
HAL Id: hal-01088964
https://hal.science/hal-01088964

Submitted on 29 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-decomposable Global Constraints
Jean-Guillaume Fages, Xavier Lorca, Thierry Petit

To cite this version:
Jean-Guillaume Fages, Xavier Lorca, Thierry Petit. Self-decomposable Global Constraints. ECAI
2014, 21st International Conference on Artificial Intelligence, Aug 2014, Prague, Czech Republic.
pp.297-302, �10.3233/978-1-61499-419-0-297�. �hal-01088964�

https://hal.science/hal-01088964
https://hal.archives-ouvertes.fr

Self-decomposable Global Constraints
Jean-Guillaume Fages and Xavier Lorca and Thierry Petit 1

Abstract. Scalability becomes more and more critical to decision
support technologies. In order to address this issue in Constraint
Programming, we introduce the family of self-decomposable con-
straints. These constraints can be satisfied by applying their own fil-
tering algorithms on variable subsets only. We introduce a generic
framework which dynamically decompose propagation, by filtering
over variable subsets. Our experiments over the CUMULATIVE con-
straint illustrate the practical relevance of self-decomposition.

1 INTRODUCTION
The complex nature of industrial problems brings opportunities to
decision support technologies. One of them is Constraint Program-
ming (CP). This technology has been successfully used in industry
since the early 90’s. However, the data explosion has raised the scal-
ability issue of CP.

The resolution of a CP model can roughly be represented as a loop
involving filtering algorithms to provide inference and a search pro-
cess to perform hypothesis. This loop is iterated until a solution is
found or, in case of an optimization problem, a solution is found and
proved to be optimal. Filtering can be ensured by either global con-
straints or generic decompositions [4, 6]. The first option is usually
advised to better solve problems. However, for a large value of n,
even an O(n logn) time complexity can be too much, because con-
straints may be propagated several times at each node of a search
process [15]. In this situation, it seems necessary to somehow reduce
the value of n. As the time complexity of a propagator often depends
on the number of variables it involves, this means filtering over less
variables. The idea of filtering over subsets of variables is not brand
new. For instance, it has been used in [2] in order to reduce the run-
time of the SOMEDIFFERENT propagator, which is exponential in the
worst case. However, to the best of our knowledge, such approaches
have always been performed in an ad hoc way. The purpose of this
article is to investigate a generic class of constraints on which subset
filtering applies. We formalize two well known decomposition pat-
terns (f∩cc and fval) and extend them to get new tradeoff possibilities
between filtering and runtime (f∩vn and fval

P). Our paradigm is inde-
pendent from the algorithm used, and it requires no modification of
the latter. As a consequence, it can be used in order to augment the
scalability of existing propagators in CP tools.

First, we define in Section 2 self-decomposable constraints, a large
family of constraints which hold on some of their variable subsets.
Second, we introduce in Section 3 a generic framework, which uses
the structure of variable domains to allow a light propagation of self-
decomposable constraints. Third, Section 4 discusses and experimen-
tally evaluates this feature in the context of cumulative scheduling.
Finally, a conclusion and openings are given in Section 5.

1 TASC - Ecole des Mines de Nantes, email: {firstname.name}@mines-
nantes.fr

2 THEORETICAL FUNDAMENTALS
A Constraint Network [9] is defined by a set of variables and a set of
constraints [4]. Each variable has a finite domain of integer values.
Each constraint c defines a set of allowed combinations of values
for the variables in its scope. We use the notation c(X) to denote an
instance of the constraint c which is defined over the variable set X .
A combination of values τ for the variables in X is valid if and only
if each value in τ belongs to the domain of its variable. We use the
notation SAT (c(τ)) to state that τ satisfies c, that is, τ is an allowed
combination of values for c. We use the notation SAT (c(X)) to state
that, given the domains of the variables in X , there exists a valid
combination τ such that SAT (c(τ)). For sake of clarity, we assume c
is equipped with a unique filtering algorithm. A filtering algorithm is
a procedure that removes from domains values that do not belong to
any solution of the constraint. Moreover, in this paper, when referring
to variables we implicitly consider their respective domains as well.
We use the notation P(X) to represent all subsets of X .

Prior to debate the practical interest which stems from filtering
variable subsets only, it is important to be sure such a filtering can-
not violate the constraint. For this, we reformulate in Definition 1
the definition of constraint monotonicity given by Barták [3] and ex-
ploited by Maher [8]. This concept was introduced to study dynamic
global constraints, whose set of variables can grow during search.
As we study the case where propagation is performed on variable
subsets, our equivalent formulation takes an opposite perspective on
constraint monotonicity.

Definition 1 A constraint c(X) is monotonic if and only if for any
variable subset Y ∈ P(X), if c(X) is satisfiable then its projection
on Y remains satisfiable, that is, SAT (c(X))⇒ SAT (c(Y)).

Note that different monotonicity definitions can be found in the
literature, such as the constraint monotonicity of [14], the propagator
monotonicity [12] and the Boolean circuit monotonicity [6].

2.1 Constraint subset-monotonicity
As monotonic constraints hold on every subset of their variables
(Definition 1), they can be propagated over any variable subset with-
out loosing any solution (Proposition 1).

Proposition 1 If c(X) is monotonic, then applying its filtering algo-
rithm to any variable subset Y ∈ P(X) leads to no solution lost.

Proof: Assume that a solution of c(X) is lost by applying the filter-
ing algorithm of c(Y). Let s be such a solution. Consider now that
we reduce the domain of each variable xi in X to the value taken by
xi in s. Using such new domains, by construction c(X) is satisfied
while c(Y) is violated, a contradiction with Definition 1. �

However, as pointed out in [3], the monotonicity is a strong re-
quirement which only a few constraints fit. We then introduce a mul-
tifunction f to enumerate some variable subsets, i.e., f(X) ⊆ P(X),
to generalize monotonicity (Definition 2).

Definition 2 A constraint c(X) is f-monotonic if and only if it
holds on every subset of X induced by f , i.e., for any Y ∈ f(X),
SAT (c(X))⇒ SAT (c(Y)).

Proposition 2 If c(X) is f-monotonic, then applying its filtering al-
gorithm to any variable subset Y ∈ f(X) leads to no solution lost.

We omit the proof which is similar to the case of Proposition 1.
If we note f∀ the multifunction which enumerates all subsets, mono-
tonicity is equivalent to f∀-monotonicity. Moreover, let fI be the
identity multifunction, i.e., for any X , f(X) = {X}, then any con-
straint is fI -monotonic.

2.2 Constraint subset-decomposition
We have characterized constraints which can be propagated over
variable subsets without loosing any solution. Now, we study the
case where doing so is sufficient to satisfy the constraint, i.e., filter-
ing this constraint over every subset in f(X) only does not produce
any false solution. For that purpose, we introduce the definition of
f -decomposition (Definition 3).

Definition 3 A constraint c(X) is f-decomposable if and only if the
solution set of c(X) is equal to the solution set of

∧
Y∈f(X)

c(Y).

It is worth noticing that, if a constraint c is f -decomposable, then
c is f -monotonic as well, but the opposite is not always true.

Up to now, we can use f -decomposition in order to satisfy con-
straints fast, but this decomposition may result in a lack of filtering.
We now introduce the definition of consistency preservation (Defini-
tion 4) which means that a given level of consistency can be ensured
while filtering over some variable subsets only.

Definition 4 Given any consistency level λ, an f -decomposable
constraint c(X) is f -λ-preserving if and only if λ-consistency over
every subset of f(X) establishes λ-consistency over X .

Self-decomposable constraints (Definition 5) form the general
class of constraints for which subset filtering applies, without any
modification of that algorithm.

Definition 5 A constraint is self-decomposable if and only if there
exists a subset enumeration multifunction f 6= fI , for which the con-
straint is f -decomposable.

We use the concept of intersection graph to generate some re-
markable subset enumeration multifunctions. We recall that the in-
tersection graph of a set of variables represent the possible intersec-
tions of their respective domains (Definition 6). An illustration is pro-
vided in Figure 1. We now formally introduce several general self-
decompositions, which will be illustrated over ALLDIFFERENT(X).

Definition 6 Given a set of variablesX , the intersection graphG =
(V,E) of X represents the relation of domain intersections on X .
Each variable x ∈ X is associated with a vertex v ∈ V and there
is an edge (i, j) ∈ E if and only if dom(xi) ∩ dom(xj) 6= ∅ (with
possibly i = j).

X = {x1, x2, x3, x4, x5, x6}
x1

x2 x3 x4

x5 x6
domain(x1) = {0}
domain(x2) = {0, 1}
domain(x3) = {1, 3}
domain(x4) = {4, 5}
domain(x5) = {2, 3}
domain(x6) = {5}

(a) Variables and domains (b) Intersection graph

Figure 1: Intersection graph illustration.

2.2.1 Connected components-based decomposition

Let f∩cc be the multifunction which enumerates subsets associated
with every maximal connected component in the intersection graph
of the variable set in parameter. It is well known that ALLDIF-
FERENT is f∩cc-decomposable, because two connected components
form independent matching problems. Furthermore, a kind of f∩cc-
decomposition is described in [2] as the most successful trick in
the implementation of SOMEDIFFERENT. On our leading example,
f∩cc(X) = {{x1, x2, x3, x5}, {x4, x6}} (Figure 2). Therefore, the
f∩cc-decomposition of ALLDIFFERENT(X) implies to filter ALLD-
IFFERENT({x1, x2, x3, x5}) and ALLDIFFERENT({x4, x6}}) sepa-
rately. Note that f∩cc-decomposition leads to at most |X | subsets.

x1

x2 x3 x4

x5 x6

f∩
cc(X) = {{x1, x2, x3, x5}, {x4, x6}}

Figure 2: f∩cc illustration.

An interesting property of f∩cc-decomposition is that it can pre-
serve the filtering quality. Theorem 1 provides the formal proof for
the preservation of Generalized Arc Consistency (GAC). This can be
directly adapted to Bound Consistency.

Theorem 1 Any f∩cc-decomposable constraint is f∩cc-GAC-
preserving.

Proof: Assume a constraint c is f∩cc-decomposable and not f∩cc-
GAC-preserving. "Not f∩cc-GAC-preserving" means that there exists
a value v in the domain of a variable x in a set Yi that is not removed
by c(Yi) while it is removed by c(X). As the consistency is GAC,
there exists a solution of c(Yi) with x = v. Therefore, to ensure
that c is f∩cc-decomposable, another set Yj 6= Yi should contain x,
so that c(Yj) removes v from the domain of x. This hypothesis is
absurd because by construction of the connected components in the
intersection graph, f∩cc(X) forms a partition of X . �

Depending on the complexity of the filtering algorithm, this de-
composition may result in runtime improvement. However, from an
operational point of view, f∩cc-decomposition only makes a difference
when the intersection graph of variables has many, balanced in size,
maximal connected components. Unfortunately, this is quite a strong
assumption in the general case. Therefore, we then introduce the ver-
tex neighborhood-based decomposition, which provides presumably
smaller subsets.

2.2.2 Vertex neighborhood-based decomposition

Let f∩vn be the multifunction which enumerates variable subsets as-
sociated with every vertex neighborhood in the intersection graph
of the variable set in parameter (Figure 3). On our example, the
f∩vn-decomposition implies to filter ALLDIFFERENT over subsets
{x1, x2}, {x1, x2, x3}, ..., {x4, x6} separately. We thus have more
subsets than in the f∩cc-decomposition, but they are smaller. In
general, the number of variable subsets stemming from an f∩vn-
decomposition is exactly |X | and they may be duplication.
f∩vn-decomposition allows a lighter propagation of f∩cc-

decomposable constraints (Theorem 2), while preserving their
solution set. Presumably, the sparser the intersection graph, the
faster propagation. Furthermore, it enables to make a filtering
algorithm incremental, by skipping neighborhoods associated with
variables for which no domain modification has occurred since the
last propagation. However, this potential speedup comes at a price:
the filtering of the f∩vn-decomposition may be weaker than the
filtering of the f∩cc-decomposition (Theorem 3).

x1

x2 x3 x4

x5 x6

f∩
vn(X) = {{x1, x2}, {x1, x2, x3},

{x2, x3, x5}, {x4, x6}, {x3, x5}, {x4, x6}}

Figure 3: f∩vn illustration.

Theorem 2 f∩cc-decomposable constraints are f∩vn-decomposable,
and conversely.

Proof: In any fully instantiated solution, any connected component
of the intersection graph is a clique. This means that each vertex
neighborhood is a maximal connected component, so f∩cc and f∩vn
are equivalent. �

Theorem 3 f∩vn-decomposable constraints are not all f∩vn-GAC-
preserving.

Proof: Let us consider a variable set X = {x1, ..., x7}, with respec-
tive domains {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {5, 6}, {2, 5}},
and a set of disequalities C = {x1 6= x2, x2 6= x3, x3 6= x4, x4 6=
x5, x5 6= x6, x6 6= x7, x3 6= x6, x7 6= x1}. We can use SOMED-
IFFERENT(X , C) to have a global point of view over C. The GAC
of SOMEDIFFERENT(X , C) removes the value 2 from the domain
of x1, whereas its f∩vn-decomposition does not. Therefore, f∩vn-
decomposition does not preserve GAC in the general case. �

2.2.3 Value-based decompositions

Let D and Xv respectively denote the union of variable domains
and the variable subset induced by a value v in D. In other words,
D =

⋃
x∈X domain(x) and Xv = {x ∈ X | v ∈ domain(x)},

for any value v in D. We introduce the multifunction fval to pro-
vide the variable subset associated with every value. More precisely,
fval(X) = {Xv | v ∈ D}, so |fval(X)| = |D|. On our lead-
ing example (Figure 4a), the fval-decomposition of implies to filter
ALLDIFFERENT on subsets {x1, x2}, {x2, x3}, ..., {x4, x6}.

Such a decomposition can be used for several other constraints,
such as GCC [11], which restricts the number of occurrences of ev-
ery value, and BINPACKING, its weighted generalization: Whenever
only maximum occurrences and maximum bin capacities are con-
sidered, then these constraints are fval-decomposable. It is worth
noticing that their fval-decomposition amount to their usual static
decomposition, which are respectively based on one OCCURRENCE

and one SCALAR constraint for each value and bin. From Theorem
4, these constraints are f∩vn-decomposable as well.

Theorem 4 fval-decomposable constraints are f∩vn-decomposable,
and conversely.

Proof: In any fully instantiated solution, two vertices of the inter-
section graph are neighbors if and only if the associated variables are
instantiated to the same value. �

In general, fval-decomposition does not preserve GAC neither
(Theorem 5). It is worth noticing that any subset associated with
a value is included in at least one subset associated with a vertex
neighborhood in the intersection graph. Therefore, f∩vn can be seen
as a compromise between f∩cc and fval.

Theorem 5 fval-decomposable constraints are not all fval-GAC-
preserving.

Proof: The fval-decomposition of GCC amounts to its decomposi-
tion into a conjunction of OCCURRENCE constraints. This decompo-
sition does not achieve GAC for GCC [11]. �

Overall, the fval-decomposition is quite naive. Therefore, we ex-
tend it by introducing a new multifunction family fval

P , to enumer-
ate some combinations of subsets associated with values. More pre-
cisely, any variable subset Y ∈ fval

P (X) is induced by P(fval(X)).
Such decomposition offers new tradeoff possibilities between filter-
ing and runtime. An illustration over our running example is provided
in Figure 4. In this example, we arbitrarily decided to group values
into three pairs (0, 1), (2, 3) and (4, 5), leading to variable subsets
{x1, x2, x3}, {x3, x5}, and {x4, x6}.

Variables Values

x1

x2

x3

x4

x5

x6

0

1

2

3

4

5

(a) fval = {{x1, x2}, {x2, x3},
{x5}, {x3, x5}, {x4}, {x4, x6}}.

x1

x2

x3

x4

x5

x6

(b) A possible multifunction
fval
P (X) = {{x1, x2, x3},

{x3, x5}, {x4, x6}}.

Figure 4: fval and fval
P illustration.

For instance, decomposing BINPACKING with an fval
P multifunc-

tion enables to apply strong algorithms to subsets associated with
some particular subsets of bins.

3 AN f∩
vn-DECOMPOSITION FRAMEWORK

We now suggest to put self-decomposition into practice, by introduc-
ing a general propagator which filters the f∩vn-decomposition of any
f∩vn-decomposable constraint, in order to make propagation faster.

3.1 A simple graph-based propagation framework

Algorithm 1 Simple graph-based framework for f∩vn-decomposition

// input
global Variable[] vars
global FilteringAlgorithm filter
// internal data structures
global int n
global Graph graph
global Set toCompute

//called once by the solver, at root node
1: method INITIALIZATION()
2: // Initialisation of the intersection graph
3: n← |vars|
4: graph← ([1, n], ∅)
5: for (int i ∈ [1, n]) do
6: for (int j ∈ [i, n]) do
7: if (dom(vars[i]) ∩ dom(vars[j]) 6= ∅) then
8: graph← graph ∪ {(i, j)} // adds edge (i, j)
9: end if

10: end for
11: end for
12: GLOBALFILTERING()
13: end method

// called by the solver after one or many variable modification
14: method PROPAGATION()
15: while (toCompute 6= ∅) do
16: int i← toCompute.POP()
17: // maintenance of the intersection graph
18: for (int j|(i, j) ∈ graph) do
19: if (dom(vars[i]) ∩ dom(vars[j]) = ∅) then
20: graph← graph \ {(i, j)} // removes edge (i, j)
21: end if
22: end for
23: // Filters locally, over vertex neighborhoods only
24: filter.APPLYON({vars[j]|(i, j) ∈ graph})
25: end while
26: end method

// called by the solver anytime a variable domain is modified
27: method ONVARIABLEMODIFICATION(int i)
28: toCompute← toCompute ∪ {i}
29: end method

30: method GLOBALFILTERING()
31: filter.APPLYON(vars)
32: toCompute← ∅
33: end method

Algorithm 1 provides implementation guidelines for the f∩vn-
decomposition of any f∩vn-decomposable constraint. The algorithm
has two main steps: First, an initialization method (INITIALIZATION,
lines 1 to 13) builds the intersection graph and filters all variable do-
mains once (GLOBALFILTERING, lines 30 to 33) to propagate initial
domains. Second, incremental propagations call the filtering algo-
rithm of the constraint (filter) over vertex neighborhood subsets
(PROPAGATION, lines 14 to 26). Such propagation is called by the
solver after one or many variables had their domain filtered. The set
of changed variables is updated through an Observer design pattern
(ONVARIABLEMODIFICATION, lines 27 to 29), so that next propa-
gations can filter on their neighborhoods. For any modified variable
x ∈ X , filter is applied on the (maximal) subset of variables whose
domain share at least one value with the domain of x.

As introduced in Section 2, this framework aims at obtaining a
speedup on the propagation runtime when the fix-point is likely to be
achieved without considering all variables. For instance, in case of a

cubic algorithm, it may be preferable to perform many iterations on
subsets of a few dozens or hundreds of variables than a single one
over a thousand of variables.

Once we have the main structure of the framework, it is easy to de-
sign some hacks and tricks to enhance performances on either ded-
icated constraints or the general case. The next Section lists a few
heuristics to improve the behavior of Algorithm 1.

3.2 Advanced implementation

This section provides several refinements of Algorithm 1 to improve
its expected runtime.

Algorithm 2 Limitation of pathological cases
global final double α← 2 // safety parameter (arbitrary value in [0, n])
1: method PROPAGATION()
2: int total← 0
3: for (int i ∈ toCompute) do
4: total← total + |graph.neighbors[i]|
5: end for
6: // Heuristic criterion to limit pathological cases
7: if (total > α.n) then
8: // The neighborhood-based decomposition may be a waste of time
9: GLOBALFILTERING()

10: else
11: // same instructions as PROPAGATION method in Algorithm 1
12: end if
13: end method

Algorithm 3 Conditional propagation
1: method ONVARIABLEMODIFICATION(int i)
2: // Heuristic criterion to avoid some presumably useless propagations
3: // The boolean function CONDITION(i) can be implemented as wished
4: // (e.g., |dom(vars[i])| < 10, or even a random test)
5: if (vars[i].INSTANTIATED() ∨ CONDITION(i)) then
6: toCompute← toCompute ∪ {i}
7: end if
8: end method

First, the graph initialization can be improved by precomputing
intersections of domain bounds with a sweep-line algorithm [5].

Second, a simple observation is that, in case too many variables
had their domain changed, then it may be faster to filter over all vari-
ables once and disable the local filtering. The pathological example
is to consider that every variable domain has been modified and that
the intersection graph is complete, i.e., any pair of vertices are neigh-
bors. Within this configuration, the local filtering will trigger n times
the filtering algorithm over all variables, which is clearly a bad thing.
Thus, we suggest to reduce this risk, by adding a condition before
triggering the local filtering, see Algorithm 2.

Last but not least, in many cases a high level of consistency is not
worth when solving large, but not necessarily hard (from a combi-
natorial point of view) instances [10]. Within such consideration, we
suggest to decrease the number of filtering calls by adding a con-
dition to filter over the neighborhood of a variable which has been
modified, see Algorithm 3. Such a condition can be related to the
variable domain to detect cases where only a poor domain reduction
can be expected from filtering. In the case of a set variable, it can be
for instance the existence of a non-empty lower bound. Also, in case
of a task variable (see Section 4), the condition can be the existence
of a non-empty compulsory part, which amounts to the previous case.
More generally, it can be any boolean test, even random. However, if
the variable is instantiated, then the propagation must be performed
to guarantee constraint satisfaction. Therefore, Algorithm 3 reduces
calls to filter, while preserving a solution checker.

4 USE CASE: THE CUMULATIVE CONSTRAINT
This section illustrates the concept of global constraint self-
decomposition with the CUMULATIVE constraint. We detail how to
make this constraint self-decomposable. Next, we provide an exper-
imental study which highlights the interest of our framework.

4.1 Making CUMULATIVE f∩
vn-decomposable

Because several variants exist, it is necessary to define precisely
what we mean by CUMULATIVE. The cumulative constraint we con-
sider states that the resource consumption of a given set of non-
preemptive tasks should not exceed a given fixed capacity, at any
point in time. A task includes a start time, a duration, an end time
and a non-negative resource usage. If tasks are encoded with in-
teger variables, which is the usual case, then CUMULATIVE is not
f∩vn-decomposable. However, with a higher level of abstraction over
tasks, then f∩vn-decomposition becomes possible. We consider a set
of abstract variables X to represent tasks. We call them task vari-
ables. Thus, we use the following constraint signature: CUMULA-
TIVE(TaskVariable[]X, Int Capacity). We define task
variable domain intersection as follows: Two task variables have a
non-empty domain intersection if and only if, given their current do-
mains, they may overlap in time and their resource usage may both be
different from zero. Therefore, the intersection graph of CUMULA-
TIVE is mainly related to time. As the resource must not be exceeded
for every point in time, and as consuming tasks which overlap in
time are neighbors with our definition of task domain intersection,
then CUMULATIVE is f∩vn-decomposable. This can be generalized to
multiple resources. Furthermore, with a similar methodology based
on abstract variables, then DISJUNCTIVE, DIFFN and GEOST are
self-decomposable as well.

4.2 Practical interest
Scaling over cumulative and packing problems has been raised as a
major issue for CP [1]. Self-decomposition is part of the solution.
Indeed, it does make sense to have a lot of variables, but a sparse in-
tersection graph. This happens when planning over a long term hori-
zon: Time windows, precedences, and other side constraints, bring
structure to the variable domains. Even if tasks remain to be pre-
cisely fixed in time, we may know the day (or week, month, etc.)
it will occur. Therefore, it can be expected that only a small por-
tion of variables have overlapping domains. To illustrate our point,
we now evaluate the impact of self-decomposing CUMULATIVE. We
compare its original implementation, which is propagated over all
variables (FULL) with its f∩vn-decomposition (SELF), implemented
as described in Section 3.2. Our implementation has been integrated
into Choco-3.22 so that the community can use it and reproduce
our results. All the experiments were done on a Mac Pro with a 6-
core Intel Xeon at 2.93 Ghz running on MacOS 10.6.8, and
Java 1.7. Each run had one core and a five-minute time limit.

As a first illustration, we consider the minimum capacity cumula-
tive problem. This problem consists of finding a schedule which sat-
isfies CUMULATIVE and which minimizes the resource capacity. The
initial capacity is unbounded, so it is trivial to find a first solution.
However, finding an optimal solution is NP-hard. To highlight the
impact of the proposed framework on scalability, we randomly gen-
erated 250 large CUMULATIVE instances. Each instance has n tasks,
with n ∈ {1000, 5000, 10000, 15000, 20000}. For every task, we

2 http://www.emn.fr/z-info/choco-solver/

randomly generate a time window for its start, a fixed duration and a
fixed height among respective intervals [1, n], [1, 50] and [1, 5]. Thus,
this generator enables to get time-structured instances. As a CUMU-
LATIVE filter, we use the state-of-the-art sweep algorithm3 [7]. Even
if finding a first solution can be trivially achieved with a greedy al-
gorithm, a CP model may encounter scalability issue because the
constraint is propagated at each search node. Therefore, we study
the ability to find a feasible solution and to compute a good solu-
tion. Results are reported in Table 1. Regarding feasibility, SELF is
able to compute a solution on all instances, whereas FULL does not
solve any instance having between 15, 000 and 20, 000 tasks. Fur-
thermore, SELF is more than ten times faster then FULL. It solves
20, 000-task instances in 57 seconds on average, whereas it takes
180 seconds for FULL to solve 10, 000-task instances. Within the
same time, the self-decomposition enables to explore a much larger
part of the search space. SELF explores up to ten times more search
nodes than FULL. This enables the CP model to find better solu-
tions. SELF improves the objective value by respectively 28.4% and
26.1% on average on 5, 000-task and 10, 000-task instances. Overall,
the self-decomposition of CUMULATIVE brings substantial scalabil-
ity improvement on this benchmark.

Table 1: Scalability comparison of a CUMULATIVE propagated over
all variables (FULL) with its self-decomposition (SELF).

Number of tasks

1, 000 5, 000 10, 000 15, 000 20, 000

N
b.

so
lv

ed
in

st
an

ce
s∗

FULL 50 50 50 0 0

SELF 50 50 50 50 50

A
vg

.t
im

e
(s

)
fir

st
so

lu
tio

n FULL 1.4 36.2 179.9 - -

SELF 0.5 3.0 10.8 27.9 57.1

FULL
SELF 2.8 12.3 16.6 - -

A
vg

.s
ea

rc
h

no
de

co
un

t FULL 164k 42k 15k 9k 6k

SELF 638k 392k 301k 165k 100k

SELF
FULL 3.9 9.3 19.9 18.6 16.6

A
vg

.o
bj

ec
tiv

e
va

lu
e

FULL 85 124 142 - -

SELF 85 89 105 129 137

FULL−SELF
FULL 0.1% 28.4% 26.1% - -

∗: number of instances for which a feasible but not necessarily optimal
solution could be computed within the five-minute time limit.

Next, we investigate the interest of self-decomposition on an in-
dustrial scheduling problem4. The problem is to find a feasible sched-
ule for a set of tasks which satisfies a set of precedence constraints
and which never exceeds the capacity of any resource. There are 8
resources and between 6, 000 and 16, 000 tasks. Unlike the previous
example, task time windows are initially very large. Results are re-
ported in Figure 5. As can be seen, SELF is always much faster than
FULL. On average, the f∩vn-decomposition of CUMULATIVE brings
a speedup of 5 on this benchmark.

3 The greedy mode is not used as it removes feasible values and solutions.
4 Private communication with Arnaud Letort and Helmut Simonis

Instance task number

R
es

ol
ut

io
n

tim
e

(s
)

0

50

100

150

200

250

6k 8k 10k 12k 14k 16k

FULL SELF

Figure 5: Impact of self-decomposition on an industrial scheduling
problem. Each point represents the resolution of an instance.

Even on small problems, self-decomposition presents a practical
interest : it may capture local trends, such as peak or low activity
periods, which are common in scheduling. This occurs in the job-
shop problem of the MiniZinc distribution5. Such problem involves
no restrictive time windows but precedence constraints and several
resources. The schedule make span must be minimized. To solve this
problem, we use the CUMULATIVE filtering algorithm that is pro-
vided by default in Choco-3.2. It includes some partial energy-
based reasoning which strengthens the filtering without introducing
a significant overhead. As can be seen in Figure 2, the decomposed
approach is more efficient than the classical one. This is not due to a
faster propagation but a stronger filtering : whenever applied to peak
periods, the partial energy-based filtering is able to detect unfeasibil-
ities early, whereas its application to the whole set of variables brings
no inference, because peaks are compensated by low activity periods.

Table 2: Resolution of a jobshop problem. Comparison of the best
solution found by FULL and SELF, within a five-minute time limit.

Best solution value
Instance FULL SELF
jobshop_abz6.fzn 985 985
jobshop_la01.fzn 816 816
jobshop_la02.fzn 764 733
jobshop_la03.fzn 758 714
jobshop_la04.fzn 682 682
jobshop_la05.fzn 593∗ 593∗

jobshop_mt06.fzn 55 55∗

jobshop_mt10.fzn 1092 1084
∗ : Optimality has been proved

5 CONCLUSION
We have introduced the definition of self-decomposable constraints,
a large family of constraints which can be propagated over variable
subsets only. It includes at least ALLDIFFERENT, SOMEDIFFERENT,
DISJUNCTIVE, DIFFN, CUMULATIVE, GEOST and, under some as-
sumptions, GCC and BINPACKING. We have formalized two simple
well known decomposition patterns, f∩cc and fval, which we have
extended in order to obtain interesting tradeoff possibilities between
filtering and runtime, leading respectively to f∩vn and fval

P .
In addition, we have proposed a generic framework to perform

the f∩vn-decomposition of a constraint. It takes advantage of the do-
main structure to make filtering algorithms incremental, in order to
reduce the propagation runtime. This framework is equipped with a
trigger which enables to detect and avoid some cases where the de-
composition is presumably not worthwhile. More generally, as self-
decomposition is dynamic, it can be turned on and off anytime.

5 https://github.com/MiniZinc/minizinc-benchmarks/blob/master/jobshop2

Furthermore, we illustrated this concept on the CUMULATIVE

constraint, which may involve numerous variables over large dimen-
sions, but where only a reasonable amount of variables may be close
to each others. Preliminary results show the interest of such approach
for solving large scale problems and to capture local phenomena. Fu-
ture work may extend this experimental study to packing constraints.
Moreover, it would be interesting to investigate the benefit of our
framework within a Large Neighborhood Search (LNS) [13], which
is a common approach to solve large optimization problems. Presum-
ably, self-decomposition should enable to skip most fixed variables,
hence bring a significant improvement in runtime.

However, our approach is somehow against the tide, because most
recent works on scalability suggest meta-global constraints (e.g.,
[7]), which represent conjunctions of global constraints, whereas we
suggest a dynamical decomposition. As we keep existing filtering al-
gorithms, we believe our approach is easier to implement.

Finally, while this work stems from filtering operational consid-
erations, it also has a theoretical dimension. We believe the concept
of self-decomposition may be reused for different purposes, such as
guiding search or conflict analysis.

ACKNOWLEDGEMENTS
The authors thank the referees for their remarks as well as Arnaud
Letort and Helmut Simonis for providing us an industrial data set.

REFERENCES
[1] Panel of the Future of CP, 2011. Perugia, CP’11.
[2] S. Asaf, H. Eran, R. Richter, D. P. Connors, D. L. Gresh, J. Ortega, and

M. J. Mcinnis, ‘Applying constraint programming to identification and
assignment of service professionals’, in CP, volume 6308 of LNCS, pp.
24–37. Springer, (2010).

[3] R. Barták, ‘Dynamic global constraints in backtracking based environ-
ments’, Annals of Operations Research, 118(1-4), 101–119, (2003).

[4] N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit, ‘Global Con-
straint Catalog: Past, Present and Future’, Constraints, 12(1), 21–62,
(2007).

[5] J. L. Bentley and T. A. Ottmann, ‘Algorithms for reporting and count-
ing geometric intersections’, IEEE Trans. Comput., 28(9), 643–647,
(1979).

[6] C. Bessiere, G. Katsirelos, N. Narodytska, and T. Walsh, ‘Circuit Com-
plexity and Decompositions of Global Constraints’, in IJCAI, Con-
straints, Satisfiability, and Search, pp. 412–418, (2009).

[7] A. Letort, M. Carlsson, and N. Beldiceanu, ‘A synchronized sweep al-
gorithm for the k-dimensional cumulative constraint’, in CPAIOR, vol-
ume 7874 of LNCS, pp. 144–159. Springer, (2013).

[8] M. J. Maher, ‘Open contractible global constraints’, in IJCAI, pp. 578–
583. Morgan Kaufmann Publishers Inc., (2009).

[9] U. Montanari, ‘Networks of constraints: Fundamental properties and
applications to picture processing’, Information Sciences, 7(0), 95 –
132, (1974).

[10] L. Perron, ‘Operations research and constraint programming at google’,
in CP, volume 6876 of LNCS, p. 2. Springer, (2011).

[11] J.-C. Régin, ‘Generalized arc consistency for global cardinality con-
straint’, in AAAI/IAAI, volume 1, pp. 209–215. AAAI Press / The MIT
Press, (1996).

[12] C. Schulte and G. Tack, ‘Weakly Monotonic Propagators’, in CP, vol-
ume 5732 of LNCS, pp. 723–730. Springer, (2009).

[13] P. Shaw, ‘Using constraint programming and local search methods to
solve vehicle routing problems’, in CP, volume 1520 of LNCS, pp. 417–
431. Springer, (1998).

[14] P. Van Hentenryck, Y. Deville, and C.-M. Teng, ‘A generic arc-
consistency algorithm and its specializations’, Artificial Intelligence,
57(2-3), 291–321, (1992).

[15] T. Walsh. Public remark, 2012. Quebec city, CP’12.

