
HAL Id: hal-01116160
https://hal.science/hal-01116160

Submitted on 23 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Empowering Web Service Search with Business
Know-How

Isabelle Mirbel, Pierre Crescenzo, Nadia Cerezo

To cite this version:
Isabelle Mirbel, Pierre Crescenzo, Nadia Cerezo. Empowering Web Service Search with Business
Know-How. Muthu Ramachandran. Knowledge Engineering for Software Development Life Cycles:
Support Technologies and Applications, IGI Global, pp.161-176, 2011, 9781609605094. �10.4018/978-
1-60960-509-4.ch009�. �hal-01116160�

https://hal.science/hal-01116160
https://hal.archives-ouvertes.fr

Empowering Web Service Search with Business Know-How
Isabelle Mirbel, Pierre Crescenzo, and Nadia Cerezo

Université de Nice Sophia-Antipolis
Laboratoire I3S (UNS/CNRS)

930 route des Colles
BP 145

F-06903 Sophia-Antipolis cedex
France

Email: {Isabelle.Mirbel,Pierre.Crescenzo,Nadia.Cerezo}@unice.fr

Table of Contents
1 Introduction...1
2 State of the Art of Scientific Workflows...3

2.1 Motivation...3
2.2 Overview..4
2.3 Issues...5

3 Intentional Process Modeling for Scientific Workflows...6
3.1 Autonomous software components for end-users...6
3.2 SATIS Architecture...8

4 Semantic Annotation to Support Workflows Combination Know-How Capitalisation.....10
4.1 Formalisation of high-level end-user's intentional requirements10
4.2 Formalisation of generic Web Service descriptions...11
4.3 Rules..12

5 Conclusion..13

Index des illustrations
Illustration 1: Fragment Model...9
Illustration 2: SATIS..10

1 Introduction
Service Oriented Computing (SOC) is a computing paradigm using and providing services
to support the rapid and scalable development of distributed applications in heterogeneous
environments. Despite its growing acceptance, we argue that it is difficult for business
people to fully benefit of SOC if it remains at the software level. We claim it is required to
move towards a description of services in business terms, i.e. intentions and strategies to
achieve them and to organize their publication and combination on the basis of these
descriptions.

Moreover, service providers and users still face many significant challenges introduced by
the dynamism of software service environments and requirements. This requires new
concepts, methods, models, and technologies along with flexible and adaptive
infrastructure for services developments and management in order to facilitate the on-
demand integration of services across different platforms and organizations. Business
users exploit their domain expertise and rely on previous experiences to identify relevant
services to fulfill new business requirements. Indeed, they develop know-how in solving
software related problems (or requirements). And we claim it is required to turn this know-
how into reusable guidelines or best practices and to provide means to support its

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 1/16

capitalization, dissemination and management inside business users communities.

The ability to support adequacy between service users needs and service providers
proposals is a critical factor for achieving interoperability in distributed applications in
heterogeneous environments. Service final users need means to transmit their functional
and non functional requirements to service designers, especially when no service is
available. And service designers need means to disseminate information about available
services in order to improve their acceptance by users as well as means to better handle
the way business users combine services to fulfill their business goals. Reasoning about
business descriptions of services and know-how about business users services
combination help to support bidirectional collaboration between business users (service
final users) and computer scientists (service designers).

So, from a general point of view, software engineering implies a growing need for
knowledge engineering to support all aspects of software development. In this chapter, we
focus on knowledge engineering to support service combination from a business user
perspective.

We propose a framework, called SATIS (Semantically AnnotaTed Intentions for Services)
[1], to capture and organize know-how about Web Services business combination.
Therefore we adopt Web semantic languages and models as a unified framework to deal
with business users requirements, know-how about service combination as well as Web
Services descriptions. Indeed, we distinguish between intentional and operational know-
how. Intentional know-how captures the different goals and sub-goals the business users
try to reach during his/her combination task. Intentional know-how is specified with the
help of an intentional process model [2]. Operational know-how captures the way
intentional sub-goals are operationalised by available suitable Web Services. Operational
know-how is formalized as queries over Web Service descriptions.

In SATIS, business users requirements, know-how about service combination as well as
Web Services descriptions are resources indexed by semantic annotations [3][4][5] in
order to explicit and formalize their informative content. Semantic annotations are stored
into a dedicated memory. And information retrieval inside this memory relies on the formal
manipulation of these annotations and is guided by ontologies.

Annotation of intentional and operational know-hows are respectively stored as abstract
and concrete rules implemented as SPARQL construct queries SPARQL. When
considered recursively, a set of SPARQL construct queries can be seen as a set of rules
processed in backward chaining. As a result, someone looking for solutions to
operationalise a business process will take advantage of all the rules and all the Web
Service descriptions stored in the semantic community memory at the time of his/her
search. This memory may evolve over the time and therefore the Web Services
descriptions retrieved by using a rule may vary as well. Business users as well as
computer scientists may both take advantage of this reasoning capability to understand
the way services are combined to fulfill a business goal. This way, SATIS supports
knowledge transfer from expert business users to novice ones as well as collaboration
between business users and computer scientists.

Beyond an alternative way to search for Web Services, we provide means to capitalise
know-how about Web Service business users combination. Another novelty of our
approach is to operationalise business goals by rules in order to promote both
mutualisation of specifications and cross-fertilization of know-how about Web Services
business combinations. We are currently implementing our approach in the neuroscience
domain where domain ontologies and semantic Web Services descriptions are already
available.

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 2/16

In this chapter, we propose first to start by presenting a state of the art of existing
approaches about scientific workflows (including neuroscience workflows) [6][7] in order to
highlight business users' needs in terms of Web Services combination. Then we discuss
about intentional process modeling for scientific workflows especially to search for Web
Services [8][9]. Next we present our approach SATIS to provide reasoning and traceability
capabilities on Web Services business combination know-how, in order to bridge the gap
between workflows providers and users.

2 State of the Art of Scientific Workflows
Let us briefly present the current state of the art of scientific workflows research, to the
best of our knowledge. We will first detail the reasons behind the creation and use of
scientific workflows, then give a quick overview of the field, then present a few well-known
and very active projects and finally we will highlight the challenges left to overcome.

2.1 Motivation

First off, computational scientific experiments obviously largely pre-date the notion of
workflow. The traditional way of doing things is to gather data, adapt it to whatever
program you want to run it on, run said program and post-process the outputs to analyse
them. If many programs have to be chained together and the process must be repeated
many times over, scripting is surely the most direct solution. It has worked for a long time,
but its limitations can no longer be ignored.

One of the most obvious problems with scripting is its non-existent ease-of-use: end-users
need to be fully aware of technical details of both the data they want to analyse, the
programs they will use and the platforms on which the programs will run, as well as every
associated transfer protocol and input/output formats. Add to this appalling list the scripting
language itself and you can conclude that the end-user will spend most of his or her time
dealing with computer science delicacies rather than advancing his or her own research.
Another aspect of accessibility is sharing, not only of scripts but of know-how. There again
scripting is as bad as it gets: either the user doesn’t already know the details
aforementioned and the script will be cryptic to say the least, or the user already knows
them and doesn’t have much to learn from the script itself.

Scientific computerized experiments, like physical experiments, have to be carried out
many times, either to check the consistency of results or to try different parameters and
input data or new ideas. For every modification the script author had designed the script
for, all is well. Problems arise with modifications the script was not designed to cope with,
because they were either dismissed or not predicted at all. Such modifications happen all
the time: a program is upgraded and new protocols are adopted, new data is collected that
doesn’t exactly fit the previous format, new algorithms are designed that need additional
parameters, etc. If the modification is small and the author is around and still has a fresh
memory of his or her script, it might go well. Most often, though, it is quicker to re-write a
new script than to modify an existing one. Again, more time is taken from research and lost
onto computer science technicalities that are essentially not re-usable.

E-sciences of late have known a small revolution: ever increasing computational costs,
dataset size and process complexity have made the traditional model of one scientist
running his or her programs on a single machine obsolete. To carry out one analysis,
highly-distributed heterogeneous resources are needed. Scripting obviously fails to cope
with such situations. Grid technologies and SOA (Service Oriented Architecture) are partial
answers to the problem but they are not well-known for their ease-of-use and further
alienate the typical end-user.

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 3/16

Scientific workflows are gaining momentum in many data-intensive research fields, e.g.:

• Bio-informatics [10][11],

• Physics [12][13][14],

• Ecology [15],

• Disaster handling [16].

According to [17], a scientific workflow framework must fulfill eight criteria to be truly useful
to the end-user, who is typically a scientist, with little knowledge in computer science,
wishing to automate and share his or her scientific analyses.

Name Description

Clarity Produce self-explanatory workflows

Well-Formedness Help create well-formed and valid workflows

Predictability Produce workflows whose behaviour is predictable

Recordability Record workflow execution

Reportability Keep provenance information for all results

Reusability Help create new workflows from existing ones

Scientific Data Modeling Provide support for scientific data modeling

Automatic Optimization Hide optimization concerns from users

While user needs vary greatly from a given field to another, we do believe those criteria to
be of interest for most end-users.

2.2 Overview

The notion of workflow was first formally introduced in 1995 by the Workflow Management
Coalition in the Workflow Reference Model [18]. It was defined as the computerized
facilitation or automation of a business process, in whole or part. Furthermore, they
explained that a workflow is concerned with the automation of procedures where
documents, information or tasks are passed between participants according to a defined
set of rules to achieve, or contribute to, an overall business goal. As is obvious from the
definition itself, workflows were meant solely for business uses at the time. The concept of
a scientific workflow is much more recent than the concept of workflow itself.

It is easy to mix up the notions of scientific and business workflows. Most people who
know about workflows actually know about the business version which pre-dates the
scientific one. A lot of core concerns and concepts are shared by both business and
scientific workflows, while some issues are specific to one domain or the other [19].

Scientific Workflow systems are heavily influenced by their business counterparts, which
might explain why DAG (Directed Acyclic Graphs) are the most common workflow
representation in both worlds, with vertices modeling tasks and edges modeling either data
or control flow. The growing need for large-scale computation, large-scale data
manipulation and support for execution over highly-distributed heterogeneous resources is
common to both scientific and business contexts.

In most cases, business processes are clearly defined beforehand and actual workflow
building is more or less a mapping problem, whereas scientific workflow building is most
often an exploratory procedure. Needs for flexibility and dynamic changes are therefore far
greater for scientific workflows. While security and integrity are the top priorities in a
business context, they are far outweighed by reproducibility and reusability concerns in a

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 4/16

scientific context: a scientific experiment serves no purpose if it cannot be shared, checked
(and thus, rerun) and validated by the community.

To the best of our knowledge, there have been only 4 surveys so far, detailed below, and
there is no up-to-date index of existing systems.

Date Title Authors Type #SW 1

2005
A taxonomy of Scientific Workflow Systems
for Grid Computing

J. Yu, R. Buyya,(Gridbus) Article 12

2006 Scientific Workflows Survey
A. Slominski, G. von Laszewski
(Java CoG Kit)

Wiki 32

2007
Workflows for e-science:
scientific workflows for grids

I. J. Taylor et al. (Triana) Book 10

2008
Scientific Workflow:
A Survey and Research Directions

A. Barker, J. van Hemert Article 10

The sheer number and significant diversity of systems make it hard for a user to find the
best-fit scientific workflow framework for his or her use. We believe an online comparison
matrix of the most active projects would be highly beneficial to both researchers and end-
users. Unfortunately, the typical lack of communication between projects makes
maintenance of such a matrix a difficult task.

2.3 Issues

While the many scientific workflow systems share a lot, especially regarding needs and
core concepts, there is no standard for either workflow, provenance or execution
descriptions. Frameworks can be compared and categorized [20], but interoperability is
nothing short of painful in the present state of things. This can be shown simply by the
sheer variety of terms in use for the most basic element of a workflow, most often the
vertices in the associated graph: operations, tasks, nodes, processes, jobs, components,
services, actors, transitions, procedures, thorns, activities, elements, units [21] and
probably more. It is worth noting that BPEL (Business Process Execution Language) is
often cited as a strong candidate for standard workflow description language [22][23][24]
[25], surely because of its status as de facto standard business workflow description
language. However, BPEL suffers many limitations and before it can be established as a
standard or intermediate workflow language, it needs to be extended [25].

For the results of a scientific workflow to be of any use, they need to be reproducible and
therefore fully traceable: information must be kept about the conditions in which the
workflow was run, the initial input data, the intermediate results as well as the chosen
parameters. This concern for traceability is commonly referred to as “provenance” and has
been a research subject for a while [17][23][26][27][28][29]. Many frameworks already
implement some sort of provenance tracking, but, to the best of our knowledge, a standard
is yet to be established, when it is even more critical to interoperability than a common
language [30]: indeed, without provenance description standards, it is near impossible to
replay a given workflow execution on another system.

Portal-based access to scientific workflow technology is currently a hot topic. It indeed
seems the best way to ensure accessibility to a maximum number of end-users. It might
even turn out to be a necessary step for many projects, since users who are not
knowledgeable about technology often shy away from installation instructions and would

1 Number of scientific workflow systems surveyed

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 5/16

certainly prefer using thin-client technology [22]. Portals are sometimes already deployed
[26][31][32] and often cited in Discussion and Future Works sections [22][27].

The problem of discovery, or how to retrieve existing workflows that can be reused or re-
purposed for one’s goals, cannot be solved directly inside the scientific workflow model,
editor or enactor. It might matter little to the modeling expert, but for end-users who have
little knowledge about workflows, it is a critical issue: it is not enough to store finished
workflows in an open database with query functionalities. The surrounding platform must
provide users with helpful discovery tools. Those are critical for knowledge sharing among
users. Discovery of scientific workflows is a slightly underestimated research topic. To the
best of our knowledge, the only team working on it is the Taverna (myGrid) team, through
the myExperiment project [33][34]. Note that discovery of services, however, is a rather hot
topic.

While most existing systems claim to bridge the gap between computer scientists and
scientists of other fields, and huge progress has certainly been made in the ease-of-use
area, the impression one gets from just looking at the most basic workflows is quite
different: in most cases, the underlying Web technologies are apparent. It is hard for us to
picture a user with little knowledge in computer science able to make sense of concepts
such as XSLT (eXtensible Stylesheet Language Transformations). Of course, such details
should be neither ignored nor hidden completely. They should be left for a lower level of
abstraction and higher levels need to be created between the typical user (e.g. a
neuroscientist) and the actual executable workflow, using semantic information to
automate the process in the most intelligent manner possible [35].

In the two next sections, we present our approach SATIS which is a way to respond to the
difficulty for end-users to discover adequate Web Services and for computer scientists to
design and present their Web Services for a better visibility to users.

3 Intentional Process Modeling for Scientific Workflows

3.1 Autonomous software components for end-users

A major interest of scientific workflows is to offer an interface to combine existing
autonomous software components, like Web Services. But this is not a sufficient help for
end-users. We need to give us a mean to simply express their goals and to assist us to
choose the pertinent components (Web Services) to implement these goals.

One of the main objectives of SATIS is to support neuroscientists when looking for Web
Services to operationalise their image processing pipeline. In this section we will first
discuss the role of the different actors involved in the neuroscience community and then
describe the different means we provide to support neuroscientists tasks.

Three core actors are identified in our framework: the service designer, the community
semantic memory manager and the domain expert. In a neuroscientists community,
computer scientists play the roles of service designer and community semantic memory
manager while neuroscientists play the role of domain expert.

The service designer is in charge of promoting the Web Services available in the
community Web Service registry. Therefore, when s/he wants to advertise a new kind of
Web Service in the neuroscientists community, in addition to adding the Web Service
description in the community registry, s/he writes a generic Web Service description and
associates to it high-level end-user's intentional requirements to promote the services s/he
is in charge from the end-user's point of view (that is to say in a non computer scientists
language). The service designer is in charge of authoring atomic reusable fragments.

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 6/16

The community semantic memory manager is in charge of populating the community
semantic memory with reusable fragments to help domain experts to (i) specify the image
processing pipelines for which they are looking for Web Services and (ii) search for Web
Service descriptions to operationalise the image processing pipelines they are interested
in. Indeed, s/he provides reusable fragments useful in different image processing
pipelines. Basic processes, as for instance intensity corrections, common to several image
analysis pipelines, are examples of such basic fragments. Therefore, s/he may look at the
fragments provided by the service designer with the aim of aggregating some of them into
basic image processing pipelines. For instance in the neuroscientist community, if Image
debiasing, Image denoising, Image normalisation and Image registration Web Service
descriptions are provided in the community Web Service registry (and associated
fragments provided in the community semantic memory) at some point, the community
semantic memory manager may put them together into a basic Image preprocessing
pipeline. S/he may also identify recurrent needs when supporting domain experts in their
authoring task and therefore provide adequate basic fragments for image processing
pipelines.

Finally, the domain expert (or final user) is searching for Web Service descriptions to
operationalise an image processing pipeline s/he is interested in. Therefore, s/he may first
look in the community semantic memory if some existing fragments already deal with the
main intention s/he is interested in. If another member of the community already authored
an image processing pipeline achieving the same high-level goal, s/he may reuse it as is.
The goal under consideration may also be covered by a larger image processing pipeline
specified through a set of fragments already stored in the community semantic memory
and corresponds to one of the sub-goals of the larger pipeline. In this case also, existing
fragments can be reused as is and the rendering step to operationalise the image
processing pipeline under consideration performed on the current semantic community
memory content. If no high-level end-user's intentional requirements are already available,
the domain expert specifies the image processing pipeline under consideration with the
help of the community semantic memory manager.

Then, for each subsection identified in the high-level abstract fragment, the domain expert
may search for existing fragments supporting their operationalisation. If it is the case, then
s/he can decide to rely on them and stop the authoring process. Otherwise, s/he may
prefer to provide his/her own way to operationalise the sub-goals. By doing so, the domain
expert enriches the semantic community memory with alternative ways to operationalise
already registered goals. This will result in enriching the operationalisation means of the
image processing pipelines already formalised into fragments stored in the semantic
community repository. In fact, when someone else looking for the sub-goals under
consideration will perform a rendering process, if his/her image processing pipeline relies
on the achievement of a target intention for which a new operationalisation means has
been provided, previously stored in the semantic community repository as well as the new
ones are exploited, increasing the number of ways to find suitable Web Service
descriptions. Each time the domain expert, with the help of the community semantic
memory manager, decides to provide new ways to operationalise a map section, s/he has
to select the right level of specification of the fragment signature, in order to allow the
reuse of the fragment under construction outside of the scope of the image processing
pipeline under consideration.

From a more general point of view, domain and community semantic memory managers
mainly provide fragments: Domain experts focus on high-level fragments, close to the
image processing pipelines they want to operationalise. community semantic memory
managers focus on low level fragments, that is to say fragments operationalising basic
image processing pipelines. And service designers mainly focus on providing fragments to

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 7/16

promote existing Web Services. But domain and community semantic memory managers
may also provide fragments to specify their requirements in term of services. And the
service designers may also provide fragments in order to show examples of use of
available Web Services inside the scope of more complex examples of image processing
pipelines. By relying on a rule-based specification to operationalise reusable fragments
and by providing distinct and dedicated modeling techniques to both service designers and
service final-users as well as mapping mechanisms between them, we assist the
bidirectional collaboration between neuroscientists and computer scientists inside the
community.

An important objective of the SATIS project is to provide to domain experts means to
better understand what are the characteristics of the available services and how to use
them in the scope of the image processing pipeline they are interested in. We support this
aim by several means. The SATIS approach relies on a controlled vocabulary (domain
ontology) to qualify Web Services as well as requirements, this way reducing the diversity
in the labelling, especially in Web Services descriptions elements. Requirements about
Web Services are described in terms of intentions and strategies that is to say a
vocabulary familiar to the domain expert, making the understanding of the a Web Service
purpose easier to understand by domain experts. We propose to specify required Web
Service functionalities in terms of queries (i.e. generic Web Service descriptions) instead
of traditional Web Service descriptions in order to provide an abstraction level supporting
the categorisation of available Web Services and this way an easier understanding of the
content of the registry by domain experts.

In our approach we clearly distinguish an authoring step and a rendering step. During the
authoring step, the focus is on the elicitation of the search procedure. The domain experts
think in terms of intentions and strategies (and not in terms of services). His/her search
procedure is fully described, eventually with the help of the fragments already present in
the community semantic memory. During the rendering step, it is the system (and not the
domain expert) which tries to find Web Services corresponding to the requirements
specified by the experts (by proving goals and sub-goals). Indeed, the experts don't need
at all to know the content of the registry. A pertinent subset of it will be extracted by the
system and shown to the experts.

And finally, SATIS relies on a fragment based approach which doesn't show to the domain
expert the full set of rules exploited by the backward chaining engine to satisfy the user
requirements. When rendering a search procedure, the domain expert only selects the
intention characterizing his/her image processing pipeline and the system will search for
the rules to use. A set of Web Services descriptions is given to the domain expert as result.
But the complexity and the number of rules used to get the solution are hidden to the
domain expert.

3.2 SATIS Architecture

In Illustration 1, we describe entities (classes) and relationships between these entities in
SATIS. We can see traditional entities of the map model (to express and capture goals) :
Map, Section, Strategy and Goal.

In Illustration 2, we can see, at the top, an example of a map which is a graphical way to
express and capture goals of end-users. Sections are parts of map. On this map, we have
two main goals (Make an image homogeneous and Put image in a Single reference ; Start
and Stop are mandatory special goals) and five main strategies (by normalization, by
debiasing, by denoising, by registration and by rotation ; the arrow between Put image in a
Single reference and Stop is another, anonymous, strategy). The Illustration 2 will be
presented more precisely in the next section.

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 8/16

In Illustration 1, some entities are more specific to SATIS, and are made in order to
capitalise approaches (Fragment, Directive and Intentional Directive) and to search
adequate Web Services (Operational Directive and SPARQL Request).

The main SATIS process consists to find semantic annotation of Web Services from end-
users' intentional goals. This process is constituted by a set of relatively autonomous
fragments which are expressed at different granularity level. Thus, a fragment is an
autonomous and coherent piece of the process of the Web Services research. This is a
modular point of view in order to facilitate the adaptations and extensions of the approach.
Moreover, this modularity allows to reuse fragments which have been previously designed
to implement another approach.

The body of a fragment is constituted by directives which are autonomous and reusable.
The fragment signature gives the adequate situation (context) to reuse this fragment. A
directive is a fact, an indication or a procedure to determine the way to realise an action.
For SATIS, a directive is more precisely a know-how about the mean to reach a goal from
a given situation. We distinguish two kinds of directive: Intentional directives and
operational directives. An intentional directive is used to specify an high-level intentional
need. This kind of need has to be refined in more precise ones. An operational directive
represents some generic descriptions of Web Services.

To conclude this short presentation of the SATIS core, let's define intentional and
operational fragments. Intentional ones are dedicated to search adequate Web Services,
they are constituted by a section which gives the source situation and a request (in
SPARQL or another request language) to execute the research. An operational fragment
needs to refinements to be concrete: it is constituted by a section which gives the source
situation and a map to refine.

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 9/16

Illustration 1: Fragment Model

4 Semantic Annotation to Support Workflows Combination
Know-How Capitalisation

In our approach, we adopt Web semantic languages and models as a unified framework to
deal with (i) high-level end-user's intentional requirements, (ii) generic Web Service
descriptions and (iii) Web Service descriptions themselves. With regards to high-level end-
user's intentional requirements, we adapted the map model [2] to our concern and
gathered its concepts and relationships into an RDFS [4] ontology dedicated to the
representation of intentional processes: the map ontology [36]. As a result, image
processing pipelines annotated with concepts and relationships from this ontology can be
shared and exploited by reasoning on their representations. Semantic Web Service
descriptions are specified with the help of the OWL-S ontology [5] as well as a domain
ontology. And finally, generic Web Service descriptions are specified with the help of the
W3C standard query language for RDF [3] annotations: SPARQL [37]. Indeed, generic
Web Service descriptions are formalised into graph patterns over Web Services
descriptions.

4.1 Formalisation of high-level end-user's intentional requirements

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 10/16

Illustration 2: SATIS

To further formalise map elements, we rely on [38] proposal, which has already proved to
be useful to formalise goals [39][40][2]. According to [38], an intention statement is
characterised by a verb and some parameters which play specific roles with respect to the
verb. Among the parameters, there is the object on which the action described by the verb
is processed. We gathered the concepts and relationships of the map model and this
further formalisation into an RDFS [4] ontology dedicated to the representation of
intentional processes: the map ontology [36].

Based on the map ontology, image processing pipelines (or fragments of image
processing pipeline) are then represented by RDF annotations.

The mappings between the domain ontology and the map ontology are automatically
created when concepts of the domain ontology are selected to formalise map content.
Domain concepts are then considered as instances of AnyVerb, subclass of Verb,
AnyObject, instance of Object and AnyParameter, instance of Parameter. Verb, Object and
Parameter are provided by the map ontology while AnyVerb, AnyObject and AnyParameter
are provided in the mappings between the domain ontology and the map ontology to
support reasoning.

Let us consider again our running example and the map depicted in the upper part of the
Illustration 2. The highlighted section has a start intention as source intention, a target
intention labelled “Make an image homogeneous” and a strategy labelled “by debiasing”.
Thanks to the domain and the map ontologies as well as the mappings between them, the
target intention is described by its verb Homogenise and its object Image ; the strategy is
described by its parameter Debiasing and the source intention is described by its verb
AnyVerb and its object AnyObject. The RDF dataset shown in the left part of Illustration 2
where namespace map refers to the map ontology and namespace dom refers to a
domain ontology corresponds to the formalisation of the highlighted section in the map
under consideration.

By relying on RDF(S) which is now a widespread Web standard, we ensure the
capitalization, reuse and share of these representations of search procedures among
community members. Beyond an alternative way to organize and to dynamically access
resources in a community memory, we provide means to capitalize search procedures
themselves. We take advantage of the inference capabilities provided by the RDF
framework to reason on search process representations, especially to organize them and
retrieve them for reuse.

4.2 Formalisation of generic Web Service descriptions

In SATIS, we assume Web Service descriptions are expressed in OWL-S. In our current
scenarios, we only use the profile and the grounding of OWL-S as well as the input and
output specifications in the process description. We enrich OWL-S description by
considering their content (as input and output parameters for example) as instances of
domain concepts. Thanks to this additional instantiation of domain concepts, it makes it
possible to reason on OWL-S description element types to retrieve for instance subclasses
of concepts we are interested in. An example of excerpt of such an enriched OWL-S Web
Service description is shown on the right side of Illustration 2. This description deals with a
Web Service requiring an image as input and providing a debiased image and a bias field
as output.

As we don't want community members to strongly couple high-level intentional
requirements to technical Web Service specifications, we introduced generic Web Service
descriptions aiming at qualifying the required features when looking for Web Services to
operationalise image processing pipelines (or fragments of image processing pipeline). For
instance, by looking for a Web Service which takes as input an image and provides as

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 11/16

output a debiased image, the end-user specifies the kind of Web Service s/he is interested
in without explicitly referring to one specific Web Service. The Web Service which
description is shown in Illustration 2 will be retrieved by rendering the query shown on the
left bottom side of Illustration 2. But if other Web Services also deal with image (or a
subclass) and debiased image (or a subclass), they will also be retrieved by the query
under consideration. By doing so, we assume a loosely coupling between high-level end-
user's intentional requirements on one hand and Web Services descriptions on the other
hand: if new Web Service descriptions are added inside the community semantic memory,
they can be retrieved to operationalise a high-level end-user's intentional requirement
even if the requirement has been specified before the availability of the Web Services
under consideration; and if Web Service descriptions are removed from the community
semantic memory, the high-level end-user's intentional requirements that they satisfied are
still valid and may be operationalised by other available Web Services. Web Services are
dynamically selected when rendering queries associated to high-level end-user's
intentional requirements.

Generic Web Service descriptions are expressed as SPARQL queries among the Web
Service descriptions expressed in OWL-S. An example of such a generic Web Service
description is shown in the left bottom side of Illustration 2. This query aims at searching
for Web Service descriptions having as input an Image (or a subclass of it) and as output a
DebiasedImage (or a subclass of it) and a BiasField (or a subclass of it).

4.3 Rules

In SATIS, the process consisting in retrieving Web Services descriptions from high-level
end-user's intentional requirements about image processing pipelines is viewed as a set of
loosely coupled fragments expressed at different levels of granularity. A fragment is an
autonomous and coherent part of a search process supporting the operationalisation of
part of an image processing pipeline by Web Services. Such a modular view of the
process aiming at retrieving Web Service descriptions from high-level end-user's
intentional requirements favours the reuse of fragments authored to deal with a specific
high-level end-user's image processing pipeline in the building of other pipelines.

The fragment body captures guidelines that can be considered as autonomous and
reusable. The fragment signature captures the reuse context in which the fragment can be
applied.

For us, a guideline embodies know-how about how to achieve an intention in a given
situation. We distinguish two types of guidelines: intentional and operational guidelines.
Intentional guidelines capture high-level end-user's intentional requirements which have to
be refined into more specific requirements. Operational guidelines capture generic Web
Service description.

Map formalisations and SPARQL queries respectively constitute the body of intentional
and operational reusable fragments. The fragment signature characterises the fragment
content and let the other members of the community understand in which situation the
fragment may be useful. A fragment signature aims at capturing the purpose of the
fragment and its reuse situation. A fragment signature is specified by a map section. The
target intention of the section indicates the goal of the reusable fragment and the source
intention as well as the strategy specify the reuse situation in which the fragment is
suitable.

In a fragment signature, the target intention is mandatory to elicit the goal of the fragment.
If a particular context is required to use the fragment, a source intention or a strategy may
be used to specify it. Web Services retrieved by rendering a fragment which signature
does not include source intention are less precise than Web Services retrieved by

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 12/16

rendering a fragment which signature is fully described by a source intention in addition to
the target intention. Similarly, to specify or not a strategy can respectively reduce or
enlarge the spectrum of Web Services considered. Both
means (specifying a source intention or a strategy) can be combined to obtain a signature
which genericity level actually corresponds to the guidelines proposed
in the body of the fragment.

The RDF dataset shown on the left side of Illustration 2 corresponds to a fragment
signature which body is the SPARQL query shown on the left bottom side of Illustration 2.
The black frame depicts a fragment. As its body contains a query, it is an operational
fragment. An example of intentional fragment may be a fragment to perform image
preprocessing body provides a RDF dataset formalizing the full map (i.e. all the sections)
shown on top of Illustration 2 and is specified by a section which target intention is
finalised by the object Image and the verb Preprocessing.

This intentional fragment capitalize a know-how about how to break down an image
preprocessing high-level requirement into sub-goals in order to find Web Services to
operationalise an image processing pipeline.

Indeed in SATIS, fragments are implemented by backward chaining rules, which
conclusions represent signatures of fragments and which premises represent bodies of
fragments (either operational or intentional guidelines). We call a rule concrete or abstract
depending on whether its premise encapsulates operational or intentional guidelines.

These rules are implemented as SPARQL construct queries. The CONSTRUCT part is
interpreted as the head of the rule, the consequent that is proved. The WHERE part is
interpreted as the body, the condition that makes the head proved. When considered
recursively, a set of SPARQL construct queries can be seen as a set of rules processed in
backward chaining.

5 Conclusion
The ability to support adequacy between service users needs and service providers
proposals is a critical factor for achieving interoperability in distributed applications in
heterogeneous environments such as scientific workflows. The problem of discovery, or
how to retrieve existing workflows that can be reused or re-purposed for one's goals, is
especially important for end users who have little knowledge about workflows.

In this chapter, we focused on knowledge engineering to support service combination from
an end-user perspective. We proposed SATIS, a framework to turn this know-how into
reusable guidelines or best practices and to provide means to support its capitalization,
dissemination and management inside business users communities.

SATIS offers the capability to capture high-level end-user's requirements in an iterative
and incremental way and to turn them into queries to retrieve Web Services descriptions.
The whole framework relies in reusable and combinable elements which can be shared
out inside the scope of a community of users. In our approach, we adopt Web semantic
languages and models as a unified framework to deal with (i) high-level end-user's
intentional requirements, (ii) generic Web Service descriptions and (iii) Web Service
descriptions themselves. SATIS aims at supporting collaboration among the members of a
neuroscience community by contributing to both mutualisation of high-level intentional
specification and cross-fertilisation of know-how about Web Services search procedures
among the community members.

Future works will focus on enriching the formalisation step by taking into account additional
information in order, for instance, to derive criteria related to quality of services. Indeed, we

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 13/16

plan to extend our Web Service annotation model with quality of service (QoS) information
and to qualify map strategies by QoS domain concepts. We will also concentrate on
providing query patterns to help experts writing generic Web Service descriptions.

References
1 : P. Crescenzo and I. Mirbel ; Improving Collaborations in Neuroscientist Community ;
2009 ; Web2Touch workshop in conjunction with International Conference on Web
Intelligence ; Milan, Italy.
2 : C. Rolland ; Conceptual Modelling in Information Systems Engineering ; 2007.
3 : W3C ; RDF: Resource Description Framework ; 2009.
4 : W3C ; RDF Vocabulary Description Language 1.0: RDF Schema ; 2004.
5 : W3C ; OWL-S Specification ; .
6 : W. Tan, P. Missier, R. Madduri, and I. Foster ; Building Scientific Workflow with Taverna
and BPEL: A Comparative Study in caGrid ; 2008 ; In Service-Oriented Computing -
ICSOC 2008 Workshops ; Sydney, Australia.
7 : B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A. Lee, J. Tao,
and Y. Zhao ; Scientific workflow management and the Kepler system ; 2006 ;
Concurrency and Computation: Practice and Experience ; .
8 : L.O. Bonino da Silva Santos, L. Ferreira Pires, and M.J. van Sinderen ; A Goal-Based
Framework for Dynamic Service Discovery and Composition ; 2008 ; International
Workshop on Architectures, Concepts and Technologies for Service Oriented Computing ;
Porto, Portugal.
9 : J.M. Gomez, M. Rico, and F. Garcia-Sanchez ; GODO: Goal Oriented Discovery for
Semantic Web Services ; 2006 ; 5th International Semantic Web Conference ; .
10 : A.W. Lin, S.T. Peltier, J.S. Grethe, and M.H. Ellisman ; Case Studies on the Use of
Workflow Technologies for Scientific Analysis: The Biomedical Informatics Research
Network and the Telescience Project ; 2007 ; Workflows for e-Science: Scientific
Workflows for Grids ; .
11 : A.C. Jones ; Workflow and Biodiversity e-Science ; 2007 ; Workflows for e-Science:
Scientific Workflows for Grids ; .
12 : D. Gannon, P. Plale, S. Marru, G. Kandaswamy, Y.L. Simmhan, and S. Shirasuna ;
Dynamic, adaptive workflows for mesoscale meteorology ; 2007 ; Workflows for eScience:
Scientific Workflows for Grids ; .
13 : G.B. Berriman, E. Deelman, J. Good, J.C. Jacob, D.S. Katz, A.C. Laity, T.A. Prince, G.
Singh, and M.H. Su ; Generating Complex Astronomy Workflows ; 2007 ; Workflows for e-
Science: Scientific Workflows for Grids ; .
14 : J. Brooke, S. Pickles, P. Carr, and M. Kramer ; Workflows in Pulsar Astronomy ; 2007 ;
Workflows for e-Science: Scientific Workflows for Grids ; .
15 : D. Pennington, D. Higgins, A.T. Peterson, M.B. Jones, B. Ludaescher, and S. Bowers ;
Ecological Niche Modeling Using the Kepler Workflow System ; 2007 ; Workflows for
eScience: Scientific Workflows for Grids ; .
16 : P. Maechling, E. Deelman, L. Zhao, R. Graves, G. Mehta, N. Gupta, J. Mehringer, C.
Kesselman, S. Callaghan, D. Okaya, and others ; SCEC CyberShake Workflows -
Automating Probabilistic Seismic Hazard Analysis Calculations ; 2007 ; Workflows for e-
Science: Scientific Workflows for Grids ; .
17 : T. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher ; Scientific workflow design for
mere mortals ; 2009 ; Future Generation Computer Systems ; .
18 : D. Hollingsworth and others ; The workflow reference model ; 1995 ; Workflow
Management Coalition ; .
19 : R. Barga and D. Gannon ; Scientific versus business workflows ; 2007 ; Workflows for
e-Science: Scientific Workflows for Grids ; .

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 14/16

20 : J. Yu, and R. Buyya ; A taxonomy of scientific workflow systems for grid computing ;
2005 ; ACM Sigmod Record ; .
21 : M. Shields ; Control-versus data-driven workflows ; 2007 ; Workflows for e-Science:
Scientific Workflows for Grids ; .
22 : A. Barker and J. van Hemert ; Scientific Workflow: A Survey and Research Directions ;
2008 ; Parallel Processing and Applied Mathematics ; .
23 : M. Addis, J. Ferris, M. Greenwood, P. Li, D. Marvin, T. Oinn, and A. Wipat ;
Experiences with e-Science workflow specification and enactment in bioinformatics ;
2003 ; Proceedings of UK e-Science All Hands Meeting ; .
24 : W. Tan, P. Missier, R. Madduri, and I. Foster ; Building scientific workflow with Taverna
and BPEL: A comparative study in caGRID ; 2008 ; Service-oriented computing: ICSOC
2008 ; Sydney, Australia.
25 : A. Slominski ; Adapting BPEL to scientific workflows ; 2007 ; Workflows for e-Science:
Scientific Workflows for Grids ; .
26 : C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood ; A suite of DAML+
OIL ontologies to describe bioinformatics web services and data ; 2003 ; International
Journal of Cooperative Information Systems ; .
27 : J. Zhao, C. Goble, M. Greenwood, C. Wroe, and R. Stevens ; Annotating, linking and
browsing provenance logs for e-Science ; 2003 ; Proceedings of the Workshop on
Semantic Web Technologies for Searching and Retrieving Scientific Data ; Sanibel Island,
Florida, USA.
28 : T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K.
Glover, M.R. Pocock, A. Wipat, and P. Li ; Taverna: a tool for the composition and
enactment of bioinformatics workflows ; 2004 ; Bioinformatics ; .
29 : S. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludascher, T. McPhillips, S. Bowers, and
J. Freire ; Provenance in scientific workflow systems ; 2007 ; IEEE Data Engineering
Bulletin ; .
30 : E. Deelman, A.J. Goble, M. Livny, P. Maechling, S. McGough, D. Pennington, M.
Shields, and I. Taylor ; Looking into the future of workflows: the challenges ahead ; 2007 ;
Workflows for e-Science: Scientific Workflows for Grids ; .
31 : G. Allen, T. Goodale, T. Radke, M. Russell, E. Seidel, K. Davis, K.N. Dolkas, N.D.
Doulamis, T. Kielmann, A. Merzky, J. Nabrzyski, J. Pukacki, J. Shalf, and I. Taylor ;
Enabling Applications on the Grid: A Gridlab Overview ; 2003 ; International Journal of
High Performance Computing Applications ; .
32 : R. Buyya, and S. Venugopal ; The gridbus toolkit for service oriented grid and utility
computing: An overview and status report ; 2004 ; Proceedings of the First IEEE
International Workshop on Grid Economics and Business Models ; Seoul, South Korea.
33 : A. Goderis, D. De Roure, C. Goble, J. Bhagat, D. Cruickshank, P. Fisher, D.
Michaelides, and F. Tanoh ; Discovering Scientific Workflows: The myExperiment
Benchmarks ; 2008 ; Technical Report ; .
34 : D. De Roure, C. Goble, and R. Stevens ; The design and realisation of the
myExperiment Virtual Research Environment for social sharing of workflows ; 2009 ;
Future Generation Computer Systems ; .
35 : Y. Gil ; Workflow composition: Semantic representations for flexible automation ;
2007 ; Workflows for e-Science: Scientific Workflows for Grids ; .
36 : O. Corby, C. Faron-Zucker, and I. Mirbel ; Implementation of Intention-Driven Search
Processes by SPARQL Queries ; 2009 ; Poster at International Conference on Enterprise
Information Systems ; Milan, Italy.
37 : W3C ; SPARQL Query Language for RDF ; 2008.
38 : N. Prat ; Goal formalisation and classification for requirements engineering ; 1997 ; In
Third International Workshop on Requirements Engineering : Foundations of Software
Quality ; Barcelona, Spain.

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 15/16

39 : J. Ralyté, and C. Rolland ; An Assembly Process Model for Method Engineering ;
2001 ; CAiSE 2001 ; .
40 : C. Cauvet, and G. Guzelian ; Business Process Modeling: A Service-Oriented
Approach ; 2008 ; HICSS 2008 ; .

Empowering Web Service Search with Business Know-How I. Mirbel, P. Crescenzo, and N. Cerezo 16/16

	1 Introduction
	2 State of the Art of Scientific Workflows
	2.1 Motivation
	2.2 Overview
	2.3 Issues

	3 Intentional Process Modeling for Scientific Workflows
	3.1 Autonomous software components for end-users
	3.2 SATIS Architecture

	4 Semantic Annotation to Support Workflows Combination Know-How Capitalisation
	4.1 Formalisation of high-level end-user's intentional requirements
	4.2 Formalisation of generic Web Service descriptions
	4.3 Rules

	5 Conclusion

