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Abstract

This paper presents a complete framework (estimation, identifica-
tion and control) for the implementation of joint-torque control on
the humanoid robot HRP-2. While torque control has already been
implemented on a few humanoid robots, this is one of the first imple-
mentations of torque control on a robot that was originally built to be
position controlled (iCub[1] and Asimo[2] being the first two, to the
best of our knowledge). The challenge comes from both the hardware,
which does not include joint-torque sensors and presents large friction
due to the high-ratio gear boxes, and the software interface, which only
accepts desired joint-angle commands (no motor current/voltage con-
trol). The contribution of the paper is to provide a complete method-
ology that is very likely to be reproduced as most robots are designed
to provide only position control capabilities. Additionally, the method
is validated by exhaustive experiments on one leg of the robot, includ-
ing a comparison with the original position controller. We tested the
torque controller in both motion control and cartesian force control.
The torque control can track better a reference trajectory while using
lower values for the feedback gains (up to 25%). Moreover, we verified
the quality of the identified motor models by analyzing the contribu-
tion of the feedforward terms of our torque controller, which dominate
the feedback terms.

1 Introduction

With respect to position control, torque control provides a number of well-
known benefits, especially for humanoid robots. Torque control is a nec-
essary requirement for the implementation of rigid-body inverse-dynamics
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control[3] (i.e. a feedback linearization technique). This class of control al-
gorithms compensate for the dynamics of the system, that is they linearize
the dynamics of the state (or a linear combination of the state) of the sys-
tem. Once the system is linearized standard linear control techniques can be
applied. The higher complexity of inverse-dynamics control with respect to
position control is justified by the improved trajectory tracking capabilities,
which are crucial for dynamic locomotion[4] and whole-body manipulation.
Moreover a relatively recent trend of inverse-dynamics controllers[5, 6] ex-
ploit the efficiency of quadratic programming solvers to ensure the satisfac-
tion of a number of limits affecting humanoid robots, such as torque bounds,
force friction cones and center of pressure limits. This is not possible with
standard position control.

Given the improved tracking performances, lower feedback gains can
be used with inverse-dynamics controller, resulting in higher compliance
of the system. Higher compliance brings two main advantages: automatic
adaptation to uncertain environment (e.g. walking on uneven terrain[7])
and safer human-robot interaction.[8]

Finally, another benefit of inverse-dynamics control is the clean integra-
tion of motion and force control in a unified framework.[9, 10] While contact
forces can also be regulated with position-based admittance control[11], this
strategy lacks a clean integration with motion control: since reference joint
positions are computed based on the force feedback they cannot accomodate
a desired motion at the same time. Moreover admittance control is based
on force feedback only, whereas in inverse dynamics the feedforward terms
can contribute to improving the force tracking. Finally it is not clear how to
deal with underactuation in admittance control, which makes its application
to humanoid robots not straightforward.

The price to pay for all these benefits boils down to i) a more complex
control algorithm, which needs a model of the dynamics of the system, and
ii) the need of a measurement device to reconstruct the torque at every joint.
The need for torque measurements comes from the large joint friction[12]
(especially static friction) introduced by the high-ratio gear boxes used by
most humanoid robots. The lack of torque measurements is what prevents
the implementation of torque control on old-generation robots, such as our
platform HRP-2.[13] This paper discusses a complete framework (identifica-
tion, estimation and control) to implement torque control on robots despite
the lack of joint-torque sensors. We rather use a combination of sensors
that more classically equip humanoid robots nowadays: 6-axis force/torque
(F/T) sensors, an inertial measurement unit (IMU) and joint encoders.

It should be clear that we do not advocate against the use of joint-torque
sensors; on the contrary we think that measuring directly the joint torques
is the best way to achieve good torque tracking. We instead estimate joint
torques using the robot inverse-dynamics model, which adds also a little
computational overhead (about 0.01 ms) with respect to torque-sensor based
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controllers. However, in case torque sensing is not available (as it is the case
for HRP-2, iCub, HRP-4, Asimo, . . . ), the presented method is probably
the only way to implement torque control and inverse-dynamics control.

1.1 Paper overview

The key idea is to estimate the joint torques by using the procedure pro-
posed for the iCub robot,[14] which we recall in Section 2. We propagate
the wrenches measured by the F/T sensors along the kinematic chain using
a model of the dynamics of the robot and an estimation of the velocities and
accelerations of the robot bodies, reconstructed using the joint encoders and
the IMU. This joint-torque estimation is used in the control as a feedback;
it is also used off-line to identify the relationship between the motor input
and the associated joint torque. We discuss the selected actuator model
and its identification in Section 3. In brief, the selected model neglects the
elasticity of the harmonic drive and the electric pole of the motor transfer
function, which results in an instantaneous relationship between motor in-
put and joint torque. While the model has experimentally proved to achieve
a reasonable accuracy, it remarkably simplifies the identification procedure:
in particular, the identification does not require to excite the robot at high
frequencies. In Section 4 we then discuss a torque-control law that is the
superposition of a feedforward term (given by the identified motor model)
and a feedback term (based on the estimated joint torque). Finally we vali-
dated the whole framework by implementing an inverse-dynamics controller
on one leg of HRP-2, which has 6 joints. The results presented in Section 5
show that, in comparison to the closed-source position control of HRP-2,
we get a better position tracking while using lower feedback gains. We also
show the performances of our framework on a force-tracking task, which is
easily integrated in the inverse-dynamics controller.

1.2 Contributions

The paper presents a complete methodology to effectively implement torque
control on a stiff robot without joint-torque sensors, along with an exhaustive
experimental analysis of the implementation of the actuator identification,
the state estimation, and the control on one leg of HRP-2. The major con-
tribution is the proof of concept (HRP-2 was effectively transformed into a
torque-controlled robot) and the report of the experimental results, which
we tried to make as exhaustive as possible. While the torque-estimation
procedure is taken from previous work on iCub[14], the present paper in-
troduces several technical contributions: i) the simple actuator model used
in the identification procedure (neglecting gear-box elasticity and including
the low-level PD position controller), ii) the asymmetric-penalty fitting op-
timization, iii) the piecewise-linear fitting algorithm, iv) a fair comparison
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with the standard position control, v) an analysis of the contribution of
the different feedforward/feedback components of the controller for the two
cases of motion tracking and force tracking.

1.3 Related Works

Despite being an essential component for the implementation of rigid-body
inverse-dynamics control, the problem of regulating the joint torques is
still subject of ongoing research. The difference between the various works
mainly lies in the type of actuator (rigid vs elastic, electric vs hydraulic) and
the chosen actuator model (i.e. whether it includes the gear-box elasticity
and/or the electric motor pole).

The first industrial torque controller has been designed by DLR for their
light-weight robot, by modeling the actuator flexibility and adding joint-
torque sensing capabilities at the lowest level.[15] Both the measured joint
torque and its derivative are used as feedback, which requires an excellent
and expensive hardware, while the identification of the joint flexibility re-
quires a difficult experimental process. A similar approach can be applied
to hydraulic actuation, also exploiting measurements of joint torques,[16] by
compensating for the natural velocity feedback between the load and the
actuator. Other works have focused on improving the performances of these
controllers by identifying/observing and compensating for friction [17, 18].

Even if the flexibility was modeled in the previously cited works, the
considered robots were very stiff. However, the approach also applies to
series-elastic actuators.[19] The control action is given by the superposition
of a feedforward term (given by the inverse actuator model) and a feedback
PID term (given from the torque error measured through an integrated
torque sensor). Moreover, a disturbance observer was used to improve the
torque-tracking capabilities of the control system.[20] Extensions have been
proposed to automatically tune the gains of the controller by means of an
LQR control.[21]

When the identification of the system model is not accurate, a classical
solution is to rely on time-delay estimation.[22] Also in this work, the authors
model the elasticity introduced by the gear-box; moreover, they compensate
for viscous and Coulomb friction and propose a heuristic to compensate for
static friction. More complex observers, like disturbance observers[23] have
also been explored to compensate during the motion for the imperfection of
the controller model.

A comparison of several torque-control schemes has been presented,[24]
which focuses on passivity, an important property when exploiting force
measurements in a control loop.

All the above-mentioned works rely on a direct measure of the joint
torques. Khatib et al.[2] first proposed to only rely on feedforward. Their
work mostly focused on the identification of the actuator transfer function
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using high-order polynomials. The identification is then particularly delicate
to implement, due to the sensitivity of the model to observations and numeri-
cal errors. The humanoid robot Atlas (built from the prototype Petman[25])
is likely using a similar strategy, with a good actuation model, but without
a direct measure of joint torques.

With respect to the related works our approach is characterized by two
facts: i) our platform is not equipped with joint-torque sensors and ii) our
motor model neglects the gear-box elasticity. Not relying on torque sensors
for the torque feedback makes this framework applicable to a large number of
robots that are only equipped with 6-axis F/T sensors. Moreover, the chosen
actuation model results in a simpler identification procedure, yet reasonably
accurate and experimentally leading to good control performances.

2 Torque Estimation

Before delving into the identification and the control, we need to know how
to estimate the joint torques by using the 6-axis F/T sensors mounted at
the wrists and ankles of the robot. Consider the equations of motion of an
n-joint floating-base robot:

M(q)v̇ + h(q, v)− J(q)>f = S>τ, (1)

where q> =
[
x>b q>j

]
∈ Rn+6 and v> =

[
v>b q̇>j

]
∈ Rn+6 contain respec-

tively the position and the velocity of the base and the joints of the robot,
M(q) ∈ R(n+6)×(n+6) is the mass matrix, h(q, v) ∈ Rn+6 contains the Corio-
lis, centrifugal and gravity generalized forces, J(q) ∈ Rk×(n+6) is the contact
Jacobian, f ∈ Rk are the contact forces, τ ∈ Rn are the joint torques, and
S ∈ Rn×(n+6) is the joint-selection matrix. The joint torques can be seen
a function of q, v, v̇ and f , so we can translate the problem of estimating τ
into the problem of estimating all these quantities. In the next subsections
we discuss how to estimate q, v, v̇ and f from the available sensors in HRP-
2: one encoder at each joint, one IMU located in the torso, and four F/T
sensors located at both wrists and ankles.

2.1 Estimating Positions, Velocities, and Accelerations of
the Joints

Since our robot is only equipped with encoders, we can only directly measure
qj . However, from the position measurements we can estimate q̇j and q̈j
by numerical differentiation. We used a Savitzky-Golay filter,[26] which
is a type-I finite impulse response (FIR) low-pass filter. These filters are
based on the idea of fitting a low-order polynomial to a fixed-length moving
window. An important feature is that they provide a smooth version of
the signal together with an estimate of its derivatives. Moreover, contrary
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to the Kalman filter, Savitzky-Golay filters are model free, so they are not
biased by a model (e.g. constant acceleration) that could become extremely
inaccurate in case of physical interaction with the user — which is one of
the use cases of our method. Since the sampling time is constant in our
setup, the matrix pseudo-inverse appearing in the fitting procedure can be
precomputed, so that only a matrix-vector multiplication is needed to get
the estimation, making the filter computationally cheap.

2.2 Estimating the End-Effector External Wrenches

In HRP-2, the F/T sensors are attached to the end-effectors of the robot.
They then measure two dynamic effects: the end-effector body dynamics
(weight and inertia) and the applied external wrench. The wrench is es-
timated by compensating the weight and inertia of the end-effector body.
This needs the angular velocity and both linear and angular accelerations of
this body, which are estimated using the methodology described in the next
paragraph. Additionally, the estimation requires the inertial parameters of
the end-effector body, which can be simply identified off-line using directly
the sensor measurements at several static configurations.

When the F/T sensors are located inside the kinematic chain (like on
iCub, where they are positioned between shoulder and elbow in the arms,
and between hip and knee in the legs), the dynamics of the lower part of the
chain must be compensated. The idea is just the same as when the sensor
is attached to the end-effector: estimate the velocity and acceleration of the
lower bodies, then compute the wrench corresponding to these movements
and subtract it from the F/T measurements to get the external wrench.

2.3 Estimating the Joint Torques from the Floating-Base
Pose, Velocity, and Acceleration

From the fundamental laws of mechanics, joint torques τ depend on neither
the pose of the floating base nor its linear velocity (the robot base — i.e. the
arbitrary first body of the kinematic tree — is a Galilean referential regard-
less of its pose and linear velocity). In fact, joint torques are only affected
by the linear/angular accelerations (including gravity acceleration) and the
angular velocity of the floating base. Both the linear acceleration (combined
with gravity) and the angular velocity of the base are given by the IMU.1 The
angular acceleration can instead be either computed by numerical differenti-
ation of the angular velocity or neglected (since the gyroscope measurements

1Actually, the waist represents the base in the model of HRP-2, whereas the IMU is lo-
cated in the torso. However, we can either move the base in the model (using some dynamic
library) or compute the acceleration/velocity of the waist from the acceleration/velocity
of the torso and the pose/velocity/acceleration of the interconnecting joint.
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are typically noisy, in practice their numerical derivative could be too noisy
to be used).

The joint torques are then recursively computed from the robot-base
body to its end-effectors by going along the kinematic tree, following the
Recursive Newton-Euler Algorithm (RNEA).[27] Pose and velocity of each
body of the robot is computed with respect to the base. Accelerations are
propagated along the chain from the combination of linear acceleration and
gravity measured by the IMU accelerometer. At the end of the forward
pass, the algorithm returns the velocity of every body and a combination
of acceleration and gravity effects. This quantity is used to cancel out the
inertial effect of the end-effector bodies measured by their respective F/T
sensor, as explained in the previous section. The algorithm then computes
the joint torques by recursively propagating the forces backward along the
kinematic tree.

Since the IMU measurements are subject to high-frequency noise, we
filter them with low-pass filters. As for the estimation of joint velocities and
accelerations, we used Savitzky-Golay filters.[26] Algorithm 1 summarizes
the torque estimation procedure.

Algorithm 1 Torque Estimation

Read encoders, accelerometer, gyroscope, ftSens
{qj , q̇j , q̈j} ← Savitzky Golay 2(encoders)
{vimu, v̇imu} ← Savitzky Golay 1(gyroscope, accelerometer)
{vtorso, v̇torso} ← ImuToTorsoKin(vimu, v̇imu)

5: {vb, v̇b} ← TorsoToBaseKin(vtorso, v̇torso, qj , q̇j , q̈j)
ftSens ← Savitzky Golay 0(ftSens)
ftSens ← CompensateForInertialWrenchMeasuredByFt-
Sens(qj , q̇j , q̈j , vb, v̇b,ftSens)
τ ← RNEA(qj , q̇j , q̈j , vb, v̇b, ftSens)
return τ

2.4 Estimating Additional External Wrenches

An additional external wrench exerted above the F/T sensors on the kine-
matic chain (e.g. on the torso) can also be estimated. Consider again the
equations of motion of the robot:

Mv̇ + h− J>mfm =
[
J>u S>

]︸ ︷︷ ︸
A

[
fu
τ

]
,

where fm are the measured wrenches (with Jm being the associated Ja-
cobian) and fu are the unknown wrenches (with Ju being the associated
Jacobian). As long as A is full-column rank, there is enough information
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to estimate τ using a least-squares procedure. In practice this means that
we can only estimate one additional external wrench, namely rank(Ju) ≤ 6.
Altogether five external wrenches can be applied on the robot: one for each
end-effector plus one on the kinematic tree delimitated by the four F/T
sensors. In most classical humanoid scenarios such as walking, push recov-
ery and manipulation this assumption is verified. Complex scenarios with
multiple contacts on the robot’s body (e.g. both knees on the ground, both
elbows in contact) could not be properly handled by our method. Adding
more F/T sensors inside the robot’s limbs (similarly to the iCub robot)
would increase the number of contact scenarios handled by the method.[14]

The critical point is to know on which link the additional external wrench
is applied, because this affects on which joints that wrench is creating torque.
This problem can be solved by using tactile sensors[28], but at the moment
HRP-2 does not have any. Alternatively, momenta/residual methods could
be used [29, 8], but it is not clear whether they could work without knowing
the motor current. We decided to always assume to have an external wrench
on the torso, so that the robot can properly estimate the joint torques in
case it is pushed on the torso. In case of no external wrench, the estimated
wrench should be close to zero. Alternatively, we can assume no external
wrench at all, in which case it is possible to use the n+6 equations of motion
to estimate the n torque variables as:

τ̂ = argmin
τ
||M ˆ̇v + ĥ− J>mf̂m − S>τ ||2 = S(M ˆ̇v + ĥ− J>mf̂m) (2)

where .̂ represents the estimated values. This is equivalent to assuming that
the unknown wrench is applied to the floating base (i.e. Ju is a matrix that
selects only the base-link coordinates).

In any case, the torque estimation can be computed using a modified
RNEA:[14] the measured wrenches have to be propagated from the four end-
effectors back to the unknown-wrench link. This will automatically result
in the estimation of the joint torques, without any need to directly estimate
the unknown wrench. However, it is useful to monitor the unknown wrench
to check that, in case of no external contact, it remains small in magnitude.
The unknown wrench fu can be computed as the wrench that makes the
net wrench on the associated link be equal to the time derivative of its
momentum: ∑

i

fi + fu = Iv̇l + İvl,

where I represents the spatial inertia of the link, vl is its spatial velocity
and fi are the wrenches applied on the link by all the connected links.
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3 Motor Identification

The previous section briefly recalled how joint torques are estimated from
the classical sensors of a humanoid robot without direct joint-torque mea-
surements; this estimation will be used to identify a model of the actuation
of the robot. This section starts by describing and discussing the selected
actuation model, which is kept simple to allow a robust identification pro-
cedure. Then, the identification is formulated as an optimization problem,
which is solved by numerical methods. We finally briefly discuss practical
issues related to the data collection to ensure a good identification.

3.1 Linear Model

3.1.1 Generic rigid model

Considering DC motors as actuators and assuming a rigid transmission (i.e.
no elasticity in the gear box), the joint torques τ are given by the difference
between the motor torques τm and the friction torques τF :

τ = K1i︸︷︷︸
τm

− (K2q̇j +K3sign(q̇j))︸ ︷︷ ︸
τF

, (3)

where K1 ∈ Rn×n contains the motor drive gains, i ∈ Rn are the motor cur-
rents, K2 ∈ Rn×n contains the viscous-friction coefficients, and K3 ∈ Rn×n
contains the Coulomb-friction coefficients. The same model also applies if
we can control the motor voltage V , rather than the current i. Neglecting
the electrical dynamics, which is a reasonable assumption provided that the
dynamics of the current amplifiers have much higher bandwidth than the
motors, we have:

i =
1

R
V +

kb
R
q̇j︸︷︷︸
ib

, (4)

where ib is proportional to the back electromotive torque, R is the motor coil
resistance, and kb is a constant comprising the effect of the flux generated
by the coil. If we substitute (4) in (3), the equation maintains the same form
because the back electromotive torque can be included inside the viscous-
friction torque, being both terms proportional to q̇j . For this reason, in
the following we do not make any distinction between voltage and current
control.

Overall our motor model is based on two simplifying assumptions: i) the
electrical dynamics is negligible, and ii) the transmission is perfectly rigid.
While the first assumption is common in the literature [15, 19], the second
one constitutes one of the specific features of this work. Our experiments
show that even using this simplified model we get significant improvements
over classic position control.
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3.1.2 Model for HRP-2

HRP-2 is a high-quality industry-built robot which comes with the drawback
that the low-level control implementation is closed source and thus prevents
the direct command of the current/voltage of the motors. However, we can
specify the desired joint angles qdj ∈ Rn, which are then used by the low-level
position controller to compute the desired motor currents using a simple
proportional-derivative (PD) control law (with marginal modifications, as
we will see later):

i = K4 (qdj − qj)︸ ︷︷ ︸
∆q

−K5q̇j . (5)

Substituting (5) in (3) and solving for ∆q, we get the following relationship
between the position tracking error ∆q and the joint torques τ :

∆q = K−1
4

(
K−1

1 τ + (K−1
1 K2 +K5)q̇j +K−1

1 K3 sign(q̇j)
)
,

which we can rewrite as:

∆q = Kττ +Kv q̇j +Kcsign(q̇j). (6)

This implies that having the motor current as control input is actually equiv-
alent to having the desired joint angles as control input: in both cases there
is a linear relationship between the τ , q̇j , sign(q̇j) and the control input.

3.1.3 Linear identification

Having a linear model makes the identification straightforward because we
can use a least-squares fitting. Setting x> =

[
Kτ Kv Kc

]
as the deci-

sion variable, and assuming m collected samples, we can solve the following
optimization problem for each motor:

min
x∈R3

||Ax− b||2 (7)

where

A =

 τ1 q̇j1 sign(q̇j1)
...

...
...

τm q̇jm sign(q̇jm)

 and b =

∆q1
...

∆qm

 .
The optimal estimate is obtained by solving this quadratic problem (e.g.
computing the pseudo-inverse of A, whose implementation is available in
most mathematic programming frameworks).

During the experiments on the robot, we observed that the Coulomb-
friction term was not significantly improving the fitting. We therefore ne-
glected it in practice. For the sake of clarity, we removed this term from the
model in the remaining of the paper.

10



3.2 Adapting the Model to the Data

As soon as we started collecting data on the robot we realized that the
model (6) did not fit on HRP-2. For instance, Fig. 1 depicts the relationship
between ∆q and τ . Clearly, the relationship is not linear as we could have
expected. One may wonder whether this nonlinearity is real or due to other
estimation errors, in particular the discretization error of the encoders, and
the error in the inertial parameters of the system that we use to estimate the
joint torques. However, even if ∆q is small (in the order of 10−3 rad), the
discretization error of the encoder is much smaller (in the order of 10−5 rad),
therefore we do not think that the nonlinearity could be due to this effect.
Regarding the torque estimation, given that the data have been collected
keeping the joints fixed, the joint torques depend only on gravity (which is
basically constant) and external wrenches. We can then infer that any error
in the inertial parameters of the robot would create a simple offset in the
torque estimation (i.e. in the gravity torque), which would not explain the
nonlinearity.

We then proposed an augmented empirical model and a procedure to
identify its parameters.

3.2.1 Piecewise model

The mismatch observed between model and data is partially due to a dead
zone in the current control (implemented at the closed-source low level of
the robot), which means that errors with magnitude smaller than a certain
threshold are considered as zero. Moreover, Fig. 1 shows that τ is not a
function of ∆q only. We experimentally discovered that τ seems to depend
also on the sign of the joint velocity: this is likely due to the fact that the
low-level position controller is not just a PD as we initially hypothesized.
Contrary to the Coulomb friction, this results in a change of the model
(different affine parameters) triggered by the change of sign. By splitting
the data into two groups depending on sign(q̇) (see Fig. 1a), the relationship
is well described by a piecewise-linear model:

∆q = f(τ, sign(q̇)) =

{
fp(τ), if sign(q̇) > 0

fn(τ), if sign(q̇) < 0

fp(τ) =


kτ1pτ + q1p, if τ ≤ τ1p

kτ2pτ + q2p, if τ1p ≤ τ ≤ τ2p

kτ3pτ + q3p, if τ ≥ τ2p

fn(τ) =


kτ1nτ + q1n, if τ ≤ τ1n

kτ2nτ + q2n, if τ1n ≤ τ ≤ τ2n

kτ3nτ + q3n, if τ ≥ τ2n

Moving from a linear to a piecewise-linear model seems to be a small change,
but it increases the complexity making the identification problem nonlinear,
and more importantly, nonconvex.[30] However, given a good-enough initial
guess, the algorithm proposed in [30] is often able to find a good fitting for
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(b) The linear model identified with a
symmetric penalty function (i.e. least-
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(d) The linear model identified with an
asymmetric penalty function.

Figure 1: Torque τ vs. position error ∆q for the right knee (a, b, d) and
right hip-pitch (c) joints of HRP-2. These data have been collected on one
position-controlled joint keeping qdj constant and applying external forces.
The joint is nearly static, so that q̇j ≈ 0. From (6), we expect ∆q = Kττ ,
but the data clearly do not fit.
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the data. This algorithm only works for convex piecewise-linear functions,
whereas our function is nonconvex.2 For this reason, we slightly modified
the algorithm so that it could work for our special nonconvex case.

3.2.2 Piecewise-Linear Fitting

The algorithm is rather simple. We start with an initial guess on the two
switching points τ1, τ2 between the three linear models (we will hereafter
drop the p and n sub-indices for notation simplicity; therefore, τ1 represents
either τ1p or τ1n, and so forth). Then, we repeat the following procedure
until convergence or until we reach the maximum number of iterations:

• update kτ1, kτ2, kτ3, q1, q2, q3 by separately fitting the three linear mod-
els to the three datasets

• update τ1 to the intersection point between line 1 and line 2

• update τ2 to the intersection point between line 2 and line 3

The algorithm converges when τ1 and τ2 do not change between two succes-
sive iterations. Remarkably, the resulting model is continuous by construc-
tion. We empirically noticed that the algorithm works better if we bound
the slope of the central line (k2), which is reasonable because we know, from
observing the data, that it always has a large positive slope.

For identifying f(.) on the leg joints, we set the initial guess to τ1 = −0.5
and τ2 = 0.5, and we set the maximum number of iterations to 10. Fig. 1c
shows the result for the right hip-pitch joint. Most of the time, the algorithm
converged before reaching the maximum number of iterations. Even if not
perfect, the results seem satisfactory for the scope of the application.

3.2.3 Limits of the Model

Despite the good fitting of the model to the data, this approach proved un-
successful for a number of reasons, so we decided to pursue another strategy
(see next subsection). The main reason that led us to this decision was that
the resulting torque control was unstable in open-loop (i.e. with zero feed-
back gains). We believe that this was mainly due to the fact that the two
models are not exactly separated by the sign of the joint velocity. In par-
ticular, the switch between the two models (i.e. when the velocity changes
sign) is critical and it is hard to identify. Having access to the code of the
low-level control of HRP-2 would drastically simplify the understanding of
this effect and of how we could compensate for it, but for now this is not
the case. Since our piecewise-linear model did not perfectly fit the data, in

2A piecewise-linear function is convex if and only if it can be expressed as the maximum
over a set of linear function (see [31], Example 3.5). This is not the case for our model.
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some regions it was over-estimating the value of ∆q necessary to generate a
certain τ , triggering instability.

As secondary reasons, the extended model made both the identification
and the control more complex. The piecewise-linear fitting algorithm does
not always converge to a good solution, so it requires the user to provide an
initial guess that may be different for each joint. The controller with the
extended model also requires an estimation of the sign of the acceleration,
which needs to be approximated with a smooth function to avoid discon-
tinuities in the control input. This introduces an additional parameter to
tune the smoothing of the sign function.

3.3 Asymmetric-Penalty Identification

Given the failure of the approach described in the previous subsection, we
decided to go back to the original linear model. To account for the fact
that the model could not exactly fit the data, we modified the identification
problem. Rather than trying to find the best fit in the least-squares sense,
we now look for the best fit that almost never over-estimates ∆q in absolute
value. This conservative approach guarantees that the torque controller will
be stable in open-loop. In other words, we penalize more over-estimating
than under-estimating. The result of this asymmetric penalty function can
be seen in Fig. 1d: the blue line is almost never higher than the red dots in
absolute value.

To formulate the new identification problem, the data {A, b} are sepa-
rated into two sets {Apos, bpos} and {Aneg, bneg} depending on the sign of
∆q, where each set has mpos and mneg pair elements, respectively. The
optimization problem is then formulated as:

min
x∈R3

mpos∑
i=1

Φ(aposi x− bposi ) +
mneg∑
i=1

Φ(−anegi x+ bnegi ) (8)

with

Φ(z) =

{
wz2, if z > 0

z2, otherwise

where aposi /anegi is the i-th row of Apos/Aneg, bposi /bnegi is the i-th element
of bpos/bneg, and w > 1 is a user-defined parameter that weighs how much
over-estimation is penalized more with respect to under-estimation.

This problem is convex, so we can solve it with, for instance, Newton’s
method. Alternatively, we can reformulate it as a Quadratic Program (QP).
To this end, we introduce two auxiliary variables yp, yn and we reformulate
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(8) as:
min

x∈R3,yp∈Rm,yn∈Rm
w||yp||2 + ||yn||2

s. t. yp ≥ Āx− b̄
yn ≥ −Āx+ b̄

yp, yn ≥ 0,

(9)

where:

Ā =

[
Apos

−Aneg
]

b̄ =

[
bpos

−bneg
]

At the optimum, the elements of yp corresponding to under-estimation (i.e.
Āx < b̄) are zero, while those corresponding to over-estimation are exactly
equal to Āx − b̄ (which is then penalized with the weight w in the cost
function). Similarly, at the optimum the elements of yn corresponding to
over-estimation are zero, while those corresponding to under-estimation are
equal to−Āx+b̄ (which is penalized without any weight in the cost function).
In other words, the optimum values of yp and yn are complementary, that
is yp>yn = 0. The advantage of this new formulation is that we can solve
it with any QP solver. The disadvantage is that we have introduced 2m
new variables and 2m inequality constraints, which could make the problem
intractable if m — the number of data samples — is too large (e.g. both
CVX [32] and qpOases[33] failed for m > 104). In practice we saw that
103 samples (obtained by downsampling the original data taken at 1 kHz)
are enough to identify the model, which can then be validated on a larger
number of samples.

3.3.1 Two-Stage Identification

We noticed that, especially for some joints, it was beneficial to split the iden-
tification problem into two parts. First, only use the zero-velocity (i.e. below
some threshold) samples to identify kτ ; then, only use the nonzero-velocity
samples, together with the previously identified value of kτ , to identify kv.
In some cases, this procedure improves the identification of kτ . The reason
is that kv is always 1 or 2 orders of magnitude greater than kτ , so when the
joint velocity is not zero most of ∆q is due to friction, making the identifi-
cation of kτ poorly conditioned.

3.4 Data Collection

The collection of the data used for identification is crucial to the final re-
sult. The fact that the linear model cannot fit the data well (e.g. because
of the deadzone) implies that the identification will not easily generalize
outside of the observed range. It is then important to make sure that the
collected data properly cover the whole operative region of τ and q̇. A di-
rect consequence is that we cannot identify the model using only low or
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medium velocities/torques and expect the model to work well for large ve-
locities/torques. To get both large velocities and large torques, we split the
data collection into two parts. The first part samples large torques and zero
velocities, so that we can identify kτ in (6). In the second part we use large
velocities, so that we can identify kv.

3.4.1 High-torque data collection

In this phase we position the robot in a predefined set of configurations
using the standard high-gain position control of HRP-2. The user can then
apply torque on all the joints by exerting forces on the robot end-effectors.
The aim is to create as large as possible torques. For the identification of
the leg joints we can lift the robot and apply forces on its feet. Different
configurations are necessary to generate large torques on all the joints.

3.4.2 High-velocity data collection

The identification of frictions can be automatized because we do not need
the user to apply external forces. We commanded to the position controller
an increasing-amplitude sinusoid:

qdj (t) = (a0 + at) sin(2πft)

where a0 is the initial amplitude, a regulates the speed of increase of the
sinusoid amplitude, and f is the sinusoid frequency.

3.4.3 Noncausal Estimation

Since the identification is based on the estimation of the joint velocities
and accelerations, we can expect to get better results by using noncausal
estimations. This means that at time t we do not estimate q̇j(t), but we
rather estimate q̇j(t−td), where td is the estimation delay. The same applies
for q, v̇ and the force/torque measurements.

4 Control

The control is made up of two terms that we describe in the first subsection:
a feedforward term to compensate for the dynamics of the actuator, and a
feedback term to reject noise and unmodeled dynamics. We then present
an inverse dynamics scheme, which we used in the experiments to generate
the reference joint torques. In the second subsection, we reformulate the
control law in order to ease its experimental comparison with the position
controller.
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4.1 Control law

4.1.1 Feedforward

The feedforward comes from the identification of the model equation (6),
carried out in the previous section. The feedforward control law is:

∆q = Kττ
∗ +Kv q̇j , (10)

where τ∗ are the commanded joint torques.

4.1.2 Torque feedback

The feedback consists in a proportional-integral control law:

τ∗ = τd +Kpeτ +Ki

∫
eτdt (11)

where eτ = (τd − τ̂) ∈ Rn is the torque tracking error, Kp,Ki ∈ Rn×n are
respectively the proportional and integral gain matrices (diagonal positive-
definite), τd ∈ Rn are the desired joint torques and τ̂ ∈ Rn are the estimated
joint torques (2).

In practice, we did not observe any improvement of the control behav-
ior when modifying the integral term. Since the position control does not
comprehend an integral term, we decided not to include it and consider
Ki = 0 in the remaining of the paper. We could possibly add a disturbance
observer, which has been already used for joint-torque control.[19]

4.1.3 Inverse dynamics

In the experiments, the desired joint torques are computed from an inverse-
dynamics control law[34] tracking a reference trajectory of the actuated
degrees of freedom.3 Given a desired joint trajectory {qj(t)d, q̇j(t)d, q̈j(t)d}
and a desired contact force fd, the desired joint torques are:

τd = Mj q̈
d
j + ĥj − J>j f∗ +Kseq +Kdėq (12)

with
f∗ = fd +Kfef

where Mj ∈ Rn×n is the joint-space mass matrix (i.e. the bottom-right

corner of M), ĥj ∈ Rn are the last n elements of h, Jj is the part of the
Jacobian corresponding to the actuated joints, eq = qdj − q̂j is the position

3When discussing estimation in Section 2 we considered a floating-base model of the
robot. However, for the sake of simplicity, the controller rather considers a fixed-base
model. This is justified by the fact that, being the robot attached to a lift device, the
motion of its base was limited. In the future we plan to switch to a floating-base inverse-
dynamics controller such as the one presented in [6].

17



tracking error, ef = fd − f̂ is the force tracking error, and Ks ∈ Rn×n,
Kd ∈ Rn×n, Kf ∈ Rk×k are the stiffness, damping and force gain matrices
(diagonal positive-definite), respectively.

4.2 Gain Comparison

The control law can be parametrized by the user-defined gains (Kp, Ks,
Kd, Kf ) and by the gains identified from the motor characteristics (Kτ ,
Kv). Substituting (11) in (10), using (12) and the estimates ˆ̇qj = q̇j and

τ̂ = Mj
ˆ̈qj + ĥj − J>j f̂ , the control law can be finally separated in two main

parts, corresponding to the feedforward and feedback components, as:

∆q =Kτ (Mj q̈
d
j + ĥj − J>j fd) +Kv

ˆ̇qj (13)

+K6eq +K7ėq +K8ëq +K9ef (14)

where:

K6 = Kτ (I +Kp)Ks

K7 = Kτ (I +Kp)Kd

K8 = KτKpMj

K9 = −Kτ (KpJ
>
j (I +Kf ) + J>j Kf ).

The terms in (13) correspond to the feedforward action. More precisely,
the first term decouples the articulated dynamics, while the second term
compensates for the friction. The terms in (14) correspond to the feedback
action on the position, velocity, acceleration and force. The feedforward
part (13) is independent of the position and force tracking errors.

Since Kτ is given by the motor identification (it is not defined by the
user), selecting one of the two sets of gains {K6,K7,K8,K9} or {Kp,Ks,Kd,Kf}
implies an immediate correspondence in the other set.

There is a direct correspondence with the position-based PD controller
originally implemented on the robot. The errors in position eq appears in
both controllers, while the other errors ėq, ëq and ef as well as the feedfor-
ward are only considered in our proposed torque control. It is now possible
to compare the tuning of both controllers. When the diagonal components
of K6 are greater than one, it implies that the torque controller is using feed-
back gains larger than those used by the native low-level position controller
of HRP-2. Conversely, diagonal components of K6 lower than one imply
a smaller position feedback for the torque controller than for the position
controller.
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(a) Force tracking experi-
ment.

(b) Motion tracking ex-
periment.

Figure 2: Experimental setup.

5 Experimental Results

5.1 Experimental Setup

We carried out all the experiments on the 6 joints of the right leg of HRP-2.
In the motion-control experiment HRP-2 was hanging in the air, attached to
a lift device by means of two strings tied to its shoulders (see Fig. 2b). In the
force-control experiment it was instead standing on both feet (see Fig. 2a),
while the strings prevented the robot from falling. As far as the estimation
is concerned, we used a window of 80 samples. Since the sampling time was
1 ms, this resulted in an estimation delay of 40 ms (i.e. half the window
size). We tested the controller also with smaller/larger window sizes, but 80
seemed to be the best trade-off between stability and performance. We used
first-order polynomials to filter the F/T sensor and the IMU measurements,
and second-order polynomials for the encoders. We set the torque-feedback
gains Kp to 2 for all the 6 joints.

The tuning of the estimation and control parameters (i.e. window length
and feedback gains) has been empirically performed. To keep things simple,
we decided to use the same gain for all the joints and the same delay (and
cut-off frequency) for all the sensors. However, we believe that there is room
for improvement in this direction. We saw that by increasing the estimation
window we got smoother feedback signals, which allowed us to use higher
gains, so improving the performance of the controller. On the other side,
increasing the estimation window also increases the estimation delay, which
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Table 1: Identified motor parameters.

Joint 103kτ 103kv
Hip yaw 0.212 13.0
Hip roll 0.030 6.332
Hip pitch 0.12 7.0
Knee 0.051 6.561
Ankle pitch 0.177 7.698
Ankle roll 0.240 6.0

at a certain point outweighs the improvement coming from using higher
gains. Finding the best trade-off between estimation smoothing/delay and
feedback gains is still an open problem, which might be an interesting subject
for future work.

5.2 Motor Identification

We collected the data following the procedure described in Section 3.4 and we
then used them to identify the motor parameters, as described in Section 3.3.
We set the weight of the asymmetric penalty function (8) to w = 100.
Table 1 lists the identified parameters. Fig. 3 depicts how the model fits
the data for the ankle-pitch joint. Using the symmetric penalty function,
the model tends to over-estimate the data for large velocities. In practice
this resulted in an unstable controller (i.e. the joint accelerating as soon
as a certain velocity was reached, even when lowering the feedback gains to
zero). With the asymmetric penalty, the model no longer over-estimates the
data, while the quality of the fit for small velocity remains of similar quality.

5.3 Motion Control

Table 2: Average squared tracking error (in rad 103) for the stairs-climbing

trajectory: N−1
√∑N

i=1(qd(ti)− q(ti))2, where N is the number of samples.

Joint Pos.
ctrl.

Torque
ctrl
K6 = 1

Torque
ctrl
K6 = 0.5

Torque
ctrl
K6 = 0.25

Torque
ctrl
K6 = 0.1

Hip roll 0.020 0.005 0.008 0.016 0.040
Hip pitch 0.056 0.018 0.035 0.064 0.139
Knee 0.115 0.060 0.061 0.067 0.094
Ankle pitch 0.064 0.017 0.034 0.063 0.148
Ankle roll 0.029 0.015 0.029 0.059 0.136
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(b) Symmetric penalty residuals.
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(d) Asymmetric penalty residuals.

Figure 3: Friction identification for the ankle-pitch joint: comparison of the
two penalty functions: [top] symmetric penalty (7) [bottom] asymmetric
penalty (8). The two plots on the left display the friction part of the model
(∆q −Kττ) with respect to the velocity (q̇j). The data have been collected
tracking a sinusoidal reference with increasing amplitude. The two plots
on the right display the distribution of the residuals (|Kττ +Kv q̇j | − |∆q|):
the symmetric penalty tends to overestimate the friction for high velocities
(indeed we have positive residuals), while the asymmetric penalty mostly
underestimates while keeping a fit of similar quality.

Table 3: Maximum tracking error (in rad 103) for the stairs-climbing tra-
jectory.

Joint Pos.
ctrl.

Torque
ctrl
K6 = 1

Torque
ctrl
K6 = 0.5

Torque
ctrl
K6 = 0.25

Torque
ctrl
K6 = 0.1

Hip roll 4.79 2.35 2.95 2.85 5.76
Hip pitch 17.01 7.87 7.83 10.40 22.78
Knee 61.86 39.64 41.55 41.19 49.33
Ankle pitch 19.56 4.84 5.92 10.39 22.43
Ankle roll 6.11 2.55 3.69 6.80 16.44
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(c) Hip-roll error, position control
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(d) Ankle error, position control
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(e) Hip-roll error, torque control K6 = 1
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(f) Ankle error, torque control K6 = 1
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(g) Hip-roll error, torque control K6 =
0.25
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(h) Ankle error, torque control K6 =
0.25

Figure 4: Comparison of the motion tracking accuracy for the position con-
troller and for the torque controller. The results from two joints are displayed
(hip roll and ankle pitch). Three different controllers are exhibited: original
low-level position controller, inverse dynamics with the same gains than the
position controller (K6 = 1) and inverse dynamics with 25% feedback gains
(K6 = 0.25). At large scale, the position trajectories are similar for the
three controllers (the top row shows the results for the position controller,
but the other two controllers would look just the same). Compared to the
position controller, the torque controller with similar gain (K6 = 1) is much
more accurate (lower tracking error). The torque controller with lower gain
(K6 = 0.25) has a comparable accuracy.22



We compared the capabilities of tracking a joint-space trajectory of our
new controller with those of the standard low-level position controller of
HRP-2. The trajectory is the swinging motion of the right leg computed
to make the robot climb some stairs. This motion is very demanding with
respect to the capabilities of the motors, by asking a large displacement (of
the swing leg) in a short time. We experimentally know that this movement
is close to the dynamic limits of the robot.

We tested the position controller against four different gain tuning of
inverse-dynamics controller, corresponding to 100%, 50%, 25% and 10% of
the standard position-control gains (i.e. K6 was equal to 1, 0.5, 0.25 and
0.1, respectively). Table 2 and 3 respectively report the average and maxi-
mum tracking error for the each joint and each controller. Fig. 4 shows the
tracking error trajectory for two joints (hip roll and ankle pitch) and three
controllers, to visualize the different shapes of the errors. With K6 = 1
the inverse-dynamics controller performs significantly better than the posi-
tion controller, obtaining lower maximum and average tracking errors on all
joints. With K6 = 0.5 the inverse-dynamics controller still performs better
than the position controller on all joints (except the average error of the
ankle roll, which is equivalent). With K6 = 0.25 the average errors on most
joints are almost equivalent (except ankle roll/knee, which are significantly
worse/better), but the inverse-dynamics controller still results in lower max-
imum errors (except for the ankle roll). Finally, with K6 = 0.1 the position
controller performs better than the inverse-dynamics controller on all joints
but the knee.

5.4 Force Control

This experiment tests the capabilities of the torque controller to track a
reference Cartesian force. The right foot of HRP-2 is positioned in con-
tact with a rigid fixed object (a small pile of bricks, see Fig. 2). We then
commanded to the inverse-dynamics controller a sinusoidal force reference
on the z axis (vertical direction), while maintaining the force on the other
axes to zero. The position gains were set to 10% of the standard position-
control gains (i.e. K6 = 0.1), which corresponds to the lowest gain with
motion-tracking accuracy similar to the position controller, obtained from
the previous experiment. The reference joint angles were set to be compati-
ble with the force task. By keeping significant position-feedback gains, some
slight motion occurring during the experiment would likely cause interfer-
ences between the joint-position and the force tracking. However, it does
not seem relevant to set these gains to zero, mainly for security reasons (in
case the robot lost the contact the position feedback would have prevented
it from moving too far away from the initial configuration). We empirically
set all the force feedback gains Kf to 1, which is the higher values before
observing instability in the control. Fig. 5 shows the results. The robot is
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(a) Force tracking on the x axis.
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(b) Force tracking on the y axis.
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(c) Force tracking on the z axis.

Figure 5: Tracking of a sinusoidal force reference on the z axis of the right
foot while keeping other force directions to zero. An overshoot of maximum
10% is observed at the sinusoid apex. The same 10% are observed as a
coupling on the X axis. No significant delay affects the tracking.

able to track the desired force sinusoid; the ≈ 10% overshoot is likely due
to the above-mentioned conflict between force and position tracking.

5.5 Analysis of Different Control Components

The final torque control is a complex mix of feedforward and feedback terms.
This section analyses the different components of the control input ∆q in the
two previous experiments (i.e. motion control and force control) to provide
some intuitions regarding the effect of each component on the quality of the
presented results. Our goal is to understand to what extent each compo-
nent is contributing to the final control input. Recall from Section 4.2 that
we can decompose the control input in six different parts, two feedforward
components and four feedback components:

∆q = Kτ (Mj q̈
d
j + ĥ− J>fd)︸ ︷︷ ︸

feedforward torque

+ Kv
ˆ̇qj︸ ︷︷ ︸

feedforward friction

+ K6eq︸ ︷︷ ︸
feedback position

+ K7ėq︸ ︷︷ ︸
feedback velocity

+ K8ëq︸ ︷︷ ︸
feedback acceleration

+ K9ef︸ ︷︷ ︸
feedback force

We reproduced the two previous experiments and measured the importance
of each of these six terms in the control. Fig. 6 shows the values of the two
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(a) Hip-pitch joint, inverse-dynamics
control with K6 = 0.1.
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(b) Hip-pitch joint, inverse-dynamics
control with K6 = 1
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(c) Knee joint, inverse-dynamics control
with K6 = 0.1.
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(d) Knee joint, inverse-dynamics control
with K6 = 1.

0 5 10 15 20 25
Time [s]

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4

∆
q
 [1

0
3

 ra
d]

(e) Knee joint, force control.
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(f) Ankle-pitch joint, force control.

Figure 6: Different components of the control input ∆q in the “motion
control” (a, b, c and d) and “force control” experiments (e and f).

25



feedforward components and the position and force feedback components
for two different joints during the motion-control experiment (with both the
maximum and the minimum feedback gains) and force-control experiment.
By looking at these data we can draw that:

• during motion control the “feedforward friction” is contributing the
most, followed by the “feedback position”;

• during force control the “feedforward torque” is contributing the most,
followed by the “feedback force” (and the “feedback position” for the
ankle-pitch joint).

This means that in motion control the proposed torque controller is approx-
imately acting as a standard position controller plus a friction compensa-
tion. On the contrary, in force control the “feedforward torque” component
is playing an important role in the control, which justifies the existence of
that part in the control law. Most probably it is the term J>fd the one
contributing the most between the three terms composing the feedforward
torque, given that inertial and bias torques are negligible in this scenario.

From Fig. 6f it can also be noticed that the “feedback position” signifi-
cantly contributed to the force control for certain joints. This is due to the
fact that the contact was not perfectly rigid, so some joints slightly moved
during the experiment affecting (likely negatively) the force tracking.

6 Conclusions and Future Work

This paper discussed the implementation of torque control on the humanoid
robot HRP-2. Contrary to most previous works on the subject — but like
90% of nowadays robots — our platform does not have joint-torque sensors
and its software interface does not allow the user to directly control the
motor currents/voltages. This makes the control of the joint torques more
challenging on this hardware than on robots that were built to be torque
controlled. We list hereafter the main contributions of this work.

• Our experimental setup shows that it is possible to implement torque
control on a robot that was originally built to be position controlled,
and we can use it to control its motion and its contact forces.

• We described the implementation on the physical robot of the complete
framework, composed by estimation, identification and control.

• Torque control, together with inverse dynamics, has been experimen-
tally proved to produce better motion tracking than position control
(i.e. improved accuracy for similar gains, or reduced gains while pre-
serving accuracy). While this was well-known for torque-sensor based
torque control, it is a nontrivial result for the torque control proposed
in this paper.
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• Our analysis shows that in motion control the most important part
of our control framework is the feedforward friction compensation,
whereas in force control the most important part is the torque feed-
forward component. The dominance of the feedforward terms in the
control action validates our choice to use a simplified actuator model
and our identification procedure.

• We proposed an asymmetric-penalty identification that tends to pre-
serve the stability of the controller (e.g. by avoiding over-compensating
friction), along with two numerical formulations (either as a convex
optimization problem, or as a QP).

While the presented results are very promising, there is still room for
improvement, especially in the identification and the estimation. Using an
approximated model for the relationship between the joint torques and the
position is interesting because it simplifies the identification and avoids in-
stability. However, the simplified model is arbitrary (we selected the rele-
vant terms from our subjective observations), and some unidentified terms
are now missing to obtain a perfect fit. Another important point is that
the identified model is currently only used by the controller. The state
estimation algorithm could also exploit it to predict the future state and
so nullify estimation delays. We also plan to experiment with Disturbance
Observers, as they have already been used to improve the performances of
other torque-control architectures.[19]

To conclude, this work opens a new interesting direction for the control
of “position-controlled” robots (i.e. stiff robots without joint-torque sen-
sors), which could benefit from the presented torque-control architecture to
improve their performances, both in motion-tracking and in force-tracking
tasks.
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