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Abstra
t. We give a 
ondition on norms under whi
h two ve
tor normed spa
es X and Y

are isometri
ally isomorphi
 if and only if X × R and Y × R are isometri
ally isomorphi
. We

also prove that this result fail for arbitrary norms even if X = Y = R
2
by building a generi



ounterexamples.
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1 Introdu
tion

We are interested in this paper in the following question. Let X and Y be ve
tor spa
es and

let NX and NY be two norms on (X ×R, NX) and (Y ×R, NY ) respe
tively. The norm NX on

X (and in a similar way NY ) denotes NX(x, 0) for all x ∈ X .

Problem. It is true that (X × R, NX) and (Y × R, NY ) are isometri
ally isomorphi
 if and

only if (X,NX) and (Y,NY ) are isometri
ally isomorphi
?

We begin by showing that in the general 
ase the answer to this question is no for arbitrary

norms NX and NY , even when X and Y are two dimensional ve
tor spa
es, by 
onstru
ting a

generi
 
ounterexamples (See Theorem 1). We prove then in Theorem 2 that the result is true

for all norms (NX , NY ) satisfying the following property (P ).

De�nition 1 Let X and Y be two ve
tor spa
es. Let NX and NY be two norms on X ×R and

X ×R respe
tively. We say the the pair (NX , NY ) satisfy the property (P ) if for all x ∈ X and

all y ∈ Y :

NX(x, 0) = NY (y, 0) ⇒ NX(x, λ) = NY (y, λ), ∀λ ∈ R.

In all the arti
le we identify X with X × {0} and the norm NX on X denotes NX(x, 0) for all
x ∈ X.

Exemples 1 Let (X, ‖.‖X) and (Y, ‖.‖Y ) be two normed ve
tor spa
es. Let p ∈ [1,+∞[ and

NX,p(x, t) := (‖x‖pX + |t|p)
1

p ,

NX,∞(x, t) := max(‖x‖X , |t|),

for all (x, t) ∈ X ×R. In a similar way we de�ne NY,p and NY,∞. Then the pairs (NX,p, NY,p)
and (NX,∞, NY,∞) satis�es the property (P ).
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We give in the following proposition a more general examples.

Proposition 1 Let NR2
be any norm on R

2
su
h that NX(x, t) := NR2(‖x‖X , |t|) for all (x, t) ∈

X × R de�ned a norm on X × R (Similarly we de�ne NY on Y × R). Then (NX , NY ) satisfy
the property (P ).

Proof. Let x ∈ X and y ∈ Y be su
h that NX(x, 0) = NY (y, 0). Then NR2(‖x‖X , 0) =
NR2(‖y‖Y , 0) and so ‖x‖XNR2(1, 0) = ‖y‖YNR2(1, 0), whi
h implies that ‖x‖X = ‖y‖Y . It fol-
lows that NR2(‖x‖X , |λ|) = NR2(‖y‖Y , |λ|) for all λ ∈ R. In other words NX(x, λ) = NY (y, λ)
for all λ ∈ R.

The problem mentioned above was motivated at the �rst time in [1℄ by questions 
onne
ted

to the Bana
h-Stone theorem, and solved positively only for the parti
ular norms NX,p and

NY,p when p ∈ [1,+∞[\ {2}. The te
hnique used in [1℄ did not in
lude the 
ase p=2. The

property (P ) hear is more general and allowed to in
lude varied norms. We give in se
tion4.

other simple examples of appli
ations of Theorem 2.

2 A generi
 
ounterexample.

Theorem 1 Let X = Y = R
2
. For ea
h norm ‖.‖X on X there exists a norm ‖.‖Y on Y , a

norm NX on X × R and a norm NY on Y × R su
h that :

(1) (X, ‖.‖X) is not isometri
ally isomorphi
 to (Y, ‖.‖Y ).

(2) (X × R, NX) is isometri
ally isomorphi
 to (Y × R, NY ).

(3) the restri
tion of NX to X 
oin
ide with ‖.‖X and the restri
tion of NY to Y 
oin
ide with

‖.‖Y .

Proof. Let p ∈ [1,+∞[. Let us de�ne NX and NY as follow :

NX(x1, x2, t) := (‖(x1, x2)‖
p
X + |t|p)

1

p , ∀(x1, x2, t) ∈ X × R

and

NY (y1, y2, s) := (|y2|
p +

‖(y1, s)‖
p
X

ap
)

1

p , ∀(y1, y2, s) ∈ Y × R.

Where a = ‖(1, 0)‖X. Let us de�ne the norm ‖.‖Y,p on Y as follows ‖(y1, y2)‖Y,p := (|y1|
p +

|y2|
p)

1

p
for all (y1, y2) ∈ Y . Clearly,

NX(x1, x2, 0) = ‖(x1, x2)‖X , ∀(x1, x2) ∈ X

and

NY (y1, y2, 0) = (|y1|
p + |y2|

p)
1

p := ‖(y1, y2)‖Y,p, ∀(y1, y2) ∈ Y.

( Sin
e

‖(y1,0)‖
p

X

ap = |y1|
‖(1,0)‖p

X

ap = |y1|). On the other hand, the following map is an isometri


isomorphism:

Θ : (X × R, NX) → (Y × R, NY )

(x1, x2, t) 7→ (ax1, t, ax2).

Now, there exist to 
ases:

Case 1 : If every point of the sphere SX of X is an extreme point, we 
hoose p = 1 and so SY

has a non extreme point sin
e in this 
ase ‖(y1, y2)‖Y,1 = |y1|+ |y2| (For example (12 ,
1
2 ) is not

extreme for ‖.‖Y,1). Consequently X and Y 
annot be isometri
ally isomorphi
.

Case 2 : If there exists some point of the sphere SX whi
h is not extreme point then we 
hoose

p = 2 and so every points of SY is an extreme point sin
e ‖(y1, y2)‖Y,2 = (|y1|
2 + |y2|

2)
1

2
is the

eu
lidean norm. Also X and Y 
annot be isometri
ally isomorphi
.
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3 Isometries between produ
t spa
es.

Theorem 2 Let X and Y be a ve
tor spa
es. Suppose that (NX , NY ) satisfy the property (P ).
Then (X × R, NX) and (Y × R, NY ) are isometri
ally isomorphi
 if and only if (X,NX) and
(Y,NY ) are isometri
ally isomorphi
.

The proof of the above theorem is given in se
tion 3.2 after some lemmas.

3.1 Notations and lemmas.

We need some notations and lemmas. Let Θ : (X ×R, NX) → (Y ×R, NY ) be an isomorphism

isometri
. We set (a, u) = Θ−1(0, 1) and (b, v) = Θ(0, 1). Let us de�ne the linear 
ontinuous

map χX as follow :

χX : X × R −→ R

(x, t) 7→ t

We de�ne analogously the map χY by

χY : Y × R −→ R

(y, t) 7→ t

We obtain the following linear map on Y × {0}:

χX ◦Θ−1 : Y × {0} −→ R

Analogously we have also the linear map on X × {0}:

χY ◦Θ : X × {0} −→ R

Let us set X0 := Ker (χY ◦Θ) and Y0 := Ker
(

χX ◦Θ−1
)

.

Remark 1 The linear spa
es X0 and Y0 are not ne
essarily 
losed sin
e χX and χY are not

ne
essarily 
ontinuous.

Lemma 1 X0 and Y0 are isometri
ally isomorphi
. More pre
isely, the map

Θ : (X0, NX) → (Y0, NY )

(z, 0) 7→ Θ(z, 0) (1)

is an isomorphism isometri
.

Proof. Sin
e Θ is an isomorphism isometri
, it su�
es to show that the restri
tion of Θ to X0

is onto. Indeed, let (y, 0) ∈ Y0. Clearly, (z, 0) := Θ−1(y, 0) ∈ X0 sin
e χY ◦ Θ(Θ−1(y, 0)) =
χY (y, 0) = 0 and we have (y, 0) = Θ(z, 0).

Lemma 2 We have only two 
ases.

Case1: u 6= 0. In this 
ase, we have X × {0} = X0.

Case2: u = 0. In this 
ase we have Θ−1(0, 1) = (a, 0) and X × {0} = X0 ⊕ R(a, 0).
Similarly we have,

Case1: v 6= 0. In this 
ase, we have Y × {0} = Y0.

Case2: v = 0. In this 
ase we have Θ(0, 1) = (b, 0) and Y × {0} = Y0 ⊕ R(b, 0).
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Proof. For all x ∈ X there exists (yx, λx) ∈ Y × R su
h that

(x, 0) = Θ−1(yx, λx) = Θ−1(yx, 0) + λΘ−1(0, 1)

= Θ−1(yx, 0) + λx(a, u) (2)

= Θ−1(yx, 0) + (λxa, λxu)

Sin
e Θ−1(yx, 0) ∈ X0 ⊂ X × {0} and also (x, 0) ∈ X × {0}, then from the above equation we

obtain that (λxa, λxu) ∈ X × {0} whi
h implies that λxu = 0. So we have :

Case1: u 6= 0. In this 
ase, X × {0} = X0. Indeed, if u 6= 0 then λx = 0 and so (x, 0) =
Θ−1(yx, 0) ∈ X0, for all x ∈ X i.eX×{0} ⊂ X0. On the other hand we know thatX0 ⊂ X×{0}.

Case2: u = 0. In this 
ase we have Θ−1(0, 1) = (a, 0) and so X = X0 ⊕ R(a, 0). Indeed, We

have X0 ∩ R(a, 0) = (0, 0), sin
e if α is a real number su
h that α(a, 0) ∈ X0 then 0 = χY ◦
Θ(α(a, 0)) = αχY (0, 1) = α. In other words from (2), for all x ∈ X , there exist (yx, λx) ∈ Y ×R

su
h that

(x, 0) = Θ−1(yx, 0) + λx(a, 0).

whith Θ−1(yx, 0) ∈ X0. Thus X×{0} ⊂ X0⊕R(a, 0) ⊂ X×{0} and so X×{0} = X0⊕R(a, 0).

In a similar way we obtain the se
ond part of the lemma.

Lemma 3 We have, u = 0 if and only if v = 0.

Proof. Suppose that v = 0. Then for all (x, t) ∈ X × R, we have Θ(x, t) = Θ(x, 0) + Θ(0, t) =
Θ(x, 0)+ tΘ(0, 1) = Θ(x, 0)+ t(b, v) = Θ(x, 0)+ (tb, 0). Now, we are going to prove that u = 0.
Suppose that the 
ontrary hold, that is u 6= 0. Then X × {0} = X0 (See the 
ase 1. in Lemma

2). So Θ(x, 0) ∈ Θ(X × {0}) = Θ(X0) = Y0, sin
e Θ is an isomorphism isometri
 from X0

onto Y0 (See the formula (1)). Now sin
e Y0 ⊂ Y × {0}, then Θ(x, 0) + t(b, 0) ∈ Y × {0}. In

other words, Θ(x, t) ∈ Y × {0} for all (x, t) ∈ X × R. So Θ(X × R) ⊂ Y × {0}. But Θ is an

isomorphism between X×R and Y ×R. This implies that Y ×{0} = Y ×R whi
h is impossible.

Thus u = 0. In a similar way we obtain the 
onverse.

3.2 Proof of Theorem 2 and some 
orollaries.

We give now the proof of the main result.

Proof of Theorem 2. For the �if� part, let T : (X,NX) → (Y,NY ) be an isomorphism iso-

metri
. Let us de�ne Θ : (X × R, NX) → (Y × R, NY ) by Θ(x, λ) = (T (x), λ). Then, 
learly

Θ is an isomorphism and by the property (P ) it is also isometri
. We prove now the �only if

part�. By 
ombining Lemma 2 and Lemma 3 we have that:

Case1. If u 6= 0 and v 6= 0, then X ×{0} = X0 and Y ×{0} = Y0. So by Lemma 1 we 
on
lude

that X ×{0} and Y ×{0} are isometri
ally isomorphi
 for the norms NX and NY . So (X,NX)
and (Y,NY ) are isometri
ally isomorphi
.

Case2. If u = 0 and v = 0, using Lemma 2 we have that Θ−1(0, 1) = (a, 0) and X × {0} =
X0 ⊕ R(a, 0) and Θ(0, 1) = (b, 0) and Y × {0} = Y0 ⊕ R(b, 0). Now we prove that the map

ψ : X × {0} = X0 ⊕ R(a, 0) → Y × {0} = Y0 ⊕ R(b, 0)

(z, 0) + λ(a, 0) 7→ Θ(z, 0) + λ(b, 0)

is an isomorphism isometri
. Indeed, the fa
t that ψ is linear and onto map is 
lear by using

Lemma 1. Let us prove that ψ is isometri
 for the norms NX and NY . Sin
e (z, 0) ∈ X0, by

(1) there exist (y, 0) ∈ Y0 su
h that Θ(z, 0) = (y, 0). Sin
e

(z, 0) + λ(a, 0) = Θ−1(Θ(z, 0)) + λΘ−1(0, 1)

= Θ−1 (Θ(z, 0) + (0, λ))

= Θ−1(y, λ)
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then, using the fa
t that Θ−1
is isometri
 we have

NX((z, 0) + λ(a, 0)) = NX(Θ−1(y, λ))

= NY (y, λ). (3)

On the other hand we known that (b, 0) = Θ(0, 1) so Θ(z, 0) + λ(b, 0) = Θ(z, 0) + λΘ(0, 1) =
Θ(z, λ). Thus, using the fa
t that Θ is isometri
 we have,

NY (ψ ((z, 0) + λ(a, 0))) = NY (Θ(z, 0) + λ(b, 0))

= NY (Θ(z, λ))

= NX(z, λ). (4)

But NX(z, 0) = NY (y, 0) sin
e Θ(z, 0) = (y, 0) and Θ is isometri
. Sin
e (NX , NY ) satisfy the

property (P ) then NX(z, λ) = NY (y, λ). Thus, using the formulas (3) and (4) we obtain that

ψ is isometri
.

Remark 2 By indu
tion, we 
an easily extend the above theorem to X × R
n
(n ∈ N∗

) if we

assume that (NX , NY ) is a pair of norms satisfying the following property (Pn): for all x ∈ X

all y ∈ Y , all i ∈ {1, 2, ...n} and all (s1, s2, ..., si); (s
′
1, s

′
2, ..., s

′
i) ∈ R

i
:

if NX(x, s1, s2, ..., si, 0, 0, ..., 0) = NY (y, s
′
1, s

′
2, ..., s

′
i, 0, 0, ..., 0) then

NX(x, s1, s2, ..., si, λ, 0, ..., 0) = NY (y, s
′
1, s

′
2, ..., s

′
i, λ, 0, ..., 0), ∀λ ∈ R.

Exemples 2 Let p ∈ [1,+∞[, and

NX,p(x, s1, ..., sn) = (‖x‖pX +

n
∑

k=1

|sk|
p)

1

p ,

NX,∞(x, s1, ..., sn) = max(‖x‖X , |s1|, ..., |sn|)

for all (x, s1, ..., sn) ∈ X × R
n
. In a similar way we de�ne NY,p and NY,∞. Then the pairs

(NX,p, NY,p) and (NX,∞, NY,∞) satis�es the property (Pn).

Corollary 1 Let X and Y be a ve
tor spa
es. Let n ∈ N
∗
and suppose that (NX , NY ) satisfy

(Pn). Then (X×R
n, NX) and (Y ×R

n, NY ) are isometri
ally isomorphi
 if and only if (X,NX)
and (Y,NY ) are isometri
ally isomorphi
.

As a remark we have the following 
orollary for inner produ
t spa
es. Note that a non


omplete inner produ
t spa
e has no orthonormal basis in general (See [5℄). The symbol

∼=
means �isometri
ally isomorphi
�.

Corollary 2 Let (H, ‖.‖H) and (L, ‖.‖L) be two inner produ
t spa
e (not ne
essary 
omplete).

Then (H, ‖.‖H) ∼= (L, ‖.‖L) if and only if for all �nite dimensional subspa
es E ⊂ H and F ⊂ L

su
h that dim(E) = dim(F ) we have that (E⊥, ‖.‖H) ∼= (F⊥, ‖.‖L). Where E⊥
and F⊥

denotes

the orthogonal of E and F respe
tively.

Proof. Let E ⊂ H and F ⊂ L su
h that dim(E) = dim(F ) = n for n ∈ N. By the 
lassi
al

proje
tion theorem on a 
omplete ve
tor subspa
e of an inner produ
t spa
e, we have H =
E⊥ ⊕ E and L = F⊥ ⊕ F . On the other hand it is 
lear that (H, ‖.‖H) ∼= (E⊥ × R

n, NE⊥,2)
and (L, ‖.‖L) ∼= (F⊥ × R

n, NF⊥,2), where NE⊥,2 and NF⊥,2 are de�ned as in the Example 2

with p = 2. Sin
e (NE⊥,2, NF⊥,2) satisfy (Pn) then from Corollary 1 we obtain (E⊥, ‖.‖H) ∼=
(F⊥, ‖.‖L). The 
onverse is 
lear.
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4 Appli
ations.

We give in this se
tion two appli
ations of Theorem 2. We denote by (C1[0, 1], NC1[0,1]) the
spa
e of 
ontinuously di�erentiable fun
tions on [0, 1] endowed with the norm NC1[0,1](f) :=
NR2(‖f ′‖∞, |f(0)|), where NR2

denotes any norm satisfying Proposition 1. Let (X, ‖.‖X) be a
Bana
h spa
e. We denote by NX the norm de�ned on X ×R by NX(x, t) := NR2(‖x‖X , |t|) for
all (x, t) ∈ X × R. Finally, we denote by (C[0, 1], ‖.‖∞) the spa
e of 
ontinuous fun
tions on

[0, 1] endowed with the supremum norm.

Proposition 2 We have (X×R, NX) ∼= (C1[0, 1], NC1[0,1]), if and only if (X, ‖.‖X) ∼= (C[0, 1], ‖.‖∞).

Proof. Let us de�ne the norm NC[0,1] on C[0, 1] × R by NC[0,1](g, t) := NR2(‖g‖∞, |t|) for all
(g, t) ∈ C[0, 1]× R. Let us 
onsider the map

χ : (C1[0, 1], NC1[0,1]) → (C[0, 1]× R, NC[0,1])

f 7→ (f ′, f(0))

Clearly, χ is an isomorphism isometri
. So we have (X × R, NX) ∼= (C[0, 1] × R, NC[0,1]).
Sin
e (NX , NC[0,1]) satisfy the property (P ) by Proposition 1 then using Theorem 2 we ob-

tain that (X, ‖.‖X) ∼= (C[0, 1], ‖.‖∞), sin
e NX(‖x‖X , 0) = ‖x‖XNR2(1, 0) and NC[0,1](g, 0) =
‖g‖∞NR2(1, 0).

Let us re
all some notions. Let K and C be 
onvex subsets of ve
tor spa
es. A fun
tion

T : K → C is said to be a�ne if for all x, y ∈ K and 0 ≤ λ ≤ 1, T (λx + (1 − λ)y) =
λT (x) + (1 − λ)T (y). The set of all 
ontinuous real-valued a�ne fun
tions on a 
onvex subset

K of a topologi
al ve
tor spa
e will be denoted by Aff(K). Clearly, all translates of 
ontinuous
linear fun
tionals are elements of A�(K), but the 
onverse in not true in general (see [4℄ page

22.). However, we do have the following relationship.

Proposition 3 ([4℄, Proposition 4.5) Assume that K is a 
ompa
t 
onvex subset of a separated

lo
ally 
onvex spa
e X then

{

a ∈ Aff(K) : a = r + x∗|K for some x∗ ∈ X∗ and some r ∈ R
}

is dense in (Aff(K), ‖.‖∞), where ‖.‖∞ denotes the norm of uniform 
onvergen
e.

But in the parti
ular 
ase when X is a Bana
h spa
e and K = (BX∗ , w∗) is the unit ball of
the dual spa
e X∗

endowed with the weak star topology, the well known result due to Bana
h

and Dieudonné states that:

Theorem 3 (Bana
h-Dieudonné). The spa
e (Aff0(BX∗), ‖.‖∞) is isometri
ally identi�ed

to (X, ‖.‖). In other words, Aff0(BX∗) =
{

ẑ|BX∗
: z ∈ X

}

. Where Aff0(BX∗) denotes the

spa
e of all a�ne weak star 
ontinuous fun
tions that vanish at 0 and ẑ : p 7→ p(z) for all

p ∈ X∗
and ẑ|BX∗

denotes the restri
tion of ẑ to BX∗
.

Now, let X and Y be two Bana
h spa
es and let us endowed the spa
e Aff(BX∗) (and in

a similar way the spa
e Aff(BY ∗)) with the norm N(f) := NR2(‖f − f(0)‖∞, |f(0)|) for all
f ∈ Aff(BX∗), where NR2

denotes any norm on R
2
satisfying Proposition 1. We obtain the

following version of the Bana
h-Stone theorem for a�ne fun
tions (For more information about

the Bana
h-Stone theorem see [2℄ and [3℄).

Proposition 4 Let X and Y be two Bana
h spa
es. Then the following assertions are equiva-

lent.

(1) (Aff(BX∗), N) and (Aff(BY ∗), N) are isometri
ally isomorphi
.

(2) (X, ‖.‖X) and (Y, ‖.‖Y ) are isometri
ally isomorphi
.
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Proof. Let Ñ be the norm on Aff0(BX∗) × R de�ned by Ñ(f0, t) := NR2(‖f0‖∞, |t|) for all
(f0, t) ∈ Aff0(BX∗)× R. Let us 
onsider the map,

χ : (Aff(BX∗), N) → (Aff0(BX∗)× R, Ñ)

f 7→ (f − f(0), f(0))

Clearly, χ is an isometri
 isomorphism. Thus using Theorem 1 we have that (Aff(BX∗), N) and
(Aff(BX∗), N) are isometri
ally isomorphi
 if and only if (Aff0(BX∗), ‖.‖∞) and (Aff0(BY ∗), ‖.‖∞)
are isometri
ally isomorphi
, whi
h is equivalent by Theorem 3 to the fa
t that (X, ‖.‖X) and
(Y, ‖.‖Y ) are isometri
ally isomorphi
.
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