metri
 spa
e. Similarly, we prove that (zn)n 
on-

verges to some point z̃ ∈ X . By the 
ontinuity of the map α : (y, z) 7→ yz (See Proposition 2),

we dedu
e that ỹ z̃ = limn (ynzn) = limn (a) = a.

Using the lower semi-
ontinuity of f and g and the formulas (6) we get

f(ỹ) + g(z̃) ≤ lim inf
n→+∞

f(yn) + lim inf
n→+∞

g(zn)

≤ lim inf
n→+∞

(f(yn) + g(zn)) ≤ 0 = f ⊕ g(a).

On the other hand, it is always true that f ⊕ g(a) ≤ f(ỹ) + g(z̃) sin
e ỹz̃ = a. Thus

f(ỹ) + g(z̃) = f ⊕ g(a) = 0. (8)

Using (8) we obtain

f ⊕ g(ỹx) ≤ f(ỹ) + g(x) = g(x)− g(z̃). (9)

and

f ⊕ g(xz̃) ≤ f(x) + g(z̃) = f(x)− f(ỹ). (10)

Using (10) and the fa
t that f ⊕ g has a strong minimum at a, we have that f(x) − f(ỹ) ≥ 0
and if f(yn)− f(ỹ) → 0, then f ⊕ g(ynz̃) → 0 whi
h implies that d(ynz̃, a) → 0 sin
e f ⊕ g has
a strong minimum at a. On the other hand we have d(yn, ỹ) ≤

1
L2

d(ynz̃, ỹ z̃) =
1
L2

d(ynz̃, a) by
the d-invarian
e of α at a. Thus d(yn, ỹ) → 0 and so f has a strong minimum at ỹ. The same

argument, by using (9), shows that g has a strong minimum at z̃

II) ⇒ I). We �rst prove that f ⊕ g has a minimum at ỹ z̃ = a and that f(ỹ) + g(z̃) = f ⊕ g(a).
Indeed, sin
e f(y) ≥ f(ỹ) and g(z) ≥ g(z̃) for all y, z ∈ X , then we get

f ⊕ g(a) := inf
yz=a

{f(y) + g(z)} ≥ f(ỹ) + g(z̃)

On the other hand, f ⊕ g(a) ≤ f(ỹ) + g(z̃) sin
e ỹ z̃ = a. Thus, f ⊕ g(a) = f(ỹ) + g(z̃). On the

other hand, using again the fa
t that f(y) ≥ f(ỹ) and g(z) ≥ g(z̃) for all y, z ∈ X , we obtain

for all x ∈ X ,

f ⊕ g(x) := inf
yz=x

{f(y) + g(z)} ≥ f(ỹ) + g(z̃) = f ⊕ g(a).

It follows that f⊕g has a minimum at a = ỹ z̃. Now, let (xn)n ⊂ X be a sequen
e that minimize

f ⊕ g. Let ǫn → 0+ su
h that

f ⊕ g(a) ≤ f ⊕ g(xn) ≤ f ⊕ g(a) + ǫn (11)

From the de�nition of f ⊕ g(xn), for ea
h n ∈ N∗
, there exists sequen
es (yn)n, (zn)n ⊂ X

satisfying ynzn = xn and
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f ⊕ g(xn)−
1

n
≤ f(yn) + g(zn) ≤ f ⊕ g(xn) +

1

n

Sin
e f(ỹ) + g(z̃) = f ⊕ g(a), it follows that

f ⊕ g(xn)− f ⊕ g(a)−
1

n
≤ (f(yn)− f(ỹ)) + (g(zn)− g(z̃)) ≤ f ⊕ g(xn)− f ⊕ g(a) +

1

n

Using the inequality (11) we get for all n ∈ N∗

−
1

n
≤ (f(yn)− f(ỹ)) + (g(zn)− g(z̃)) ≤ ǫn +

1

n

Sin
e (f(yn)− f(ỹ)) ≥ 0 and (g(zn)− g(z̃)) ≥ 0, we get that

0 ≤ f(yn)− f(ỹ) ≤ (f(yn)− f(ỹ)) + (g(zn)− g(z̃)) ≤ ǫn +
1

n

and

0 ≤ g(zn)− g(z̃) ≤ (f(yn)− f(ỹ)) + (g(zn)− g(z̃)) ≤ ǫn +
1

n

Sending n to +∞, we have limn→+∞ f(yn) = f(ỹ) and limn→+∞ g(zn) = g(z̃). Sin
e f
and g has respe
tively a strong minimum at ỹ and z̃, we dedu
e that limn→+∞ yn = y
and limn→+∞ zn = z. By the 
ontinuity of the map α : (y, z) 7→ yz on ∆α(a), we obtain

limn→+∞(ynzn) = ỹ z̃ = a. Sin
e ynzn = xn for all n ∈ N
∗
, we have limn→+∞ xn = a. Thus

f ⊕ g has a strong minimum at a

Moreover, we have the additional informations:

(1) f ⊕ g(a) is strongly attained at (ỹ, z̃) (We assume as in I) that f ⊕ g(a) = 0). We know

from (8) that f ⊕ g(a) is attained at (ỹ, z̃). To see that ηf,g has in fa
t a strong minimum at

(ỹ, z̃), let ((yn, zn))n ⊂ ∆α(a) be any sequen
e su
h that

f(yn) + g(zn) := ηf,g(yn, zn) → inf
yz=a

{f(y) + g(z)} = ηf,g(ỹ, z̃) = 0. (12)

By applying (5) with y = ỹ, y′ = yn, z = z̃ and z′ = zn and the formulas (8) and (6), we obtain

0 ≤ f ⊕ g(ỹzn) + f ⊕ g(ynz̃) ≤ (f(ỹ) + g(z̃)) + (f(yn) + g(zn))

= (f(yn) + g(zn)) (13)

Thus f ⊕g(ỹzn) → 0 (and also f ⊕g(ynz̃) → 0) from (12) and (13) and the fa
t that f ⊕g(x) ≥
0 = f ⊕ g(a), for all x ∈ X . It follows that d(ỹzn, a) → 0 and d(ynz̃, a) → 0, sin
e f ⊕ g has a

strong minimum at a. Hen
e, d(yn, ỹ) → 0 sin
e d(yn, ỹ) ≤
1
L2

d(ynz̃, ỹ z̃) =
1
L2

d(ynz̃, a) by the

d-invarian
e of α at a, and the fa
t that ỹ z̃ = a . In a similar way we have d(zn, z̃) → 0. Thus
(ỹ, z̃) is a strong minimum of ηf,g.

(2) This part follows from (9) and (10) .

3 The monoids stru
ture for the inf-
onvolution.

The following 
orollary will permit to des
ribe the group of unit of submonoids, for the inf-


onvolution stru
ture, of the set Lip1(X) of all 1-Lips
hitz and bounded from below fun
tions.

Corollary 2 Let (X, ., d) be a group 
omplete metri
 invariant having e as identity element.

Let f and g be two 1-Lips
hitz fun
tions on X. Then, the following assertions are equivalent.
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(1) f ⊕ g = d(e, .).

(2) there exists ỹ ∈ X and c ∈ R su
h that

f(.) = d(ỹ, .) + c := γ(ỹ) + c

and

g(.) = d(ỹ−1, .)− c = γ(ỹ−1)− c.

Proof. (1) ⇒ (2). Sin
e the law . is in parti
ular d-invariant at e and the map d(e, .) has a strong
minimum at e, by applying Theorem 4, there exists ỹ, z̃ ∈ X su
h that ỹz̃ = e, f(ỹ) + g(z̃) =
f ⊕ g(e) = 0 and f(x) − f(ỹ) ≥ d(e, xz̃) = d(ỹ, x) and g(x) − g(z̃) ≥ d(e, ỹx) = d(ỹ−1, x), for
all x ∈ X. On the other hand, sin
e f and g are 1-Lips
hitz, we have f(x) − f(ỹ) ≤ d(ỹ, x)
and g(x) − g(z̃) ≤ d(z̃, x) = d(ỹ−1, x) , for all x ∈ X. Thus, f(x) − f(ỹ) = d(ỹ, x) and

g(x) − g(ỹ−1) = g(x) − g(z̃) = d(ỹ−1, x) , for all x ∈ X. In other words, f(.) = d(ỹ, .) + c :=
γ(ỹ) + c and g(.) = d(ỹ−1, .)− c = γ(ỹ−1)− c, with c = f(ỹ) = −g(z̃).

(2) ⇒ (1). Suppose that (2) hold, then f ⊕ g(x) =
(
γ(ỹ)⊕ γ(ỹ−1)

)
(x) for all x ∈ X. Sin
e

(X, ., d) is group 
omplete metri
 invariant, by using Proposition 1. we get f ⊕ g = γ(e) :=
d(e, .).

Lemma 1 Let (X, ., d) be a metri
 spa
e and . : (y, z) 7→ yz be a law of 
omposition of X.

1) Suppose that d(yx, zx) ≤ d(y, z) and d(xy, xz) ≤ d(y, z), for all x, y, z ∈ X. Then we have,

for all a, b ∈ X
γ(ab) ≤ γ(a)⊕ γ(b).

2) Suppose d(yx, zx) = d(xy, xz) = d(y, z), for all x, y, z ∈ X. Then, we have for all x ∈ X
and all a, b ∈ X

(γ(a)⊕ γ(b)) (xb) = γ(ab)(xb)

and

(γ(a)⊕ γ(b)) (ax) = γ(ab)(ax).

If moreover X is quasigroup, then we have for all a, b ∈ X

γ(a)⊕ γ(b) = γ(ab).

Proof. 1) Let a, b, x ∈ X , then we have

γ(a)⊕ γ(b)(x) := inf
yz=x

{d(a, y) + d(b, z)} ≥ inf
yz=x

{d(az, yz) + d(ab, az)}

≥ inf
yz=x

d(ab, yz)

= d(ab, x) := γ(ab)(x)

2) Using the metri
 invarian
e, we have for all x ∈ X and all a, b ∈ X

(γ(a)⊕ γ(b)) (xb) := inf
yz=xb

{d(a, y) + d(b, z)}

≤ d(a, x)

= d(ab, xb)

:= γ(ab)(xb)

Combining this inequality with the part 1), we get (γ(a)⊕ γ(b)) (xb) = γ(ab)(xb). In a similar

way, we prove (γ(a)⊕ γ(b)) (ax) = γ(ab)(ax). If moreover, X is a quasigroup, then for ea
h

t, b ∈ X , there exists x ∈ X su
h that t = xb. So we obtain γ(a)⊕ γ(b) = γ(ab).

We give the proof of Proposition 1 mentioned in the introdu
tion.
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Proof of Proposition 1. (1) ⇒ (2). Suppose that (X,α) is quasigroup. Using Lemma

1, we have that γ(a) ⊕ γ(b) = γ(ab), for all a, b ∈ X . Using this formula and the inje
tivity

of γ , it is 
lear that (γ(X),⊕) is quasigroup (respe
tively, loop, group, 
ommutative group)

whenever (X, .) is quasigroup (respe
tively, loop, group, 
ommutative group).

The last part of the theorem, follows from the formula γ(a)⊕ γ(b) = γ(ab) and the fa
t that γ
is isometri
.

(1) ⇒ (2). Suppose that (γ(X),⊕) is a quasigroup. Let us prove that (X, .) is quasigroup.
First, we show that for all a, b ∈ X , we have that γ(a) ⊕ γ(b) = γ(ab). Indeed, let a, b ∈ X .

Sin
e ⊕ is an internal law of (γ(X),⊕), then there exists c ∈ X su
h that γ(a) ⊕ γ(b) = γ(c).
Using Lemma 1, we obtain γ(ab) ≤ γ(c). Hen
e 0 ≤ d(ab, c) = γ(ab)(c) ≤ γ(c)(c) = 0. This

implies that c = ab. Finally we have γ(a) ⊕ γ(b) = γ(ab) for a, b ∈ X . From this formula and

the inje
tivity of γ, it is 
lear that (X, .) is quasigroup (respe
tively, loop, group, 
ommutative

group) whenever (γ(X),⊕) is quasigroup (respe
tively, loop, group, 
ommutative group).

The following Corollary is a parti
ular 
ase of the work established in [2℄.

Corollary 3 Let (X, ., d) be a group 
omplete metri
 invariant having e as identity element.

Then,

(1) the set Lip1(X) of all 1-Lips
hitz and bounded from below fun
tions, is a monoid having

γ(e) := d(e, .) as identity element and its group of unit U(Lip1(X)) 
oin
ides with X̂ + R.

(2) the set Lip1+(X) of all 1-Lips
hitz and positive fun
tions, is a monoid having γ(e) := d(e, .)

as identity element and its group of unit U(Lip1+(X)) 
oin
ides with X̂.

Proof. (1) The fa
t that Lip1(X) is a monoid having γ(e) := d(e, .) as identity element,

follows from Proposition 7. and Lemma 3. in [2℄. Using Proposition 1, we have that X̂ + R ⊂
U(Lip1(X)). The fa
t that U(Lip1(X)) ⊂ X̂+R, follows from Corollary 2. Thus U(Lip1(X)) =
X̂ + R.

(2) Sin
e the inf-
onvolution of positive fun
tions is also positive and γ(e) := d(e, .) ∈ Lip1+(X),

then Lip1+(X) is a submonoid of Lip1(X). On the other hand, X̂ ⊂ U(Lip1+(X)) ⊂ U(Lip1(X)) =

X̂ + R. Sin
e the element of U(Lip1+(X)) are positive fun
tions we get U(Lip1+(X)) = X̂.

We give now the proof of Theorem 1 mentioned in the introdu
tion.

Proof of Theorem 1. The part (1) ⇒ (2) 
an be dedu
ed from [2℄ (See also [1℄). Let us prove

(2) ⇒ (1). Sin
e (Lip1+(X),⊕) is a monoid, there exists and identity element f0 ∈ Lip1+(X).
Sin
e f0 is the identity element, it satis�es in parti
ular: γ(a)⊕ f0 = γ(a) for all a ∈ X . Sin
e

γ(a) := d(a, .) has a strong minimum at a, applying Theorem 4 to the fun
tions γ(a) and f0,
there exists (ỹ, z̃) ∈ X ×X satisfying ỹ z̃ = a su
h that γ(a) has a strong minimum at ỹ and f0
has a strong minimum at z̃. Sin
e a strong minimum is in parti
ular unique, then ỹ = a. So, we
have az̃ = a, for all a ∈ X . Thus e := z̃ is the identity element of X . From the asso
iativity of

(Lip1+(X),⊕), we obtain in parti
ular the asso
iativity of (X̂,⊕). Sin
e (X, .) is a quasigroup

(loop) then from Lemma 1, we have γ(a) ⊕ γ(b) = γ(ab) for all a, b ∈ X , so we dedu
e by

the inje
tivity of γ, that (X, .) is also asso
iative. Hen
e, (X, .) is a group. The fa
t that, the

identity element of (Lip1+(X),⊕) is γ(e) where e is the identity element of X and its group of

unit is X̂ , follows from Corllary 3.

4 Metri
 properties and the density of S(X) in Lip1(X).

Let us 
onsider the following sets

S(X) :=
{
f ∈ Lip1(X)/ f has a strong minimum

}
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S+(X) :=
{
f ∈ Lip1+(X)/ f has a strong minimum

}

Corollary 4 Let (X, ., d) be a group 
omplete metri
 invariant having e as identity element.

Then, S(X) is a submonoid of (Lip1(X),⊕) and U(S(X)) = X̂+R. On the other hand S+(X)
is a submonoid of (Lip1+(X),⊕) and U(S+(X)) = X̂.

Proof. Sin
e (Lip1(X),⊕) is a monoid having γ(e) ∈ S(X) as identity element and sin
e S(X)
is a subset of (Lip1+(X),⊕), it su�
es to show that ⊕ is an internal law of S(X) whi
h is the


ase thanks to Theorem 4. On the other hand, X̂ + R ⊂ U(S(X)) ⊂ U(Lip1(X)) = X̂ + R.

Hen
e U(S(X)) = X̂ + R. In a similar way we obtain the se
ond part of the Corollary.

Consider now the metri
s ρ and ρ̃ on Lip1(X) de�ned for f, g ∈ Lip1(X) by

ρ(f, g) = sup
x∈X

|f(x)− g(x)|

1 + |f(x)− g(x)|

ρ̃(f, g) = ρ(f − inf
X
f, g − inf

X
g) + | inf

X
f − inf

X
g|.

Proposition 3 Let (X, d) be a 
omplete metri
 spa
e. Then

(1) the sets (Lip1(X), ρ) and (Lip1(X), ρ̃) (respe
tively, (Lip1+(X), ρ) and (Lip1+(X), ρ̃)) are


omplete metri
 spa
es.

(2) the set (S(X), ρ) is dense in (Lip1(X), ρ) and (S(X), ρ̃) is dense in (Lip1(X), ρ̃).

(3) the set (S+(X), ρ) is dense in (Lip1+(X), ρ) and (S+(X), ρ̃) is dense in (Lip1+(X), ρ̃).

Proof. The part (1) is similar to Proposition 5. in [1℄ (See also Lemma 1. in [1℄). Let

us prove the part (2). Indeed, let f ∈ Lip1(X) and 0 < ǫ < 1. Consider the fun
tion

fǫ := (1 − ǫ)f . Clearly, fǫ is (1 − ǫ)-Lips
hitz and ρ(fǫ, f) → 0 (respe
tively ρ̃(fǫ, f) →
0) when ǫ → 0. On the other hand, applying the variational prin
iple of Deville-Godefroy-

Zizler [4℄ to the (1− ǫ)-Lips
hitz and bounded from below fun
tion fǫ, there exists a bounded

Lips
hitz fun
tion ϕǫ on X su
h that supx∈X |ϕǫ(x)| ≤ ǫ and supx,y∈X/x 6=y
|ϕǫ(x)−ϕǫ(y)|

|x−y| ≤ ǫ

and fǫ + ϕǫ has a strong minimum at some point. We have that fǫ + ϕǫ is 1-Lips
hitz and

bounded from bellow fun
tion having a strong minimum, so fǫ+ϕǫ ∈ S(X). On the other hand,
ρ(fǫ + ϕǫ, f) ≤ ρ(fǫ + ϕǫ, fǫ) + ρ(fǫ, f) = ρ(ϕǫ, 0) + ρ(fǫ, f). It follows that ρ(fǫ + ϕǫ, f) → 0
when ǫ → 0 (respe
tively ρ̃(fǫ + ϕǫ, f) → 0). Thus (S(X), ρ) and (S(X), ρ̃) are respe
tively

dense in (Lip1(X), ρ) and (Lip1(X), ρ̃).

(3) Let f ∈ Lip1+(X), from (2), there exists fǫ ∈ S(X) su
h that ρ(fǫ, f) → 0 when ǫ → 0.
In parti
ular, infX fǫ → infX f . If infX f > 0, then for very small ǫ we have fǫ > 0 and

so fǫ ∈ S+(X). If infX f = 0, sin
e infX fǫ → infX f = 0 then ρ(fǫ − infX fǫ, f) ≤ ρ(fǫ −
infX fǫ, fǫ) + ρ(fǫ, f) → 0 when ǫ → 0 and (fǫ − infX fǫ) ∈ S+(X). Thus, (S+(X), ρ) is dense
in (Lip1+(X), ρ). We dedu
e then that (S+(X), ρ̃) is also dense in (Lip1+(X), ρ̃).

5 The map argmin(.) as monoid morphism.

For a real-valued fun
tion f with domain X , argmin(f) is the set of elements in X that realize

the global minimum in X ,

argmin(f) = {x ∈ X : f(x) = inf
y∈X

f(y)}.

For the 
lass of fun
tions f ∈ S(X), argmin(f) = {xf} is a singleton, where xf is the strong

minimum of f . In what follows, we identify the singleton {x} with the element x. We have the

following proposition.
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Corollary 5 Let (X, ., d) be a group 
omplete metri
 invariant having e as identity element.

Then, the map,

argmin : (S(X),⊕, ρ) → (X, ., d)

is surje
tive and 
ontinuous monoid morphism. We have the following 
ommutative diagram,

where I denotes the identity map on X and γ the Kuratowski operator

(X, .)
γ
//

I
%%❑

❑

❑

❑

❑

❑

❑

❑

❑

(S(X),⊕)

argmin

��

(X, .)

Proof. Let f, g ∈ S(X), then there exists xf , xg ∈ X su
h that f has a strong minimum

at xf = argmin(f) and g has a strong minimum at xg = argmin(g). Using Theorem 4,

f ⊕ g has a strong minimum at xfxg = (argmin(f)) (argmin(g)). Thus argmin(f ⊕ g) =
(argmin(f)) (argmin(g)). On the other hand, the map argmin send the identity element d(e, .)
of S(X) to the identity element e ofX , sin
e the strong minimum of d(e, .) is e. Hen
e, argmin is
a monoid morphism. For ea
h x ∈ X , γ(x) ∈ X̂ ⊂ S(X) and argmin (γ(x)) = x. Thus, argmin
is surje
tive. Let us prove now the 
ontinuity of argmin. First, note that for all f, g ∈ Lip1(X)
and all 0 < α < 1,

ρ (f, g) ≤ α⇒ sup
x∈X

|f(x)− g(x)| ≤
α

1− α
. (14)

and in 
onsequen
e, we also have

| inf
X
f − inf

X
g| ≤

α

1− α
. (15)

Let (fn)n ⊂ S(X) and f ∈ S(X). Let xn := argmin(fn) and xf = argmin(f). Sin
e f has a

strong minimum at xf , for all ǫ > 0, there exists δ > 0 su
h that for all x ∈ X ,

|f(x)− f(xf )| ≤ δ ⇒ d(x, xf ) ≤ ǫ.

Suppose that ρ (fn, f) ≤ δ
2+δ . Using the triangular inequality and the inequations (14) and

(15) with α = δ
2+δ < 1, we have

|f(xn)− f(xf )| ≤ |f(xn)− fn(xn)|+ |fn(xn)− f(xf )|

= |f(xn)− fn(xn)|+ | inf
X
fn − inf

X
f |

≤
2α

1− α
= δ

whi
h implies that d(argmin(fn), argmin(f)) := d(xn, xf ) ≤ ǫ. This implies the 
ontinuity of

argmin on S(X).

Note that, the map ξ : (Lip1(X),⊕, ρ) → R de�ned by ξ : f 7→ infX f , is 
ontinuous monoid

morphism. The following proposition whi
h is a 
onsequen
e of the above 
orollary, says that,

in the 
ase of (S(X),⊕, ρ) there are several 
ontinuous monoid morphism from (S(X),⊕) into
K with K = R or C.

Proposition 4 Let (X, ., d) be a group 
omplete metri
 invariant and χ : (X, ., d) → K be a


ontinuous group morphism. Then, χ ◦ argmin : (S(X),⊕, ρ) → K is a 
ontinuous monoid

morphism.
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6 Examples of inf-
onvolution monoid in the dis
rete 
ase.

Let X be a group with the identity element e. We equip X with the dis
rete metri
 dis. So

(X, dis) is group metri
 invariant and Lip1+(X) 
onsist in this 
ase on all positive fun
tions

su
h that |f(x)−f(y)| ≤ 1 for all x, y ∈ X . The Kuratowski operator γ : x 7→ δx is here de�ned
by δx(y) = 1 if y 6= x and δx(x) = 0, for all x, y ∈ X . We treat below the 
ases of X = Z and

X = Z/pZ.

6.1 The inf-
onvolution monoid (l∞
dis
(Z),⊕).

Let X = Z equipped with the dis
rete metri
 dis whi
h is invariant. Let l∞dis(Z) the set of

all sequen
es (xn)n of real positive numbers su
h that |xn − xm| ≤ 1 for all n,m ∈ Z. For

u = (un)n and v = (un)n in l∞dis(Z), we de�ne the sequen
e

(u⊕ v)n := inf
k∈Z

(un−k + vk); ∀n ∈ Z.

The set (l∞dis(Z),⊕) is a 
ommutative monoid having the element δe as identity element and its

group of unit U(l∞dis(Z)) is isomorphi
 to Z by the isomorphism I : Z → U(l∞dis(Z)), k 7→ δk.

6.2 The inf-
onvolution monoid (l∞
dis
(Z/pZ),⊕).

Let p ∈ N
∗
and X = Z/pZ equipped with the dis
rete metri
 dis whi
h is invariant. We

denote by l∞dis(Z/pZ) the set of all p-periodi
 sequen
es (xn)n of real positive numbers su
h

that |xn− xm| ≤ 1 for all n,m ∈ {0, ..., p− 1}. We identify a sequen
e (xn)n ∈ l∞dis(Z/pZ) with
(x0, ..., xp−1). For u = (un)n and v = (un)n in l∞dis(Z/pZ), we de�ne the sequen
e

(u⊕ v)n := min
k∈{0,...,p−1}

(un−k + vk); ∀n ∈ {0, ..., p− 1} .

The set (l∞dis(Z/pZ),⊕) is a 
ommutative monoid having the element δe as identity element

and its group of unit U(l∞dis(Z/pZ)) is isomorphi
 to Z/pZ by the isomorphism I : Z/pZ →
U(l∞dis(Z/pZ)), k̄ 7→ δk.

7 The set of Katetov fun
tions.

We give in this se
tion some results about the monoid stru
ture of K(X) when X is a group,

and the 
onvex 
one stru
ture of the subset KC(X) of K(X) (of 
onvex fun
tions) when X is

a Bana
h spa
e. If M is a monoid, by U(M) we denote the group of unit of M .

7.1 The monoid stru
ture of K(X).

Proposition 5 Let (X, d) be a (
ommutative) group metri
 invariant having e as identity ele-

ment. Then, the metri
 spa
e (K(X),⊕, d∞) is also a (
ommutative) monoid having γ(e) = δe
as identity element and satisfying:

(a) d∞(f ⊕ g, h⊕ g) ≤ d∞(f, h) and d∞(g ⊕ f, g ⊕ h) ≤ d∞(f, h), for all f, g, h ∈ K(X)

(b) d∞(δx ⊕ f, δx ⊕ h) = d∞(f ⊕ δx, h⊕ δx) = d∞(f, h), for all f, h ∈ K(X).

Proof. Sin
e K(X) is a subset of the (
ommutative) monoid Lip1(X) of 1-Lips
hitz and

bounded from below fun
tions, whi
h have δe as identity element (See [2℄), it su�
es to prove

that, for all f, g ∈ K(X) and all x1, x2 ∈ X , we have

d(x1, x2) ≤ f ⊕ g(x1) + f ⊕ g(x2)

13



Indeed, it follows easily from the de�nition of the in�nimum, the formula (1) and the metri


invarian
e that, for all n ∈ N∗
, there exists yn, zn, y

′
n, z

′
n ∈ X su
h that ynzn = x1 and y

′
nz

′
n = x2

s.t

f ⊕ g(x1) + f ⊕ g(x2) ≥

(

f(yn) + g(zn) +
1

n

)

+

(

f(y′n) + g(z′n) +
1

n

)

= (f(yn) + f(y′n)) + (g(zn) + g(z′n)) +
2

n

≥ d(yn, y
′
n) + d(zn, z

′
n) +

2

n

= d(ynzn, y
′
nzn) + d(y′nzn, y

′
nz

′
n) +

2

n

= d(x1, y
′
nzn) + d(y′nzn, x2) +

2

n

≥ d(x1, x2) +
2

n

Thus f ⊕ g(x1) + f ⊕ g(x2) ≥ d(x1, x2) by sending n to +∞. Hen
e (K(X),⊕) is a monoid

having δe as identity element.

We prove now that d∞(f ⊕ g, h ⊕ g) ≤ d∞(f, h). Let f, g, h ∈ K(X) and x ∈ X , there exists

yn, zn su
h that ynzn = x and h⊕ g(x) > h(yn) + g(zn)−
1
n . Hen
e, for all n ∈ N∗

f ⊕ g(x)− h⊕ g(x) ≤ (f(yn) + g(zn)) +

(

−h(yn)− g(zn) +
1

n

)

= f(yn)− h(yn) +
1

n

≤ d∞(f, h) +
1

n

Hen
e, d∞(f ⊕ g, h ⊕ g) ≤ d∞(f, h) by sending n to +∞. In a similar way we prove that

d∞(g ⊕ f, g ⊕ h) ≤ d∞(f, h). For the part (b), it su�
es to prove that f ⊕ δa(.) = f(.a−1)
and δa ⊕ f(.) = f(a−1.) for all a ∈ X , sin
e the map x 7→ ax and x 7→ xa are one to one and

onto from X to X whenever a is invertible. Indeed, f ⊕ δa(x) = infyz=x {f(y) + d(z, a)} =
inf(ya−1)(az)=x

{
f(ya−1) + d(az, a)

}
. Using the metri
 invarian
e, we have for all x ∈ X ,

f ⊕ δa(x) = infyz=x
{
f(ya−1) + d(z, e)

}
:= f(.a−1) ⊕ δe(x) = f(.a−1)(x), sin
e δe is the i-

dentity element. Similarly we prove that δa ⊕ f(.) = f(a−1.). This 
on
lude the proof of the

proposition.

Remark 1 In general, one 
an not get equality in the part (a) of Proposition 5 sin
e the inf-


onvolution does not have the 
an
ellation property in general (See [11℄).

If Y ⊂ X and f ∈ K(Y ), de�ne f : X → R (the Katetov extension of f) by f(x) =
infy∈Y {f(y) + d(x, y)}. It is well known that f is the greatest 1-Lips
hitz map on X whi
h is

equal to f on Y ; that f ∈ K(X) and χ : f 7→ f is an isometri
 embedding of K(Y ) into K(X)
(see for instan
e [6℄). Thanks to the following lemma (we 
an �nd a more general form in [2℄)

we 
an assume without loss of generality that X is a 
omplete metri
 spa
e.

Lemma 2 Let (X, d) be a group whi
h is metri
 invariant and (X, d) its group 
ompletion.

Then, (K(X),⊕, d∞) and (K(X),⊕, d∞) are isometri
ally isomorphi
 as monoids. More pre-


isely, the map

χ : (K(X),⊕, d∞) → (K(X),⊕, d∞)

f 7→ f :=

[

x ∈ X 7→ inf
y∈X

{
f(y) + d(y, x)

}
]

(16)

is an isometri
 isomorphism of monoids.
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Proof. It su�
es to shows that χ is a surje
tive morphism of monoids. The surje
tivity is 
lear,

sin
e if F ∈ K(X), we take f = F|X , then f = F on X and so f = F on X by 
ontinuity. Let

us show that χ is a monoid morphism. Indeed, let f, g ∈ K(X). Using the 
ontinuity of f , g
and y 7→ y−1

and the density of X in X , we have for all x ∈ X ,

f ⊕ g(x) = inf
ỹ z̃=x

{
f(ỹ) + g(z̃))

}

= inf
ỹ∈X

{
f(ỹ) + g(ỹ−1x)

}

= inf
y∈X

{
f(y) + g(y−1x)

}
.

= f ⊕ g(x)

Thus f ⊕ g 
oin
ide with f ⊕ g = f ⊕ g on X . Hen
e f ⊕ g = f ⊕ g.

The following theorem shows that, up to an isometri
 isomorphism of groups, the group of

unit of K(X) and the group of unit of X are the same.

Proposition 6 Let (X, d) be a group whi
h is 
omplete metri
 invariant. Then, the group of

unit U(K(X)) and X̂ (whi
h is isometri
ally isomorphi
 to X) 
oin
ides.

Proof. Sin
e (X, d) be a 
omplete metri
 invariant group, from Proposition 1 we get that

X̂ ⊂ U(K(X)). On the other hand, U(K(X)) ⊂ U(Lip1+(X)) = X̂.

We dedu
e the following analogous to the Bana
h-Stone theorem.

Theorem 5 Let (X, d) and (Y, d′) be two 
omplete metri
 invariant groups. Then, a map

Φ : (K(X),⊕, d∞) → (K(Y ),⊕, d∞) is a monoid isometri
 isomorphism if, and only if there

exists a group isometri
 isomorphism T : (X, d) → (Y, d′) su
h that Φ(f) = f ◦ T−1
for all

f ∈ K(X). Consequently, AutIso(K(X)) is isomorphi
 as group to AutIso(X).

Proof. If T : (X, d) → (Y, d′) is an group isometri
 isomorphism, 
learly Φ(f) := f ◦T−1
gives

an monoid isometri
 isomorphism from (K(X),⊕, d∞) onto (K(Y ),⊕, d∞). For the 
onverse,

let Φ be monoid isometri
 isomorphism from (K(X), d∞) onto (K(Y ), d∞), then Φ maps iso-

metri
ally the group of unit of K(X) onto the group of unit of K(Y ). Using Proposition 6, Φ
maps isometri
ally the group X̂ onto Ŷ . Then, the map

T := γ−1 ◦ Φ|X̂ ◦ γ

gives an isometri
 group isomorphism from X onto Y by Proposition 1, where Φ|X̂ denotes the

restri
tion of Φ to X̂. Sin
e Φ is isometri
 we have for all f ∈ K(X) and all x ∈ X

f(x) = d∞
(
f, δx) = d∞ (Φ(f),Φ(δx)) = d∞

(
Φ(f), δT (x)

)
= Φ(f) (T (x))

whi
h 
on
lude the proof.

Lemma 3 Let (M,d) be a metri
 monoid, U(M) its group of unit. Suppose that d(xu, yu) ≤
d(x, y) and d(ux, uy) ≤ d(x, y) for all x, y, u ∈ M , and d(xu, yu) = d(ux, uy) = d(x, y) for all

x, y ∈ M and all u ∈ U(M). Then, for all x ∈ X and all a, b ∈ U(X), we have the following

formula

d(x, ab) = inf
yz=x

{d(y, a) + d(z, b)} .

Proof. Let a, b ∈ U(M) and x ∈M , we have

inf
yz=x

{d(y, a) + d(z, b)} ≤ d(xb−1, a) (with y = xb−1; z = b)

= d(x, ab)
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On the other hand,

inf
yz=x

{d(y, a) + d(z, b)} ≥ inf
yz=x

{d(yz, az) + d(az, ab)}

≥ inf
yz=x

d(yz, ab) (by using the triangular inequality)

= d(x, ab).

Thus, d(x, ab) = infyz=x {d(y, a) + d(z, b)}.

We obtain the following formula.

Corollary 6 Let (X, d) be a group whi
h is metri
 invariant. Let f ∈ K(X) and a, b ∈ X.

Then

f(ab) = inf
ϕ⊕ψ=f

{ϕ(a) + ψ(b)} .

Proof. Sin
e the monoid (K(X),⊕, d∞) satisfy the Proposition 5, by applying Lemma 3 to the

monoid M = (K(X),⊕, d∞) and using the fa
t that X̂ ⊂ U(K(X))(= X̂) and d∞(g, γ(x)) =
g(x) for all x ∈ X and all g ∈ K(X), we obtain for all f ∈ K(X) and all a, b ∈ X :

f(ab) = d∞(f, γ(ab)) = d∞(f, γ(a)⊕ γ(b)) = inf
ϕ⊕ψ=f

{d∞(ϕ, γ(a)) + d∞(ψ, γ(b))}

= inf
ϕ⊕ψ=f

{ϕ(a) + ψ(b))} .

7.2 The 
onvex 
one stru
ture of KC(X).

Let (X, ‖.‖) be a Bana
h spa
e. We re
all that KC(X) := {f ∈ K(X) : f 
onvex} . Sin
e the

inf-
onvolution of 
onvex fun
tions is 
onvex, the set (KC(X),⊕) is a 
omplete metri
 spa
e

and 
ommutative submonoid of (K(X),⊕). We equip KC(X) with the external law ⋆ de�ned

as follows: for all f ∈ KC(X) and all λ ∈ R+
by

λ ⋆ f (x) := λf
(x

λ

)

; ∀x ∈ X if λ > 0

0 ⋆ f := γ(0) := ‖.‖.

We re
all below the de�nition of a 
onvex 
one.

De�nition 3 A 
ommutative monoid (C,⊕) equipped with a s
alar multipli
ation map

⋆ : R+ × C → C

(λ, c) 7→ λ ⋆ c

a su
h that

1) 1 ⋆ c = c and 0 ⋆ c = eC, for all c ∈ C where eC denotes the identity element of (C,⊕).

2) (α+ β) ⋆ c = (α ⋆ c)⊕ (β ⋆ c) for all α, β ∈ R+
and all c ∈ C.

3) λ ⋆ (c⊕ c′) = (λ ⋆ c)⊕ (λ ⋆ c′) for all λ ∈ R+
and all c, c′ ∈ C.

is said to be a 
onvex 
one.

The following proposition is easily veri�ed.

Proposition 7 The spa
e (KC(X),⊕, ⋆, d∞) is a 
omplete metri
 
onvex 
one with the identity

element γ(0).

The 
omplete metri
 
onvex 
one stru
ture of (KC(X),⊕, ⋆, d∞) indu
e a stru
ture of Bana
h

spa
e on X̂ by setting λ ⋆ γ(x) := (−λ) ⋆ γ(−x), if λ < 0 and taking the norm |||γ(x)||| :=
d∞ (γ(x), γ(0)) for all x ∈ X . In fa
t, we 
an also say that the Bana
h spa
e X extend its

stru
ture 
anoni
ally to some 
onvex 
one stru
ture on KC(X).
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Proposition 8 The Kuratowski operator γ : (X,+, ., ‖.‖) →
(

X̂,⊕, ⋆, |||.|||
)

is an isometri


isomorphism of Bana
h spa
es.

Proof. Using Proposition 1, it just remains to prove that γ(λx) = λ ⋆ γ(x) for all x ∈ X and

λ ∈ R. Indeeed, let x ∈ X and λ ∈ R∗+
, by de�nition γ(λx) : y 7→ δλx(y) = ‖y − λx‖ =

λ‖ yλ − x‖ := λ ⋆ δx(y). So, γ(λx) = λ ⋆ γ(x). If λ = 0, then by de�nition 0 ⋆ γ(x) = γ(0). If
λ < 0, γ(λx) = γ((−λ)(−x)) = (−λ) ⋆ γ(−x) := λ ⋆ γ(x).

Theorem 6 Let X and Y two Bana
h spa
es. Then (KC(X),⊕, ⋆, d∞) and (KC(Y ),⊕, ⋆, d∞)
are isometri
ally isomorphi
 as 
onvex 
one if, and only if, X and Y are isometri
ally isomor-

phi
 as Bana
h spa
es.

Proof. Similar to the proof of Theorem 5.

Using the �xed point Theorem, we obtain the following proposition.

Proposition 9 Let X be a Bana
h spa
e, g ∈ KC(X) and λ ∈ (0, 1). Then, there exists a

unique fun
tion f0 ∈ KC(X) su
h that (λ ⋆ f0)⊕ g = f0.

Proof. Let us 
onsider the map L : KC(X) → KC(X) de�ned by L(f) = (λ ⋆ f) ⊕ g. Using

Proposition 5 we have for all f, f ′ ∈ KC(X),

d∞(L(f), L(f ′)) ≤ d∞(λ ⋆ f, λ ⋆ f ′) = λd∞(f, f ′).

Sin
e λ ∈ (0, 1), then L is 
ontra
tive map. So by the �xed point Theorem, there exists a

unique fun
tion f0 ∈ KC(X) su
h that L(f0) = f0.
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