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THE APPROXIMATION OF ALMOST TIME AND BAND LIMITED
FUNCTIONS BY THEIR EXPANSION IN SOME ORTHOGONAL
POLYNOMIALS BASES

PHILIPPE JAMING, ABDERRAZEK KAROUI, SUSANNA SPEKTOR

ABSTRACT. The aim of this paper is to investigate the quality of approximation of almost time
and almost band-limited functions by its expansion in three classical orthogonal polynomials bases:
the Hermite, Legendre and Chebyshev bases. As a corollary, this allows us to obtain the quality of
approximation in the L?—Sobolev space by these orthogonal polynomials bases. Also, we obtain
the rate of the Legendre series expansion of the prolate spheroidal wave functions. Some numerical
examples are given to illustrate the different results of this work.

1. INTRODUCTION

Time-limited functions and band-limited functions play a fundamental role in signal and image
processing. The time-limiting assumption is natural as a signal can only be measured over a finite
duration. The band-limiting assumption is natural as well due to channel capacity limitations. It is
also essential to apply sampling theory. Unfortunately, the simplest form of the uncertainty principle
tells us that a signal can not be simultaneously time and band limited. A natural assumption is
thus that a signal is almost time- and almost band-limited in the following sense:

Definition. Let T,Q) > 0 and e7,eq > 0. A function f € L?(R) is said to be
o cp-almost time limited to [T, T if

[ 150F at < 1
[t]>T
o cq-almost band limited to [—Q, Q] if
[ 1R d < B3
|w|>Q
Here and throughout this paper the Fourier transform is normalized so that, for f € L*(R),
1 _
w) = Flfl(w) == — t)e " dt.
flw) = Ffw) = o= [ 10

Of course, given f € L?(R), for every er,eq > 0 there exist T, > 0 such that f is ep-almost
time limited to [T, T] and eq-almost time limited to [—£2,€]. The point here is that we consider
T,Q,er,eq as fixed parameters. A typical example we have in mind is that f € H*(R) and is
time-limited to [—T,7T]. Such an hypothesis is common in tomography, see e.g. [14], where it is
required in the proof of the convergence of the filtered back-projection algorithm for approximate
inversion of the Radon transform. But, if f € H*(R) with s > 0, that is if

112y = / (1+ [w)?* [ F(@)]? dw < +oo,
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then
> L+ [w)* 2 (2
Fofw < [ aeifw)l
/|w|>sz lwi>a (14 [2])2
£ 1% gy
o1+
Thus f is 71l -almost band limited to [—£, Q].

A+ 1202 [1f1l 2w

An alternative to the back projection algorithms in tomography are the Algebraic Reconstruction
Techniques (that is variants of Kaczmarz algorithm, see [14]). For those algorithms to work well it
is crucial to have a good representing system (basis, frame...) of the functions that one wants to
reconstruct.

Thanks to the seminal work of Landau, Pollak and Slepian, the optimal orthogonal system for
representing almost time and band limited functions is known. The system in questions consists
of the so called prolate spheroidal wave functions, wkT, and has many valuable properties (see [16,
10, 11, 17, 18]). Among the most striking properties they have is that, if a function is almost time
limited to [—T,T] and almost band limited to [—, Q] then it is well approximated by its projection
on the first 4Q7T terms of the basis:

(1.1) Fe >0 (Lol

0<k<4QT

For more details, see [10]. This is a remarkable fact as this is exactly the heuristics given by
Shannon’s sampling formula (note that to make this heuristics clearer, the functions are usually
almost time-limited to [—7"/2,T/2] and this result is then known as the 2Q7-Theorem, see [10]).

However, there is a major difficulty with prolate spheroidal wave functions that has attracted a lot
of interest recently, namely the difficulty to compute them as there is no inductive nor closed form
formula (see e.g. [2, 3, 4, 13, 21]). One approach is to explicitly compute the coefficients of the prolate
spheroidal wave functions in terms of a basis of orthogonal polynomials like the Legendre polynomials
or the Hermite functions basis. The question that then arises is that of directly approximating almost
time and band limited functions by the (truncation of) their expansion in the Hermite, Legendre
and Chebyshev bases. This is the question we address here.

An other motivation for this work comes from the work of the first author [8] on uncertainty
principles for orthonormal bases. There, it is shown that an orthonormal basis (ey) of L?(R) can not
have uniform time-frequency localization. Several ways of measuring localization were considered,
and for most of them, the Hermite functions provided the optimal behavior. However, in one case,
the proof relied on (1.1): this shows that the set of functions that are ep-time limited to [T, T
and eq-band limited to [—€2, (] is almost of dimension 4QT. In particular, this set can not contain
more than a fixed number of elements of an orthonormal sequence. As this proof shows, the optimal
basis here consists of prolate spheroidal wave functions. As the Hermite basis is optimal for many
uncertainty principles, it is thus natural to ask how far it is from optimal in this case.

Let us now be more precise and describe the main results of the paper. In Section 2, we first
give a brief description of the asymptotic approximation of the Hermite functions in terms of the
sine and cosine functions. Then, we use the asymptotic behaviour of the Hermite function and
give an error analysis of the uniform approximation of the Hermite function projection kernel

n
kn(x,y) = Z hi.(x)hy(y) by an appropriate Sinc kernel. Here, hy denotes the k—th L?-normalized
k=0

Hermite function. Then, based on the previous asymptotic approximation of the Hermite kernel, we
give the quality of almost time- and band-limited functions by Hermite functions. In Section 3, we
use the explicit formula for the finite Fourier transform of the Legendre polynomials in terms of the
Bessel function and give the convergence rate of the Legendre series expansion of a c—band-limited
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function. Then, we extend this result to the case of almost time- and band-limited function. In
Section 4, we show the results obtained for the Legendre polynomials to the case of Chebyshev
polynomials. Section 5 is divided into two parts. In the first part, we first give an application of the
results of Section 3 related to the convergence rate of the Legendre series expansion of the prolate
spheroidal wave functions (PSWFs). Note that for a given bandwidth ¢ > 0, and an integer n > 0,
the n—th PSWF, denoted by v, . is a c—band-limited function, given as the n—th eigenfunction of a

sine(x — y)

compact integral operator Q.., defined on L?([—1,1]) with the sinc kernel K.(z,y) = .In

m(x -y
the second part of Section 5, we give various numerical examples that illustrate the different results
of this work.

2. APPROXIMATION OF ALMOST BAND LIMITED FUNCTIONS BY HERMITE FUNCTIONS BASIS.

In this section, we study the quality of approximation of band limited and almost band limited
functions by the Hermite and scaled Hermite functions. For this purpose, we first need to review
the asymptotic uniform approximation of the Hermite functions by the sine and cosine functions.
This is the subject of the following paragraph.

2.1. Approximating Hermite functions with the WKB method. Let H, be the n-th Hermite
polynomial, that is

n
podn

H,(z)=¢e e

Define the Hermite functions as
1

ho () = ay H, —27/2 =
n(z) = anHy(z)e ere q, = Ik
As is well known:

(i) (hn)n>o0 is an orthonormal basis of L?(R).
(ii) Ay is even if n is even and odd if n is odd, in particular h5,(0) = 0 and hg,41(0) = 0. Further

(=D)PVAp+2 [(2p— 1!
ml/4 2p)tt -
(iii) h,, satisfies the differential equation h”(x) + (2n + 1 — 2?)h,(z) = 0.
We will now follow the WKB method to obtain an approximation of h,. In order to simplify

notation, we will fix n and drop all supscripts during the computation. Let h = h,, A = v/2n + 1,
and define for |z| < A

(—1)? [2p— D)1
mi/4 (2p)!

hap(0) = and h’2p+1(0) =

p(x) = V2 —22, o(z)= /1 p(t)dt and Yi(z) =
0

\/pl(iz) exp tip(z).

Note that 1+ have been chosen to have

Y ()Yl (x) — - (2)y (x) = —2i
and
(p’)2 _ 72)\2 + 322

1/p\ 1

" 2
+(p?—q)y = wh — 2
v —ay=0 ered 2( > 4\ p 4p(x)*

p
Note that h”(z) 4+ p(x)h(z) = 0 so that
(Wipe —9ih) = h"Yy —pih = —qhips.
Let us now define

Q+(z) = /Ox q(t)h(t)«(t) dt.



4 PHILIPPE JAMING, ABDERRAZEK KAROUI, SUSANNA SPEKTOR

Integrating the previous differential equation between 0 and x, we obtain the system

{h’(x)w+(9ﬂ) — Wa)pi(x) = P(0)y(0) = h(0)¢)(0) — Q(x)
W(x)p(x) — h@)l(z) = K (0)y-(0) =h0)y_(0) — Q(2)

It remains to solve this system for h to obtain the principal term of h:

Theorem 2.1. Letn >0, A\ =+/2n+ 1. Then, for |z| < A,

B oS pp () h.,(0) sine,(z)
(2.2) hn(2) = VAR, (0) 02— 2 Ty e gz T @)
where
@ 50 A\
2.3 on(T) = VA2 —t2dt and |E,(z)| < - )
4 \ N2 — 22
o _
Further, if |z|,|y| <T < 3,
on(x) =V2n 4+ 1z — e, (),
where
T3 T?
(2.4) len(2)] < o5 and  [en(z) —en(y)|l < Iz —yl,
3\ A
while
2 7
(2.5) [En(@)l < 35 and |En(z) = Bu(y)] < 157le vl
Remark. One may explicitly compute ¢:
2 1
on(z) = n2—|— arcsin\/;ﬁ—i—g 2n+1— a2

Also, ¢, has a geometric interpretation: it this the area of the intersection of a disc of radius v/2n + 1
centered at 0 with the strip [0, 2] x R*. In particular, when z — v/2n + 1, o, (z) ~ §(2n 4 1).

The result is not entirely new (e.g. [5, 6, 9, 12, 15]), except for the Lipschitz bounds of E.
Therefore we will only sketch the proof of this theorem in Appendix A.

Using standard asymptotic of h,(0) and of hj,,;(0) and the fact that v/A? — 22 ~ X when
A — 00, one may further simplify this result to the following:

Corollary 2.2. Let T > 2 and let n > 2T?. Then, for |x| < T, we obtain that
—if n is even, n = 2p

(2.6) hop(z) =

—ifnisodd, n=2p+1

(-1
Jpi7E oS P

(:L') + EZp(x);

(="

(2.7) hopy1(x) = T sin op11(2) + Egpi1 (),
where, for [z], |yl < T,
~ 377 ~ - T?
(2.8) |En(z)] < W and |Ep(z) — En(y)| < 8W|x =yl

To conclude, we will gather some facts about ¢,, that all follow from easy calculus.
Lemma 2.3. If |z|,|y| <T < 3/2n+1, then
3T

29) [Pra(e) ~ (@) < g,

(2.10) [Pns1(@) = @1 (8) = (&) + 00 1) < <2l =3
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(2.11) (s (a) = 2ula) + 2ra(9) — 2ul0)] € e

(2.12) Pri1(2) + @n(@) = ent1(y) — only) = (V20 + 1+ V20 +3)(x — y) + en(,y),
with |en(x,y)| < W'x —y| and

(213) [on(@) — puly)] < VI T Tz — 3.

2.2. The kernel of the projection onto the Hermite functions. As (h,),>o forms an or-
thonormal basis of L?(R), every f € L?(R) can be written as

n

f(z) = lim (fs by P (),

n——+o0o
k=0

where the limit is in the L?(R) sense. Further, for n an integer, let K, f be the orthogonal projection
of f on the span of hg, ..., h,. Then

(f Py hue( kn(z,y)f(y) dy,

with the kernel k, ( Z hi(x ). According to the Christoffel-Darboux Formula,

kn(z,y) = Whn+l(x)hn(yi = Zn+1(y)hn(1')

We will now use Corollary 2.2 to approximate this kernel:

Theorem 2.4. Let T > 2, n>2T? and N = 7&%—1; V203 - Then, for ||, |y| < T,

1sinN(x —y
kn(z,y) = 1sinN(z —y) + Ry (z,y),
T T—y
1772
ith | Ry (z,y)| < ——.
with |Bn(@,9)l < Z5==

Remark. The same estimate holds for 7' = 1 provided n > 6. Moreover, we should mention that
in practice, the actual approximation error of the kernel is much smaller than the theoretical error
R,,. See example 1 in the numerical results section that illustrate this fact.

Again, the only improvement over known results [15, 19] is in the estimate of R,,. We will therefore
only sketch the proof in Appendix B.

2.3. Approximating almost time and band limited functions by Hermite functions. We
can now prove the following theorem.

Theorem 2.5. Let Qg,To > 2 and er,eq > 0. Assume that

/t O ey ond
0

oo F)? dw < &3 £l 72z)-
w 0

Assume that n > max(2T2,2Q2). Then, for T > Ty,

3473
(2.14) If = Enfllp2qery) < (25T +ea+ m) 11l 2wy
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Proof. We will introduce several projections. For T, Q > 0, let

Prf=1_rpf and Qqf(x)

=F! [1[_

The hypothesis on f is that ||f — Prfll 2@ < erllfllp2@) for T > To and ||f — Qafll 2

1 / SinQ(mfy)f(y) dy.

Q,Q]J?](I):; . T —y

EQHfHL2 for Q > Qq. Let us also define the integral operator

‘szwﬂ::/" Ro(z,9)f(y) dy
[=T,71]

where R, (z,y) are defined in Theorem 2.4. Notice that k,(z,y) = kn(y,x) so that R,(z,y

R, (y, x).

It is enough to prove (2.14) for T = Ty. We may then reformulate Theorem 2.4 as following:

PrK,Prf=PrQnPrf+ PrRLPrf,

where N = 7&"4—1;— V203 Note that N > Q. By using (2.4), it is easy to see that

(2.15)

(®)

= HPT,RZPTHLQ(R)%LQ(R)||f||L2(R)
< IPrRy Prllus| fllLe e
3413
<
< ol

AN

Here we use the well known fact that the Hilbert-Schmidt norm of an integral operator is the L?

norm of its kernel.

Now, using the fact that projections are contractive and N > €y, we have

If = Knfllpzqerry = 1Prf—PrEKoflam

IN A

IN

< NPrf = PrEnPrfll 2@ + 1PrEn(f — Prf)ll 2
|Prf—PrQnPrf + PTRZ;PTfHLQ(R) +1f = Prfllpem)
||PTf - PTQNPTfHLZ(]R) + HPTRZ;PTfHLz(R) + Hf - PTfHL2(R)'

Now, write PrQnPrf = PrQnxf + PrQn(f — Prf), then
< NIPrf —PrOnflliee) + 1PrQN(f — Prf)l 2
< N =Qnfllzem + IIf = Prflliem-

|Prf —PrOnPrfl g

Therefore,

A

If = EKnflloqery <

IN

since N > .

If = Qnfllom + ==

(EQ +

3473
Vv2n +1

AT il + 21 = Prf
Von 11 em®) TJlL2(r)
+%anmm,

O

Remark. The error estimate given by (2.14) is not practical due to the low decay rate of the bound

3473

IR s, one gets the following error estimate which is more practical for numerical purposes,

(2.16) (- an”Lz([_T,T]) < (Eﬂ + Ry as + 25T) ”fHL?(]R)‘

By replacing this with a non explicit but a more realistic error estimate
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2.4. Approximating almost time and band limited functions by scaled Hermite func-
tions. For o > 0 and f € L?(R) we define the scaling operator 6, f(z) = a2 f(z/a). Recall that

H(SoszLQ(R) = ||fHL2(]R) while

10afllrz(—a.a1) = Wl L2 aja,a/aaps 10afllpz@ —a,ap = Il z2@®\(=4/a,4/a))
and F[dof] = 01/oF[f]. In particular, if f is ep-almost time limited to [T, 7] (resp. en-almost
band limited to [—2,Q]) then d, f is er-almost time limited to [-T'/a, T'/a] (resp. eq-almost band
limited to [—af), af)]).
Next, define the scaled Hermite basis h{ = §,hy, which is also an orthonormal basis of L?(R) and
define the corresponding orthogonal projections: for f € L*(R),

(2.17) K3 f=> (f.hi)hi.

k=0
Proposition 2.6. Let a >0, T > 2 and ¢ > 2/a. Assume that and
/ [FOF dt < ed ) fl7em and / F@)P dw < €2, 1 £1172 y-
[t|>T |w[>c/a
Then, for n > max(2(T/a)?,2c?), we have
o 34(T/a)?
(2.18) If = K5 flleermy) < <5T +€cja + NS 11l 2ry-

Remark. The scaling with « > 1 has as effect to decrease the dependence on T at the price of
increasing the dependence on good frequency concentration, while taking a < 1 the gain and loss
are reversed. In practice, the above dependence on T is very pessimistic and o > 1 is a better choice.
The most natural choice is « =T and ¢ = T2 where € is such that f is eg-almost band limited to
[—Q, Q).

Proof. For f € L*(R), since K2 is contractive, we have
If = Kpfllpzqeray < W= ERPrfllpzqermy + 1K = Prf)ll2—rm)
< W =EK3Prfllaqery + 1 = Prfllzqorm)
< W =EKyPrflleqeray +erlfllpzm

A

Moreover,

KePrf(z) = S (Prf hhg(e / Fl) = S b/ e/ oo) dy
k=0

k=0
T/« n
= / Flat) > hi(a/o)h(t) dt
-T/a k=0
From this, one easily deduces that ||f — K3 Prfll 217 = [[fa = Knfallp2((—ar,ary) Where fo =
01/a [1[_T,T] f]. Note that f, is 0-almost time limited to [T/, T'/«a]. Next, writing
foa = 0aFAi—rmf] = 0aF[f] = 0aF[1r\|—1,1 f]
and, noting that
||6Ot]:[f]||L2(]R\[fc,c]) = ||‘7:[f]||L2(R\[7c/oz,c/a]) < EC/OéHfHL?(R)

while

IN

[daF [Le -1, 71 f1]| 12 gy
H]-R\[fT,T]fHLz(R) <erllfllraw)

180 F =21 L2 e (o)
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we get
fa < .
ey S vy + el age
It remains to apply Theorem 2.5 to complete the proof. ]

3. APPROXIMATION OF ALMOST BAND LIMITED FUNCTIONS IN THE BASIS OF LEGENDRE
POLYNOMIALS

In agreement with standard practice, we will denote by P the classical Legendre polynomials,
defined by the three-term recursion
2k+1 k

Prorle) = 3 ohd) = o

Py_1(z),
with the initial conditions

Py(x) =1, P (x) = z.
These polynomials are orthogonal in L?([—1,1]) and are normalized so that

1
1
_ 2 _
Pr(1)=1 and /_1Pk(x) dz = T2

We will denote by P, the normalized Legendre polynomial P, = k+1 /2P and the P,’s then
form an orthonormal basis of L?([—1,1]).

In the sequel, for ¢ > 0, let B. denote the Paley-Wiener space of c-bandlimited functions, given
by

B.={f € L*(R); Supp [ C [—c,c]}.
Lemma 3.1. Let ¢ > 0, then for any f € B, and any k > 0

k+1
2 e ec
3.19 P < —0y— [ ——— .
(3.19) I Pzl < 5 \ we <2k+3> 171122

Proof. We start from the following identity relating Bessel functions of the first type to the finite
Fourier transform of the Legendre polynomials, see [1]: for every x € R

(3.20) / '™ Py(y) dy = 2" jx ()

-1

1 d\"sinz
) . Note that j; has

where jj, is the spherical Bessel function defined by jj.(z) = (—)" ( 3
z dx

T

same parity as n and recall that, for x > 0, ji(z) = 1/21(]“1/2(:0) where J,, is the Bessel function
x
of the first kind. In particular, we have the well known bound for z € R
|I|a 6oz+1
| < <
20T (a +1) = 2m20(a + 1)a+1/2

since I'(z) > v2mz®~1/2¢=*. From this we deduce that

(3.21) | Ja(x)

ke

ok+3/2
<
) £
Now, since f € B, the Fourier inversion theorem implies that, for x € R, we have

L [ reetdae = - [ Flemeics
== [ Roetac= = [ Fepeeran

k

(3.22) ||®.

(3.23) f(x)
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Combining (3.20) and (3.23), one gets

UPpn = | 11f<x>Pk<x>dx— = llﬂcn) (/ lleimmc)dx) an

= i’“C\/z/_ll gu(en) f(en) dn.

Using (3.22) together with Cauchy-Schwarz and a change of variable, one gets

ek+3/2

Ck“w/ Inl* \f(cn)ldn

s ek+3/2 \/* 2 /2
< d .
= ¢ 2k+3k+1\/2k+1 ( )l ”)

Finally, Parseval’s identity implies (3.19). O

|<f7 Pk>L2([_171])‘

IN

Let us now introduce the following orthogonal projections on L?(R):
N ~ ~
Pf=1Cinfs Quf =F ' eoFf]l and Luf=3 (PfB)PA 1.

k=0

Note that £y is the orthogonal projection onto the subspace of L?(R) consisting of functions of the
P(x)1(_1,1) with P a polynomial of degree < N.

Theorem 3.2. Let ¢ > 0, then for any f € B, and any N > <, we have

N
C ec
(3.24) N A 5) 17

and
ce  \ Nt
(3.25) I = LSl < Ve (55s) Wl
Proof. Note that, for z € (—1,1),
+o0 o
fl@)=Lnf@)= Y (f P)Pe().
k=N+1
But r?af(l) |Py(z)| = |Pr(1)] = \/k + 1/2, so that Lemma 3.1 implies
re
+oo
If = Lxfllpecrgy < D (k+1/2)1(F, )l
k=N+1
k+1
< 2k
< mG%:ﬂv +1 (Qk 3) 1fllz2 )

o) k
e ec ( ec > T
/5 E v L2(R)
V2N +5V 27 e 2N +5

< ‘ Vg
= VaNn+5\2N+5 L2®):

If N > ec/2, we then deduce (3.24).
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The proof of the L2-bound is essentially the same:

+oo
2
If = Lnflliorny <D (B+1/2)(f Pyl
k=N+1
e +oo ec 2k+2
< & _ec 2
= 2me D (2k+3> A INZ2 )
k=N+1
9 4o 2%k+2
e ec 9
<5 > (wss)  Whew
k=N+1
From this (3.25) easily follows when N > ec/2. O

From this theorem, we simply get the following corollary:

Theorem 3.3. Let ¢ > 0 and assume that f is ep-concentrated to (—1,1) and eq-concentrated to
(—cy¢). Then, if N > ec/2,

N+1
ec
(3.26) 1f = LN fll o1y < <2€n +e (2N+5> ) 11l 2 ey
and
N+1
ec
(3.27) 1f = L fllp2w) < <€T +2eq + Ve (2N+5) ) 11l 2wy

Proof. First

||f - ENf||L2(71,1) ||f - ch||L2(f1,1) + ||ch - L‘Nch”L?(fLU + ||£N<ch - f)||L2(71,1)

<
< 2Uf = Qefllpewy + 1Qcf — LnQcfllp2(—11)-
But [If — Qcfll2r) < eallfllL2r) and Qcf € Be with |[Qcfll 2@y < I1fllz2r)-
It remains to notice that
If = Lnfllpewy S W = Prfllpewy + 1f = L fll221n)
so that (3.27) follows. O

4. APPROXIMATION OF ALMOST BAND LIMITED FUNCTIONS IN THE BASIS OF CHEBYSHEV
POLYNOMIALS

In this paragraph, we show that the basis of the Chebyshev polynomials is also well adapted
for the approximation of almost band limited functions. This is essentially done by showing that
the weighted finite Fourier transform of the Chebyshev polynomial is given by a formula similar to
(3.20). We first recall that the classical Chebyshev polynomials T}, are defined by the three-term
recursion

Tiy1(x) = 22Tk (z) — Tr—1(x),
with the initial conditions
To(z) =1, Ti(x)==x.

These polynomials are orthogonal in L?([—1,1], du) where du(x) = ﬁ dx and are normalized
so that
1 .
T 2 ifk=0
4.28 Tp(1)=1 and T, (x)*du(z) = cp=  with ¢ =
(4.29) (=1 amd [ T@due) = e with o {1 e

It is interesting to also note that Ty (z) are simply given by the formula
Ti(cos@) = cos(kf), keN, 6€][0,n].
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We will denote by T}, the normalized Chebyshev polynomial T}, = 4/ c%ﬂTk and the T’s then form

an orthonormal basis of L([—1,1], du).
The following lemma gives us an explicit formula for the weighted Finite Fourier transform of T},
that we failed to find in the literature.

Lemma 4.1. For any k € N, fk, the weighted finite Fourier transform of Ty is given by

(4.29) Tula) = [ Ty dy = S Do)

1 ./1—y2

Proof. This results follows directly from the formula

/ f /fcosé))cosk@d@

applied to f(y) = €'*¥ and the Poisson integral representation formula of the Bessel function. O

For f € L?([-1,1],du) we now define
Tof =Y (£.Tc)T
k=0

the projection of f on C,[X] the subspace of L?([—1,1],du) consisting of polynomials of degree < n.
We can now prove the Chebyshev version of Lemma 3.1 and the approximation rate of band-limited
functions by their projection on the Chebyshev orthonomal basis in L?([—1,1]du). However, note
that an L?(R) function restricted to [—1,1] need not be in L?([—1,1]du). Therefore, its expansion
in the Chebyshev system need not converge (and not even be defined). Thus, we cannot extend
Theorem 3.3 to the Chebyshev setting.

Proposition 4.2. Let ¢ > 0, then for any f € B, and any k > 0

k+1
1 ec
(430) |<f7Tk>L2([,1’1]’d'u)| < (2]€—|— ]_)C <2(k+ 1)> Hf||L2(R)7

and, if N > ec/2,

eye ce N 9
I =T flrrman < somegy () Mo

Proof. Since f € B., then the Fourier inversion theorem implies that, for € R, we have

f(z) = 1 ¢ J?(f)e””ﬁdg _ \/% /_11 f(cn)eicxn dn.

Var J—¢
Combining this with (3.20), one gets

1
—  d
<f7 Tk>L2([—1,1],dp) = /_1 f(l‘)Tk(ZC) \/lfﬁ

ol )

= ’“Cm/ 2 Ju(x)(en)F(en) di.
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Using (3.21) together with Cauchy-Schwarz inequality and a change of variable, one gets

k+1 1
T < < / 5| f(en)|d
|<fa k>L2([71’1])‘ s> ¢ 2k+2(k + 1)k+1/2 . |77| |f(C77)| n

kt1/2 ertt 2 ¢ 2 1/2
c 2k+3/2(k + 1)k+1 \ 2k + 1 7C|f(77)| n

To conclude, it suffices to use Parseval’s identity.

IN

From the orthonormality of the Ti’s and this bound, we deduce that

+oo
2 = 2
If = T flzeqerndy < Do WD paoiadl
k=N-+1
io L ok i 2
< ¢ 1f1z2
2k+3 2k+2 (R)
o, 2kt 22k+3(k 4 1)
+oo 2k+1
= 2N1 32N6 4 (2 k;ce 1 ) 102
T T4 SN (k+1)
e%c 1 ec 2N+
< - 2
= 4 (2N +3)2 <2N—|—4> 1A IZ2 =y
provided N > ec/2. O

5. APPLICATIONS AND NUMERICAL RESULTS

In the first part of this last section, we apply the quality of approximation of c¢—bandlimited
functions by Legendre polynomials in the framework of prolate spheroidal wave functions (PSWFs).

As a consequence, we give the convergence rate of the Flammer’s scheme, see [7] for the computation
of the PSWFs.

5.1. Approximation of prolate spheroidal wave functions. For a given real number ¢ > 0,
called bandwidth, the Prolate spheroidal wave functions (PSWFs) denoted by (¢ c(-))n>0, are
defined as the bounded eigenfunctions of the Sturm-Liouville differential operator L., defined on
02([715 1])a by

d? d
(5.31) L(p)=—-(1- x2)d—;[2} + 21:% + a2,
They are also the eigenfunctions of the finite Fourier transform F., as well as the ones of the operator

Q. = 2i]:c*~7:07 which are defined on L?([-1,1]) by
™

1 1
ien sin(c(z —y
63 F(N@=[ i@, wd Qe = [ =D g,
-1 1 m(@—y)
They are normalized so that their L?([—1, 1]) norm is equal to 1 and 9, (1) > 0. We call (xn(¢))n>0
the corresponding eigenvalues of L., u,(c) the eigenvalues of F. and \,(c) the ones of Q.. A well
known property is then that ||t c|| 25y = —=

V )\”(c) '

The crucial commuting property of £, and Q. has been first observed by Slepian and co-authors
[16], whose name is closely associated to all properties of PSWFs and their associated spectrum.
Among their basic properties we cite their analytic extension to the whole real line and their unique
properties to form an orthonormal basis of L?([—1,1]) and an orthonormal basis of B.. A well known
estimate for y,(c) is

(5.33) n(n+1) < xn(c) <n(n+1) + 2.
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Recall that A, (c) and p,(c) are related by Ap(c) = Zi\un (¢)]>. A precise asymptotic of \,(c) has
71'

been established by Widom [20]. Recently in [3], the authors have given an explicit approximation
of the A\, (c), valid for n > 2¢/m that gives rise to the exact super-exponential decay rate of the
sequence of these eigenvalues. But, here we want a lower bound that is valid for all n. According to
[11],

1
(5.34) 0<A(c)<1l and /\[%C]H <5< )\[%6]71
while Bonami-Karoui established the following bound, see [2]
5(n+1)
2 2 2
(535) )\n(C) Z g (71'(’]7/j»1)> for n Z max (3, TrC) .

In Appendix C we will prove the following slight improvement of this bound:

2
Proposition 5.1. Let ¢ be a real number. Then, if n > —c,
T

4
T+ 2¢

Ifn = [i }, An(c) >

Since ¥, . € L*([—1,1]), we may expand it in the Legendre basis

+oo too

Yn,e = Z <7/}n,(:7 pk>15k = Z (k + 1> (Ynes Pr) Pr.

k=0 k=0

Notation : Let us write 87(c) = (k + 3) (¢n,c, Py) so that, on [—1,1],

+oo
(5.36) Une =Y Br(c)Py
k=0

Rokhlin, Xiao and Yarvin [21] have obtained induction formulas for the 8} (¢)’s in order to compute
the v, ’s. Let us now obtain an estimate for them:

Corollary 5.2. With the above notation, we have

2 VIR (555) in<[2d -1
187 (¢ /p(w+20) [k +1/2 <2k+3) zfn—[%c]
k+1
2 (- 2) 7 () BT (5) | i [2d +1

Proof. Since ¥, . € B.(R), from Lemma 3.1 we deduce that

e 1 ec s e 1 ec ko 1
’nC7P SQ - n.c =2 b
e Pl 2= s (5055) Wnelom =2/ 5= (55) 7

To conclude, it suffices to use the lower bounds of A, (¢) given by (5.34) and the previous proposition.
O

From this, one can then easily obtain error estimates for the approximation of prolate spheroidal
wave functions by the truncation of their expansion in the Legendre basis in the spirit of Theorem
3.3.
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5.2. Numerical results. In this paragraph, we give several examples that illustrate the different
results of this work.

Example 1. In this example, we check numerically that the actual error of the uniform approx-
n

imation of the kernel k,(z,y) = th(x)hk(y) may be much smaller than the theoretical error
k=0

given by Theorem 2.4. For this pﬁrpose7 we have considered the value T" = 1 and various values
of the integer 10 < n < 100. For each value of n, we have used a uniform discretization A of
the square [—1,1]? with equidistant 6400 nodes. Then, we have computed over these grid points,

~ in N(z —
a highly accurate approximation E, = sup |k,(z,y) — w of the exact uniform error
zyeA m(z —y)
i N (2 —
E,= sup |kp(z,y)— sm(:vy)' The obtained results are given by Table 1.
z,y€[—1,1] 77(‘%' - y)

n 10 25 50 (0] 100
E, 10.067 | 0.039 | 0.025 | 0.023 | 0.022

TABLE 1. Approximate errors F,, for various values of n.

Example 2. In this example, we illustrate the quality of approximation by scaled Hermite functions
of a time-limited and an almost band-limited function. For this purpose, we consider the function
f(x) = 1{_1/2,1/2)(z). From the Fourier transform of f, one can easily check that f € H*(R) for
any s < 1/2. Note that f is O-concentrated in [—1/2,1/2] and since f € H*(R), f is eq-band
concentrated in [—, +9], with eq < M;Q~* with M; a positive constant. We have considered the
value of ¢ = 100 and we have used (2.17) to compute the scaled Hermite approximations K& (f) of f
with n = 40 and n = 80. The graphs of f and its scaled Hermite approximation are given by Figure
1. In Figure 2, we have given the approximation errors f(x) — K¢ f(z).

Also, to illustrate the fact that the scaled Hermite approximation outperforms the usual Hermite
approximation, we have repeated the previous numerical tests without the scaling factor (this corre-
sponds to the special case of ¢ = 1). Figure 3 shows the graphs of f and K,, f. This clearly illustrates
the out-performance of the scaled Hermite approximation, compared to the usual Hermite approxi-
mation.

I“(Vi\v ' .».vf\vh Unv =t vnu
0.8 0.87
06 0.6
04 0.4
027 0.2
—— A T T T b Py ’ ersrentifl—— - . i ]
1 a8 08 04 02 U] 02 04 WE s 1 1 08 0% 04 02 ¥ 02 o4 Vos 08 1
X X
(2) (b)

FIGURE 1. Graph of the approximation of f(x) (red) by K¢ f(x), ¢ = 100 (blue)
with (a) n =40 (b) n = 80.
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[t i)
1 08 06| w4 p2 0 02 o4/ 0% a8 1
02
04

(a) (b)

FIGURE 2. Graph of the approximation error f(z) — K¢ f(z), ¢ = 100 with (a)
n =40 (b) n = 80.

1 N N
\ %
0.8 0]
0.6 06
0.4 ol
0.2 2]
A8 06 04 02 ¥ 02 ﬂf4xﬂfﬁ g A 1 T8706 04 02 V] 02 04 06~8d 1
(2) (b)

FIGURE 3. Graph of the approximation of f(z) (red) by K¢ f(z), ¢ =1 (blue) with
(a) n =40 (b) n = 80.

Example 3. In this example, we illustrate the decay rate of the Legendre and Chebyshev expansion
coefficients of a c-bandlimited functions, that we have given by (3.19) and (4.30), respectively. For

this purpose, we have considered the function f € B, given by f.(z) = bm(cx), z € R. Then, we
cr

have computed the different Legendre and Chebyshev expansion coefficients 1, (f) = < 1, P7n> L2(n)
and ¢, (f) = (f, TT»BU du)of fe, for the two values of ¢ = 10 and ¢ = 50. In Figure 4, we plot the

graphs of the log(|l,,(f)), log(|cn(f)]), n = [%] + 1 versus the logarithm of their respective error
bounds given by (3.19) and (4.30).

Example 4. In this last example, we illustrate the quality of approximation by Legendre and
Chebyshev polynomials in the Sobolev spaces H*(I). We have considered the two functions f,g
given by f(z) = 1j_1/2,1/9)(x) and g(x) = (1 — |z|)1[—1,1)(z). It is clear that g € H*(I), Vs < 3/2.
In Figure 5, we plot the graphs of the approximation error of f by its corresponding projections
Ly f and Ty f over the subspaces spanned by the first N 4+ 1 Legendre and Chebyshev polynomials,
respectively, with N = 50. In Figure 6, we plot the graphs of g — Lyg and g — Tnyg with N = 50.
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FIGURE 6. (a) Graphs of the errors g(z) — Lyg(x), with N = 50 (b) same as (a)
with g(x) — Tnvg(x),.

APPENDIX A. PROOF OF THEOREM 2.1

We will again drop the index n and use the notation introduced before the statement of the
theorem.

The bounds for e(x) are obtained by standard calculus, we will thus omit the proof. As for E(z),
the computation shows

E(x

_ i) sin(p(z) — .
)= / Do) — plo) a

Using Cauchy-Schwarz, we obtain

s ([0 ([ ) < ([ )

5\5/2
since ||hy|, = 1. As |z| < A, and p decreases, the estime |E(z)| < D)y follows. When |z| < /2,
p(z
the change of variable y = As and a numerical computation shows that |E(z)| < .
Note that this bound on E directly leads to a bound on A. For instance, if n > 2 is even, then

[hon ()| < for |z| < A/2.

p(x
The Lipschitz bound on F is a bit more subtle so let us give more details. First, we introduce
some further notation:

_ 4@
X(l’,t) - \/m

h(t)sin(p(z) — ¢(t)) and @(z,y) = /Ow x(y,t)dt.

Now, write

1 1
E(y) - B(z) = ( - ) D(y,y) + [2(y,y) — @(z,y)]
py) Vo) p(z)
1
[Cb(x, y) — q)(x,x)] = FEy + FEy + FEs.
p(x)
We have proved that for |y| < A\/2, ®(y,y) < 2A73. Simple calculus then implies that |E;| < \x)\g—/2y|

when |z, |y] < A/2.
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Next, if |z|, |y| < (1 —n)X one can estimate FEy as follows:

Q(y,y) — P(z,y)| < / x(y,t)|dt < |z —y sup |h(l
12y, y) — 2(z,y)| | )l | ||t|<)\/2\/7|t|<>\/2| (t)]
- 52 o=y
= 4p(y)p® '

Therefore, |Es| < |z —yl.

3
\7/2
Finally,

Bop) - w) = [ Hlno)[sin(o() - 9(0)  sinfple) - pl0)] dt

p(t)
*oq(t) () +ply) —20@1) ., . oy) — (@)
2/0 "0 h(t) cos 5 dt sin .

The integral is estimated in the same way as we estimated ®(x,z), while for ¢ we use the mean

value theorem and the fact that ¢ = p. We, thus, get |E5| < |z — y|. The estimate for E

= \5/2
follows.

APPENDIX B. PROOF OF THEOREM 2.4

For sake of simplicity, we will only prove the theorem in the case when n is even and write n = 2p.
Let A = 4/ 2n+ 17 /,L = \/2n+3, o = W, ﬂ = ﬁ7 E = (_1)pE2p a.nd F = (_1)pE2p+1
Then, according to Corollary 2.2

hop(z) = (1) (gzprm cos ap(2) + E(2))
hopsi(z) = (1) (zpm sinzpi(2) + F(2))

Therefore, hopi1(2)hap(y) — hopt1(y)hop(z) is

1 . .
= W (Sln P2p+1 () cos <P2p(2/) — SN Pop41 (y) cos <P2p(33))

e (Fl) cosioayu) = F(0) cosiong2)

—i—ﬁ (sin pap1(2) E(y) = sin gap 1 (y) E(x))
+F(z)E(y) — F(y)E().

The last three terms are all of the form

and are thus bounded with the help of the uniform and Lipschitz bounds of A and B by a factor of
[z —yl.
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The first term is the principal one. Let us start by computing

C :=sin popi1(x) cos pap(y) —  sinopri1(y) cos paop(x)
= % [sin(papt1(2) 4+ 0ap(y)) — sin(paps1(x) — 92p(y))

—sin(@2p41(y) + p2p(x)) + sin(papr1(y) — p2p(2))]
‘o 2p+1(T) — P2p11(Y) — P2p(T) + 2p(y)
2
P2p+1(2) + P2p11(Y) + v2p(T) + P2 (y)
2
ap+1(y) + 2, (y) — p2p() — Papi1(w)
2

P2p+1(%) — P2p() — P2p(y) + P2p+1(y)
2
= S5,C1+ 52(02 — 1) + 55.

= 8

X CO8

+ sin

X COS

Now, according to (2.10),

|Slcl| < |Sl| < ‘QOQQD"Fl(x) B 902p+1(y) — @2p(x) + @2p(y)| <

3
2 = 2\/2n+1‘x7y|'

With (2.11),

|C2 _ 1‘ < “p2p+1(x) B QPQP(:E) — SDQP(y) + §02p+1(y)|2 < 25T2 )
2 2(2n+1)

Thus, with (2.12),

T? 25772 1672
5202 = DI < (N + s ) o=yl <

_ z —1l.
V2n+1 n+1) — \/2n—|—1| vl

Finally, using again Lemma 2.3, sin(N(y — ) + e, (y, z)) is

sin N(y — &) +sin N(y — ) (cosen(y, x) — 1) + cos N(y — x) sinen (z, y)
= SlnN(y_x)+E2(xay)a
where
enle ) 21

FEs(x, < len(x, + < z —vyl.
Ea( )] < lente, )] + G < el

It remains to group all estimates to get the result.

APPENDIX C. PROOF OF PROPOSITION 5.1

: 2
Recall that we want to prove that, if n > —c,
T

2c\? / ¢ \2n-1
> - — .
Anle) 27 (1 nw) (77m)

4
T+ 2¢

2
Ifn=|—=c|, Au(c) >
n [ﬂ_c} , An(c) >
According to the min-max Theorem, for any n-dimensional subspace V of L?(R)

<cha f>L2(R)

An(c) >
1172 gy

> min
fevi{o}
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To show the theorem, we consider V' to be the space of functions that is constant on each interval

of the form
2 25+ 2
IJ:< 1+j1+‘7+>, j=0,...,n—1.
n
n—1
Take f € V and Writef:ijX[j. Then
§=0

2 n—1
17115 = =D 151
j=0
On the other hand, write
D 1 —itw
flw) = FIflw) = o= [ 10ear

for the Fourier transform and note that Q.(f) = F~!(1_.,qF). Parseval’s Identity shows that

<Q0faf>L2(R):[ |J?|2d§-

But
1+ 2]+2
f(g) _ \/ﬂ/ f 715tdt \/72 / N *thdt
1422
- LS e [
_1
L2 g et
\/ﬂnjzl i€ E/n
Therefore,
] 2
FOPde - —2ij&| S| 4
JGR I fo e | ©
. 2 | n 2 /2 2
_ 1 iin sinn
(C.37) o ;fﬂe ( 1/2 )
smt

>1- —\t| Therefore

2
But, if n > —c and |n| < 2¢/n then |n/2| < 7/2. Now, on [—7/2,7/2],
T

sinn/2 2 2¢\
( ) > (1 - ) . Tt follows from (C.37) that
7/2 nmw

2

c Y 2 X
/_\f(€)|2d£ > (1—7;) f/l Zfe’" s
% 2 1 ¢ % 2(n—1) T n »
> (1m> mm<14xzﬂ) | 2 fie | dn
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with the help of Turan’s Lemma [Na2]. Therefore

n—1

JREGIRE <120)27C (5)2(n_1)2ﬂ1 > 5P
e - nmw Trn \ 71 71'nj:_nTH J
(1 2c\? / ¢ \2n-1 2
= (1) (2"

2
The estimate of A, (c) follows. If n < = we may now modify the argument starting from (C.37):
™

V

2
C o2 A RN sinn/2\°
(c39) [ ifopas = = [0 3 g ()
2 2
1 (™| Iy
(C.39) > el ;fje—wn (1_|Z|) dn

. nt
since

21t
>1- 2 on [—n/2,7/2]. But, for ¢ € Z,
m

T 2 T .
/ (1_|n> e—i@’qdn: 2? 1f€:0
LU 4 i 0A£0

Therefore, using Parseval’s equality, one gets

g 21 oo ,
/ ‘f(§)|2df > 7?,3/ ;fje Jn 1_~_ﬁzcosn

—cC

[ V)

21 [T IR~ ijm 6 o~ 1
el ] (-age)
Jj=1 =1
i 4 X1
- n271' Zfe " dn— Z 672)
Zn+1
4 1 P 4 [ dx 2
- (22 @)wer=s [ Fu
P*n-&-l n+l
>
> (nH)IIfII
4 4

Therefore, for n < 2¢, A (c) > i +1) > ——Y
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