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Abstract. We give a condition on norms under which two vector normed spaces X and Y
are isometrically isomorphic if and only if X X R and Y x R are isometrically isomorphic. We
also prove that this result fail for arbitrary norms even if X = Y = R? by building a generic
counterexamples.

Keyword, phrase: Normed vector space and isometries.

1 Introduction

We are interested in this paper in the following question. Let X and Y be vector spaces and
let Nx and Ny be two norms on (X xR, Nx) and (Y x R, Ny) respectively. The norm Nx on
X (and in a similar way Ny) denotes Nx(z,0) for all z € X.

Problem. It is true that (X x R, Nx) and (Y x R, Ny) are isometrically isomorphic if and
only if (X, Nx) and (Y, Ny) are isometrically isomorphic?

We begin by showing that in the general case the answer to this question is no for arbitrary
norms Nx and Ny, even when X and Y are two dimensional vector spaces, by constructing a
generic counterexamples (See Theorem 1). We prove then in Theorem 2 that the result is true
for all norms (Nx, Ny) satisfying the following property (P).

Definition 1 Let X and Y be two vector spaces. Let Nx and Ny be two norms on X X R and
X x R respectively. We say the the pair (Nx, Ny) satisfy the property (P) if for all x € X and
allyeY:

Nx(z,0) = Ny (y,0) = Nx(z,A) = Ny (y,\),YVA € R.

In all the article we identify X with X x {0} and the norm Nx on X denotes Nx(z,0) for all
zeX.

Exemples 1 Let (X, ||.||x) and (Y, ||.||y) be two normed vector spaces. Let p € [1,+o0[ and
Nxp(,t) := (el + [t7)>,

Nx,00(@, 1) := max(|[z[|x, [¢]),

for all (z,t) € X xR. In o similar way we define Ny, and Ny,o. Then the pairs (Nx p, Nyp)
and (Nx o0, Ny,oo) satisfies the property (P).



We give in the following proposition a more general examples.

Proposition 1 Let Ng2 be any norm on R? such that Nx (z,t) := Ngz(||z||x, |t]) for all (x,t) €
X x R defined a norm on X x R (Similarly we define Ny on'Y x R). Then (Nx, Ny) satisfy
the property (P).

Proof. Let x € X and y € Y be such that Nx(z,0) = Ny(y,0). Then Ngz(]|z|x,0) =
Ngz2(||ly|ly,0) and so ||z||x Nr2(1,0) = |ly||y Ng2(1,0), which implies that ||z|x = ||y|ly- It fol-
lows that Ngz2(||z|x,|A]) = Nr2(|lylly,|A|) for all A € R. In other words Nx (z,A) = Ny (y, \)
for all A € R.m

The problem mentioned above was motivated at the first time in [1] by questions connected
to the Banach-Stone theorem, and solved positively only for the particular norms Nx , and
Ny, when p € [1,+00[\ {2}. The technique used in [1] did not include the case p=2. The
property (P) hear is more general and allowed to include varied norms. We give in section4.
other simple examples of applications of Theorem 2.

2 A generic counterexample.

Theorem 1 Let X =Y = R2. For each norm ||.|x on X there exists a norm ||.||y on Y, a
norm Nx on X xR and a norm Ny onY x R such that :

(1) (X, ||l-llx) is not isometrically isomorphic to (Y,|.|ly).

(2) (X x R, Nx) is isometrically isomorphic to (Y x R, Ny).

(3) the restriction of Nx to X coincide with ||.||x and the restriction of Ny toY coincide with

Ay -

Proof. Let p € [1,+00]. Let us define Nx and Ny as follow :
Nx(@1,9,t) i= ([ (@1, 02)[% + [H7)7, V(w1,22,¢) € X xR

and

=

Il (y1, 5)||§()
aP ’

Ny (y1,92,8) = (|y2|” + V(y1,y2,8) €Y x R.

Where a = [|(1,0)]x. Let us define the norm ||.|ly,, on Y as follows ||(y1,2)[ly,p :== ([y1]P +
|y2|p)% for all (y1,y2) € Y. Clearly,

NX($1)$270) = ||(l‘17x2)||X) v(x17x2) S X

and
1
Ny (y1,92,0) = ([ya” + [y2")7 = [[(y1, v2)llvp,  V(¥1,92) €Y.
( Since ”(yla’iﬁ’”?f = |y1|”(1;% = |y1|). On the other hand, the following map is an isometric
isomorphism:

©: (X xR, Ny)

(1'1; zQat)

— (Y xR, Ny)

—  (az1,t,axs).

Now, there exist to cases:

Case 1 : If every point of the sphere Sx of X is an extreme point, we choose p =1 and so Sy
has a non extreme point since in this case || (y1,y2)|v,1 = |y1| + |y2| (For example (3, 1) is not
extreme for ||.||y,1). Consequently X and Y cannot be isometrically isomorphic.

Case 2 : If there exists some point of the sphere Sx which is not extreme point then we choose
p =2 and so every points of Sy is an extreme point since |[(y1,2)|ly.2 = ([y1]2 + |y2|?)? is the
euclidean norm. Also X and Y cannot be isometrically isomorphic.g



3 Isometries between product spaces.
Theorem 2 Let X andY be a vector spaces. Suppose that (Nx, Ny) satisfy the property (P).
Then (X x R,Nx) and (Y x R, Ny) are isometrically isomorphic if and only if (X, Nx) and

(Y, Ny) are isometrically isomorphic.

The proof of the above theorem is given in section 3.2 after some lemmas.

3.1 Notations and lemmas.

We need some notations and lemmas. Let O : (X x R, Nx) — (Y x R, Ny) be an isomorphism
isometric. We set (a,u) = ©71(0,1) and (b,v) = ©(0,1). Let us define the linear continuous
map xx as follow :

xx : X xR — R
(x,t) +— ¢t

We define analogously the map yy by

Xy :Y xR — R
(y;t) = ¢

We obtain the following linear map on Y x {0}:
xxo00 1Y x{0} — R
Analogously we have also the linear map on X x {0}:
Xy o®: X x{0} — R
Let us set Xo := Ker (xy 0©) and Y := Ker (xx c©71).

Remark 1 The linear spaces Xo and Yy are not necessarily closed since xx and xy are not
necessarily continuous.

Lemma 1 X and Yy are isometrically isomorphic. More precisely, the map

@ . (Xo,Nx)
(2,0)

— (Yo, Ny)

—  0(z,0) (1)
s an isomorphism isometric.

Proof. Since © is an isomorphism isometric, it suffices to show that the restriction of © to X
is onto. Indeed, let (y,0) € Y. Clearly, (z,0) := ©71(y,0) € X, since xy o ©(©71(y,0)) =
Xy (y,0) = 0 and we have (y,0) = ©(z,0).m

Lemma 2 We have only two cases.

Casel: u # 0. In this case, we have X x {0} = Xj.

Case2: u = 0. In this case we have ©71(0,1) = (a,0) and X x {0} = Xo ® R(a,0).
Similarly we have,

Casel: v # 0. In this case, we have Y x {0} = Yj.
Case2: v =0. In this case we have ©(0,1) = (b,0) and Y x {0} =Yy @ R(b,0).



Proof. For all x € X there exists (y,, \z) € Y X R such that
(2,0) =07 (Y2, o) = O (12, 0) +AO71(0,1)
= 07 (4, 0) + Aafa,w) 2)
07 (12, 0) + (Ao, A)
Since ©~!(y.,0) € Xg C X x {0} and also (z,0) € X x {0}, then from the above equation we
obtain that (A;a, Ayu) € X x {0} which implies that A,u = 0. So we have :

Casel: u # 0. In this case, X x {0} = Xo. Indeed, if w # 0 then Ay = 0 and so (x,0) =
O~ (y.,0) € Xo, forallz € X i.e X x{0} C Xo. On the other hand we know that Xy C X x{0}.
Case2: u = 0. In this case we have ©71(0,1) = (a,0) and so X = X, @ R(a,0). Indeed, We
have Xy NR(a,0) = (0,0), since if « is a real number such that a(a,0) € Xy then 0 = yy o
© (a(a,0)) = axy(0,1) = a. In other words from (2), for all z € X, there exist (y,, A\s) € Y xR
such that

(,0) = Oy, 0)+ A\o(a,0).
whith ©~1(y,,0) € Xo. Thus X x {0} C Xo®R(a,0) C X x {0} and so X x {0} = Xo®R(a,0).

In a similar way we obtain the second part of the lemma.g

Lemma 3 We have, u =0 if and only if v =0.

Proof. Suppose that v = 0. Then for all (z,t) € X x R, we have ©(z,t) = ©(x,0) + ©(0,¢) =
O(z,0)+t0(0,1) = O(x,0) +t(b,v) = O(x,0) + (tb,0). Now, we are going to prove that u = 0.
Suppose that the contrary hold, that is u # 0. Then X x {0} = X (See the case 1. in Lemma
2). So O(z,0) € O(X x {0}) = O(Xy) = Yo, since O is an isomorphism isometric from X
onto Yy (See the formula (1)). Now since Yo C Y x {0}, then O(z,0) + ¢t(b,0) € Y x {0}. In
other words, O(z,t) € Y x {0} for all (z,t) € X xR. So ©(X xR) C Y x {0}. But © is an
isomorphism between X x R and Y xR. This implies that ¥ x {0} = Y x R which is impossible.
Thus u = 0. In a similar way we obtain the converse.g

3.2 Proof of Theorem 2 and some corollaries.

We give now the proof of the main result.

Proof of Theorem 2. For the “if” part, let T : (X, Nx) — (Y, Ny) be an isomorphism iso-
metric. Let us define © : (X x R,Nx) — (Y xR, Ny) by O(z,\) = (T'(x),\). Then, clearly
© is an isomorphism and by the property (P) it is also isometric. We prove now the “only if
part”. By combining Lemma 2 and Lemma 3 we have that:

Casel. If u # 0 and v # 0, then X x {0} = Xy and Y x {0} = Y. So by Lemma 1 we conclude
that X x {0} and Y x {0} are isometrically isomorphic for the norms Nx and Ny. So (X, Nx)
and (Y, Ny) are isometrically isomorphic.

Case2. If u = 0 and v = 0, using Lemma 2 we have that ©71(0,1) = (a,0) and X x {0} =
Xo @ R(a,0) and 6(0,1) = (b,0) and Y x {0} = Yy & R(,0). Now we prove that the map
P: X x{0} =Xy DR(a,0) — Y x{0} =Y, dR(,0)
(2,0) + A(a,0) — ©(z,0)+ A(b,0)
is an isomorphism isometric. Indeed, the fact that 4 is linear and onto map is clear by using
Lemma 1. Let us prove that ¢ is isometric for the norms Nx and Ny. Since (z,0) € Xj, by
(1) there exist (y,0) € Yy such that ©(z,0) = (y,0). Since
(2,0) + Xa,0) = ©710(z,0))+1071(0,1)
= 07'(6(2,0)+ (0,))
= 07y,



then, using the fact that © 1 is isometric we have

Nx((2,0) +A(a,0)) = Nx(©07'(y,\))
= Ny(y, M) (3)

On the other hand we known that (b,0) = ©(0,1) so O(z,0) + A(b,0) = O(2,0) + AO(0,1) =
©(z,A). Thus, using the fact that © is isometric we have,

Ny (¢ ((2,0) + A(a,0))) = Ny(O(z,0) + A(b,0))

= Nx(z,\). (4)

But Nx(z,0) = Ny (y,0) since ©(z,0) = (y,0) and © is isometric. Since (Nx, Ny) satisfy the
property (P) then Nx(z,A) = Ny (y,A). Thus, using the formulas (3) and (4) we obtain that
1) is isometric.g

Remark 2 By induction, we can easily extend the above theorem to X x R™ (n € N*) if we
assume that (Nx, Ny) is a pair of norms satisfying the following property (P™): for all x € X
aly €Y, alli€{1,2,..n} and all (s1,s2,..., ;); (s}, 84, ...,s}) € R* :

if Nx(z,s1,82,...,8;,0,0,...,0) = Ny (y, s}, $5, ..., 5;,0,0,...,0) then

Nx(z, 81,82,y $iy A, 0, ...,0) = Ny (y, 81, 85, ..., 85, A, 0, ...,0), VA € R.

<oy 54y

Exemples 2 Let p € [1,+o0[, and
n 1
NXm(xvsla ey Sp) = (HmHg( + Z |skl?)7,
k=1

NX,OO(xa 81y ey Sn) = maX(HIHXv |31|a sy |5n|)

for all (x,s1,...,8,) € X x R". In a similar way we define Ny, and Ny . Then the pairs
(Nx.p, Ny,p) and (Nx oo, Ny,oo) satisfies the property (P™).

Corollary 1 Let X and Y be a vector spaces. Let n € N* and suppose that (Nx, Ny) satisfy
(P™). Then (X xR™, Nx) and (Y xR™, Ny ) are isometrically isomorphic if and only if (X, Nx)
and (Y, Ny) are isometrically isomorphic.

As a remark we have the following corollary for inner product spaces. Note that a non
complete inner product space has no orthonormal basis in general (See [5]). The symbol 2
means “isometrically isomorphic”.

Corollary 2 Let (H, ||.||z) and (L, ||.||L) be two inner product space (not necessary complete).
Then (H,||.||a) = (L, ||.||) if and only if for all finite dimensional subspaces E C H and F C L
such that dim(E) = dim(F) we have that (E*,|.|g) = (F*,|.||1). Where EX and F* denotes
the orthogonal of E and F respectively.

Proof. Let E C H and F' C L such that dim(F) = dim(F) = n for n € N. By the classical
projection theorem on a complete vector subspace of an inner product space, we have H =
Et@®E and L = F+ @ F. On the other hand it is clear that (H,|.||x) = (E*+ x R", Ng1 )
and (L, |.||z) = (F*+ x R",Np1 5), where N1 o and Np. o are defined as in the Example 2
with p = 2. Since (Ng1 o, Np1 o) satisfy (P") then from Corollary 1 we obtain (E*, ||| g) =
(F*,]|.llz)- The converse is clear.g



4 Applications.

We give in this section two applications of Theorem 2. We denote by (C[0, 1], Ncapo,17) the
space of continuously differentiable functions on [0, 1] endowed with the norm Neip11(f) :=
Nrz (]| f'lloos | £(0)]), where Ngz denotes any norm satisfying Proposition 1. Let (X, ||.||x) be a
Banach space. We denote by Nx the norm defined on X xR by Nx(z,t) := Ng2(||z| x, |t]) for
all (x,t) € X x R. Finally, we denote by (C[0,1],].]|s) the space of continuous functions on
[0, 1] endowed with the supremum norm.

Proposition 2 We have (X xR, Nx) = (C[0,1], Neajo11), if and only if (X, ||| x) = (C[0, 1], ||-[|sc)-

Proof. Let us define the norm N¢jo 1) on C[0,1] x R by Ne¢qo,17(9,t) := Nr2(]|g]lc, [t]) for all
(g,t) € C[0,1] x R. Let us consider the map

X : (C'0,1], Neajo,y) —  (C[0,1] x R, Ngpo1))
fo= (f',£(0))

Clearly, x is an isomorphism isometric. So we have (X x R, Nx) = (C[0,1] x R, N¢po,1)-
Since (Nx, N¢io,1)) satisfy the property (P) by Proposition 1 then using Theorem 2 we ob-
tain that (X, ||.||x) = (C[0,1], ||.|[sc), since Nx(||z|x,0) = [|z||x Ng2(1,0) and Neo,11(g,0) =
l|9]loc Ng2(1,0).m

Let us recall some notions. Let K and C be convex subsets of vector spaces. A function
T : K — C is said to be affine if for all z,y € K and 0 < XA < 1, Ta + (1 — Ny) =
AT (z) + (1 — N)T(y). The set of all continuous real-valued affine functions on a convex subset
K of a topological vector space will be denoted by Af f(K). Clearly, all translates of continuous
linear functionals are elements of Aff(K), but the converse in not true in general (see [4] page
22.). However, we do have the following relationship.

Proposition 3 ([4], Proposition 4.5) Assume that K is a compact convez subset of a separated
locally convex space X then

{aeAff(K):a:r—i—x‘*K for some z* € X* andsomereR}

is dense in (Aff(K),|-||cc), where ||.|| denotes the norm of uniform convergence.

But in the particular case when X is a Banach space and K = (Bx~,w™*) is the unit ball of
the dual space X* endowed with the weak star topology, the well known result due to Banach
and Dieudonné states that:

Theorem 3 (Banach-Dieudonné). The space (Af fo(Bx~+), ||-|loc) s isometrically identified
to (X,|I.I). In other words, Affo(Bx-) = {Zpy.:2€ X}. Where Af fo(Bx-) denotes the
space of all affine weak star continuous functions that vanish at 0 and Z : p — p(z) for all
p € X* and Z g, denotes the restriction of 2 to Bx-.

Now, let X and Y be two Banach spaces and let us endowed the space Af f(Bx~) (and in
a similar way the space Aff(By+)) with the norm N(f) := Ngz(||f — f(0)]|co, | f(0)]) for all
f € Aff(Bx~), where N> denotes any norm on R? satisfying Proposition 1. We obtain the
following version of the Banach-Stone theorem for affine functions (For more information about
the Banach-Stone theorem see [2] and [3]).

Proposition 4 Let X and Y be two Banach spaces. Then the following assertions are equiva-
lent.
(1) (Aff(Bx=),N) and (Af f(By+),N) are isometrically isomorphic.

(2) (X, |I'llx) and (Y, ||.|ly) are isometrically isomorphic.



Proof. Let N be the norm on Affo(Bx-) x R defined by N(fo,t) := Ng2(||follso, |t]) for all
(fo.t) € Af fo(Bx~) x R. Let us consider the map,

X (Aff(Bx-),N) — (Affo(Bx-) xR,N)
fo= (f=1(0),£(0))
Clearly, y is an isometric isomorphism. Thus using Theorem 1 we have that (Af f(Bx~), N) and
(Af f(Bx~), N) are isometrically isomorphic if and only if (Af fo(Bx+), ||-|lco) and (Af fo(By+), ||-|lcc)

are isometrically isomorphic, which is equivalent by Theorem 3 to the fact that (X, ||.||x) and
(Y, ||.|ly) are isometrically isomorphic.m
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