%0 Unpublished work %T Maximum of the resolvent over matrices with given spectrum %+ Department of Applied Mathematics and Theoretical Physics (DAMTP) %+ Mathématiques Fondamentales %A Szehr, Oleg %A Zarouf, Rachid %8 2015-01-27 %D 2015 %Z 1501.07007 %R 10.1016/j.jfa.2016.07.005 %K Toeplitz matrix %K Resolvent %K Model matrix %K Condition number %K Blaschke product 2010 Mathematics Subject Classification: Primary: 15A60 %K Secondary:30D55 %Z Mathematics [math]/Numerical Analysis [math.NA] %Z Mathematics [math]/Spectral Theory [math.SP] %Z Mathematics [math]/Functional Analysis [math.FA]Preprints, Working Papers, ... %X In numerical analysis it is often necessary to estimate the condition number $CN(T)=\left|\!\left|T\right|\!\right|_{} \cdot\left|\!\left|T^{-1}\right|\!\right|_{}$ and the norm of the resolvent $\left|\!\left|(\zeta-T)^{-1}\right|\!\right|_{}$ of a given $n\times n$ matrix $T$. We derive new spectral estimates for these quantities and compute explicit matrices that achieve our bounds. We recover the well-known fact that the supremum of $CN(T)$ over all matrices with $\left|\!\left|T\right|\!\right|_{} \leq1$ and minimal absolute eigenvalue $r=\min_{i=1,...,n}\left|\lambda_{i}\right|>0$ is the Kronecker bound $\frac{1}{r^{n}}$. This result is subsequently generalized by computing the corresponding supremum of $\left|\!\left|(\zeta-T)^{-1}\right|\!\right|_{}$ for any $\left|\zeta\right| \leq1$. We find that the supremum is attained by a triangular Toeplitz matrix. This provides a simple class of structured matrices on which condition numbers and resolvent norm bounds can be studied numerically. The occuring Toeplitz matrices are so-called model matrices, i.e.~matrix representations of the compressed backward shift operator on the Hardy space $H_2$ to a finite-dimensional invariant subspace. %G English %2 https://hal.science/hal-01110346/document %2 https://hal.science/hal-01110346/file/Resolvent_estimates_27_01_15_22h44.pdf %L hal-01110346 %U https://hal.science/hal-01110346 %~ CNRS %~ UNIV-AMU %~ EC-MARSEILLE %~ I2M %~ I2M-2014- %~ TDS-MACS