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Humanoid Flexibility Deformation Can Be Efficiently Estimated Using

Only Inertial Measurement Units and Contact Information

Mehdi Benallegue1,2 and Florent Lamiraux1,2

Abstract— Most robots are today controlled as being entirely rigid.

But often, as for HRP-2 robot, there are flexible parts, intended

for example to absorb impacts. The deformation of this flexibility

changes the configuration of the robot, particularly in orientation.

Nevertheless, robots have usually inertial sensors (IMUs) to reconstruct

their orientation based on gravity and inertial effects. Moreover,

humanoids have usually to ensure a firm contact with the ground,

which provides reliable information on the surrounding environment.
We show in this study, how important it is to take into account these

information to improve IMU-based position/orientation reconstruction.

We use an extended Kalman filter to rebuild the deformation, making

the fusion between IMU and contact information, and without making

any assumption on the dynamics of the flexibility. We show how, with

this simple setting, we are able to compensate for perturbations and to

stabilize the end-effector’s position/orientation in the world reference

frame.

I. PROBLEM STATEMENT

Many current humanoid robots are controlled as rigid systems,

even if there are compliant and flexible parts in it. A good example

of such a system is the robot HRP-2. Between the ankle and the sole

of the robot, there lies a flexible bush (see Fig 1), designed to absorb

foot impacts in order to protect force sensors and leg actuators [1].

However, this flexible part acts also as an angular spring and

generates important deviation of the whole body, including the

center of mass (CoM), which is not modeled in the rigid system.

Therefore, this flexibility can threaten the balance of the robot,

for example if the deformation deviates the CoM enough. Moreover,

it also may jeopardize environment-related tasks. For example, in

the case of drilling a wall, a robot has to apply forces on the wall.

These forces will create a deformation of the compliant material

and will deviate the robot’s tool from its reference position and/or

orientation.

Fig. 1. The foot of HRP-2. Between the ankle joint and the sole of the
robot, there is a rubber bush.

The problem of HRP-2 flexibility is currently tackled by a robot

stabilizer. The stabilizer drives the deformation of the flexible
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material to produce the desired forces and moments at feet, using

a model of elasticity of the flexible material [2], [3]. At the

same time, the upper-body orientation is maintained vertical, in

order to minimize unwanted angular momentum and to enable to

respect orientation-related upper-body tasks (manipulation, gaze,

etc.). The orientation of the upper body is obtained using an inertial

measurement unit at the chest of the robot. However, with this

stabilizer, in the case of upper-body tasks, even if the torso is

maintained upright, there is no guarantee that upper-body limbs

are at their reference position, which is usually important when the

robot is interacting with environment.

Moreover, the use of controllers based on force/torque sensors

raises two main issues. First, these solutions are sensitive to sensors’

calibration errors [4], which can even appear during operation of

the robot (e.g. due to impacts, under constraints, etc). Second,

these approaches can obviously not apply to robots which are not

equipped with these expensive force sensors at contact points, such

as the future Aldebaran’s Romeo robot [5].

By contrast, inertial measurement sensors are cheap, relatively

reliable and more robust. In addition, they provide important data

on the real kinematics of the robot in the inertial frame. We show

in this paper that, if we couple these sensors with contact point

positions, we can afford a real-time fine estimation of the flexibility

state, without any model of its compliance dynamics. We show also

that these measurements can enable a stabilization of the robot’s

end-effector in the presence of external perturbations.

This study aims at proving the efficiency of inertial sensors for

whole body pose estimation, and perturbations detection. In the next

section we describe the theoretical guarantees and improvements

provided by contact information to IMU measurements. The section

III presents the demonstrative example of an implementation of

such an observer with minimum prior knowledge. The section IV

presents an experimental setting where we use our method for end-

effector stabilization and compensation of perturbations. Finally the

section V concludes the paper.

II. THEORETICAL GROUNDING

In the case of humanoid locomotion, the contact forces have

usually to respect center of pressure and friction cone constraints

in order to maintain balance [6]. That means that the contacts

are firmly fixed to the environment. However, most methods for

humanoid-robots attitude-estimation using inertial measurements do

not consider contacts information, even for stabilizing the robots on

their feet [7], [8]. Fixed contact positions provide coupling between

the rotations and translations, transforming the inertial measurement

unit (IMU) into a much more efficient sensor for reconstructing

position/orientation. We show next a simple example of what this

coupling provides to a simple pendulum.

A. The inverted pendulum

Let’s consider a simple 3D inverted pendulum of 1m length,

connected to the ground with a 3 DoF ball joint, and with an



inertial measurements unit (IMU), rigidly aligned at the top of the

pendulum (see Figure 2). The configuration of the pendulum is the

rotation matrix R. This orientation defines the position p of the

IMU in the global frame:

p = Rez (1)

where ez =
[

0 0 1
]t

is the unit vector along vertical z axis.

If we consider that an unknown external source u provides the

control of the pendulum’s acceleration, we can write the following

state dynamics:

ẋ =
[

([ω]×R)t ω̇t 0
]t

+
[

0 0 I
]t
u (2)

where x =
[

Rt ωt ω̇t
]t

is the state vector formed by orienta-

tion, the angular velocity vector and the angular acceleration1, and

[·]× is the skew symmetric operator such that
[

x

y

z

]

×

=

[

0 −z y

z 0 −x

−y x 0

]

Fig. 2. On the left, 3D inverted pendulum. On the right, 2D inverted
pendulum

The IMU at the top is composed of a gyrometer providing the

angular rate at local reference frame yg and an accelerometer

providing the gravity and the linear acceleration at the local frame

ya. Let y =
[

yt
g yt

a

]t
be the whole measurements vector:

y =

[

Rtω

Rt(p̈+ g0ez)

]

(3)

with g0 the standard gravity constant. This measurement provides

partial information on the configuration, but we show next that de-

pending on whether we consider translations-orientations coupling

or not, the observable parts of the vector differ significantly.

B. Without translations-rotations coupling

In the case we do not take into account the coupling, we have

to consider that the linear acceleration p̈ is a free input to the

system for which we do not have any model. So, let’s consider

the case of an input acceleration p̈ = −gez, we have then

yt
a = 0, and the measurements provide only angular velocities,

which are insufficient to reconstruct the orientation. Therefore, the

configuration of the pendulum itself is not observable with these

hypotheses.

Indeed, most today’s approaches to reconstruct orientations with

a gyrometer/accelerometer sensors without contact information,

have to put an erroneous model on the linear acceleration, for

example considered as Gaussian white noise for Kalman Filter-

ing [9] or as high-frequency signal for complementary filtering [10].

1For simplicity, we keep the matrix representation of the orientation
despite the heterogeneous nature of this state vector, in the next section
we use rotation vector representation for the actual implementation.

These method lead to ignore translation accelerations, which may

carry important and redundant information on the dynamics of the

pendulum.

C. With translations/rotations coupling

If we use the rotations/translations coupling provided by Equa-

tion (1), we have then

y =

[

Rtω

[Rtω̇]×ez + [Rtω]2×ez + g0R
tez

]

(4)

and let’s consider the first derivative of the gyrometer measurements

ẏg = R
t
ω̇ (5)

with these three vectors, yg , ya and ẏg , we can reconstruct Rtez

and then the roll and pitch components of the configuration R. The

yaw is unfortunately not observable with these sensors when there

is only one contact with environment, since the system is invariant

with respect to rotations around the z axis.

D. The case of multiple contacts

If the number of contacts between the sensor and the environment

is 3 or more, the sensor is fully constrained and cannot move.

So let’s consider the 2 contacts situation. There remains only one

degree of freedom, which is the rotation around the axis (c1c2)
passing by the two contact points. The system is equivalent to a 2D

pendulum for which the configuration is defined only by one angle

θ, and the state becomes x =
[

θ θ̇ θ̈
]

(see Figure 2). There are

two possibilities, (i) the axis (c1c2) is vertical, and in that case,

the sensors can observe only angular velocities and accelerations

around the axis, or (ii) the contact points are not vertically aligned

and, without loss of generality, we can consider them at the same

height and that the IMU is at 1 meter from the axis. If it is

not the case, we only need to project the dynamics on the plane

orthogonal to the axis (c1c2) with minor adaptations to find the

same developments.

The measurements vector is three-dimensional: angular velocity

around the axis (c1c2), and bi-dimensional accelerations orthog-

onal to it. All other measurements have constant values, the new

measurement vector becomes:

y =





θ̇

θ̈ + g0 sin(θ)

θ̇2 + g0 cos(θ)



 (6)

which can straightforwardly reconstruct all the state vector.

We see with the pendulum example that rotations/translation

coupling, deduced from contact points information, can be taken

into account to observe the sensor’s attitude and position, without

resorting to erroneous modeling of the state dynamics. In the next

section, we show how we use this idea to reconstruct the state of

the flexible part of the robot.

III. FLEXIBILITY DEFORMATION OBSERVATION

A. Modeling the flexibility

HRP-2 is a 30+6 DoF robot controlled as being perfectly rigid.

The configuration q is supposed to define perfectly for each limb i

the position/orientation in the world, represented by a homogeneous

transformation matrix CMi (C superscript is for “control”).

However, there is a flexible part in HRP-2 which is a small

compliant material between the sole and the ankle joint of the

robot. It can be compressed, bent and twisted according to applied

forces/moments. Therefore, when the robot is on its feet, the

compliance modifies the configuration of the robot in rotations and



translations, even when the contacts are balanced and immobile.

We depict the flexibility deformation by a 6 DoF transformation

represented by a homogeneous transformation matrix

W
MC =

[

WRC
WpC

0 0 0 1

]

(7)

with WRC and WpC are the rotation matrix and translation vector

associated to the flexibility deformation.

Any limb i at position/orientation CMi in the “control” reference

lies in fact at position/orientation WMi =
WMC

CMi in the world

actual reference frame (see Figure 3). Therefore, WMC is not the

matrix associated to a sole-ankle joint, but as a virtual joint between

the world and the free-flier root joint of the robot. The choice of this

representation enables to remain adapted to any number of supports

and to guarantee continuity regardless of changes in contacts.

Fig. 3. On the left the rigid robot model in the “control” reference
frame and the head position at CM〉. On the right, the flexibility WMC

transforms the configuration of the robot and the real position of the head
WM〉 = WMC

CM〉 (in red) in the world reference frame. We see that
WMC is composed of a rotation and a translation.

To simplify notations, we omit the world frame W up-

per left superscript for next developments. Let’s then de-

fine the 18 dimensional second order state vector x =
[

pt
C Ωt

C ṗt
C ωt

C p̈t
C ω̇t

C

]t
where ΩC is the rotation vector

representation of RC , such that exp([ΩC ]×) = RC , (i.e. ‖ΩC‖ is

the angle or rotation and
ΩC

‖ΩC‖
is the axis) and ωC is the vector of

angular velocity.

Our study aims at showing that the measurements alone are able

to provide accurate estimation of the flexibility state. Hence, we do

not model the response of the flexibility to external forces. Instead

we take the model of constant acceleration M̈C , which is a classical

choice for pose and attitude estimation [11], [12], [13]. The discrete-

time model of the state dynamics is then:

xk+1 = f(xk) + vk (8)

where f is a simple integrator with constant accelerations and vk
is Gaussian white noise which is used to model the differences

between the real dynamics of the state and the constant-acceleration

model.

It is important to note that this dynamical system is chosen

only for demonstration purposes, so it is deliberately erroneous

and unstable. In fact, for a real use of the proposed observer, we

suggest to replace this dynamical model by a model that is closer

to the natural dynamics of the studied system, for example by a

spring/damper or an inverted pendulum dynamical models. This

would increase the precision of the estimation as modeling error is

reduced.

B. The sensors system

This system is not stable and relies entirely on the measurements

to correct it. We use the stock IMU sensor in HRP-2 which

is located at the chest of the robot, and is composed of an

accelerometer and a gyrometer. The measurement vector is then

classically:

y =

[

yg

ya

]

=

[

Rt
sωs

Rt
s(p̈s + g0ez)

]

(9)

where yg and ya are gyrometer and accelerometer measurements,

and Rs, ωs and ps are respectively the rotation matrix, the angular

velocity vector and the position of the IMU in the world reference

frame.

We suppose that we know perfectly the robot’s configuration q

and its derivatives, we know then the position CRs, the angular

velocity Cωs, the position Cps of the IMU, and their derivatives,

in the control reference frame. On the other hand, we have the

relationships due to flexibility: Rs = RC
CRs and ps = RC

Cps +
pC . All that leads to:

yg = C
R

t
s
C
ωs +

C
R

t
sR

t
CωC (10)

ya = C
R

t
sR

t
C(([ω̇C ]× + [ωC ]

2
×)RC

C
ps + 2[ωC ]×RC

C
ṗs)

+ C
R

t
s(

C
p̈s +R

t
Cp̈C) + g0

C
R

t
sR

t
Cez (11)

But because the measurements are noisy and our dynamics is

discretized, we model the sensors dynamics as following

yk = g(xk,qk, q̇k, q̈k) +wsk (12)

Where g is the measurement function summarizing equations (10)

and (11) and wsk is a Gaussian white noise.

C. The contact points

We have seen that the flexibility provides six supplementary

degrees of freedom to the robot. However, the size of the flexible

bush and the magnitude of the linear forces exerted on it make

linear translations of the compliance almost negligible. In other

words, we can consider that globally the contact point positions in

the world and in the control reference frame are almost identical:

MC
Cpci ≃ Cpci , where Cpci is the position of the i-th contact in

the control reference frame, which is considered as perfectly known

for all the contacts. We put then an approximation instead of an

equality constraint. This enables to leave some freedom to violate

the constraint and to detect for example sideways perturbations

during double support. Thus, instead of constraining the contact

points to be fixed to environment, we add fake measurements to

our dynamical system. These measurement claim that the contacts

are fixed in environment MC
Cpcik

− Cpcik
= 0, but we model

these measurements as being noisy to allow some freedom. So for

each contact ci, the sensors model is:

rik = MCk
C
pcik

− C
pcik

+wik (13)

where wik is a Gaussian white noise.

We can gather then the measurements of a n contacts confi-

guration in a 6 + (3× n) dimensional vector:

zk = h(xk,qk, q̇k, q̈k,
C
pc1k, ...,

C
pcnk) +wk (14)

where h stacks all the measurements described earlier (IMU + fake

measurements) and wk stacks all the measurement noises.

It is worth mentioning that, for the continuous-time system,

the measurements described here provide the same observability



properties as the inverted pendulum example of the previous section.

In the case of one contact, the orientation is observable except

in yaw, which leads to a partial observability of the position

pC (constrained to a circle around the vertical line passing by

the contact point). In the case of multiple contacts, everything is

observable.

D. Extended Kalman Filtering

We use for the estimation of the state vector a classical Extended

Kalman Filter (EKF). This observer works in two steps for each

time sample: the prediction and the update.

1) Prediction: Let’s suppose that at instant k + 1, we have

already an estimation of xk which we denote x̂k. We model the

error ek = xk − x̂k as a random variable following a centered

Gaussian distribution for which we suppose that we know the

covariance matrix Pk. The prediction consists in simulating the

modeled dynamics of the system if it were neither noisy nor

perturbed. We define:

x̄k+1 =f(x̂k) (15)

where x̄k+1 is the predicted state. This prediction commits also an

error ēk+1 = xk+1 − x̄k+1 which is due to the transport of ek

by f in addition to the process noise vk+1. We model also the

error ēk+1 as a Gaussian random variable and we linearize f to

approximate its covariance matrix:

P̄k+1 = Fk+1PkF
t
k+1 +Qk+1 (16)

where Qk+1 is the covariance matrix of vk+1, and

Fk+1 =
∂f

∂x

∣

∣

∣

∣

x=x̂k

(17)

This prediction enables to estimate the measurements obtained if

the state was equal to the prediction:

z̄k+1 = h(x̄k+1,qk+1, q̇k+1, q̈k+1,
C
pc1k+1

, . . . ,
C
pcnk+1)

(18)

where z̄k+1 is the predicted measurement vector.

2) Update: The update consists in using the actual measurements

to correct, to some extent, the prediction of the previous step.

The actual measurements are in our case the vector zk+1 =
[

yt
gk+1

yt
ak+1 01×3n

]t
. We define the measurements innova-

tion:

ezk+1 = zk+1 − z̄k+1 (19)

Again, this error is modeled as a Gaussian random variable, and

the covariance matrix is approximated as follows:

Pzk+1 = Hk+1P̄k+1H
t
k+1 +Rk+1 (20)

where Rk+1 is the covariance matrix of wk+1, and

Hk+1 =
∂h

∂x

∣

∣

∣

∣ x = x̄k+1, q = qk+1, q̇ = q̇k+1, q̈ = q̈k+1,

C
pc1

=
C
pc1k+1

, . . . ,

C
pcn

=
C
pcnk+1

(21)

This enables to compute the near-optimal gain Kk+1 minimizing

the quadratic error expectation for the estimation error ek+1 =
xk+1 − x̂k+1, where

x̂k+1 = x̄k+1 +Kk+1ezk+1 (22)

The near-optimal gain Kk+1 is obtained as follows:

Kk+1 = P̄k+1H
t
k+1Pz

−1

k+1 (23)

And the corresponding covariance matrix of ek+1 is then

Pk+1 = (I −Kk+1Hk+1)P̄k+1 (24)

The size of the measurements vector zk may change if a contact

on environment is removed or added, but this does not change the

state value nor the extended Kalman filter developments.

We have now an estimator of the flexibility deformation in its

6DoF and its derivatives. This estimation can be directly used for

example in order to correct the position of the end effector as we

show in the next section.

IV. HAND POSITION COMPENSATION

A. The hand position in the world frame

When a humanoid robot interacts with the environment, the end-

effector has usually to follow trajectories in the control reference

frame. We have seen that because of flexible parts of the robot, these

trajectories may differ in the world reference frame. Moreover, if

the robot has to exert forces on the environment in some tasks, such

as drilling a wall, the reaction force will create a deformation of

the flexible parts and will move the end effector from its reference

position.

We propose here to show a direct use of the flexibility observer.

We put HRP-2 on its feet, we ask the robot to keep the right

hand at a given reference position/orientation, summarized in a

homogeneous matrix Mr , and we push the robot to excite flexibility.

However, the hand controller takes only references expressed in

C. So, the classical solutions consists in working in the control

reference frame C, giving a reference CMr = Mr . Obviously

the hand will swing with all the robot, and will not keep its

reference position, when the flexibility is deformed. Instead, we

propose to ask for another reference of hand position and orientation
CMr = M−1

C Mr , with the flexibility deformation MC estimated

using the extended Kalman filter described in the prevous section.

If the flexibility is efficiently reconstructed, the hand will stay at

the same position in the world reference frame (see Figure 4).

Fig. 4. On the left, the hand compensation in the world reference frame.
On the right what happens at the same time in the control reference frame.

B. Experimental setting

To achieve this setting, we use the Stack of Tasks framework [14],

which is a task-based hierarchical inverse kinematics solver. The

tasks were set, in a decreasing priority order, to (i) keep both feet

on the ground and the center of mass above the middle of them,

in the control reference frame (ii), keep the height Cpt and the

orientation CRt of the trunk (waist, chest and head), (iii) keep the

right hand at CMr = WM−1

C Mr and (iv) reproduce with the left

hand the motion of the right hand. The last task is just to play the

role of counterweight and avoid unstable dynamical effects of hand

compensation.



The stack of tasks (SoT) enables also to introduce a feed-forward

term which is the desired velocity of the task in the control reference

frame. We introduce then also the following desired hand linear and

angular velocities

C
ṗr =[Rt

CωC ]×R
t
C(pC − pr)− R

t
C ṗC (25)

C
ωr =− R

t
CωC (26)

where pr is the reference position of the hand in the world reference

frame.

To show the performances of the observer, three experiments

were conducted:

1) the reference orientation of the trunk CRt is constant at

upright position, and the robot is pushed to excite flexibility.

The expected result is that the hand stays at the reference

position while the whole robot is displaced.

2) the reference orientation of the trunk CRt oscillates in time.

The IMU is then excited and provides oscillating measure-

ments. The flexibility is excited as well, due to torques that

move the upper-body, but the excitation is of much smaller

magnitude than when the robot is pushed.

3) the oscillation of the trunk and the external perturbations

are combined. The estimator has to distinguish between the

signals due to the oscillation and those due to flexibility

deformation.

C. Results

During the first experiment, the external perturbations made the

robot oscillate of up to 0.175 rad (about 10◦). The hand position, be-

ing at 1.1 m distance to the contact point, if it was not compensated,

would move by about 20 cm. Instead, the hand moves by less than

2.0 cm. During the second experiment, the flexibility was slightly

excited and observed by the Kalman filter. However the oscillation

of the upper-body created vibration, detected particularly by the

gyrometer. which lead to small estimation error, the hand moved

by about 1.5 cm. During the third experiment, the combination of

oscillation and the perturbation did not degrade the performances

and the hand moved still by less than 2.0 cm.

The results are summarized in Fig. 5, and the relevant signals

and observations in Fig. 6. The video attachment presents also the

performances under several angles, including the ankle of the robot,

and shows responses to lateral perturbations. We remind that only

the right hand is stabilized and the left hand is just a counterweight.

V. DISCUSSION AND CONCLUSION

We have seen through this paper that the contact with envi-

ronment enables to take profit from the position-orientation cou-

pling, in order to better distinguish between body accelerations

and gravitational component in accelerometer measurements. The

separation of these two signals have two benefits: it increases

the precision in verticality estimation (pitch and roll), but also it

provides information on the acceleration of the attitude and position.

The combination of the inertial measurements and legs kinemat-

ics is already a subject or active research, but almost exclusively

on multi-legged robots for odometry and localization purposes [15],

[16], [17], [18], [19], [20]. These methods provide reliable infor-

mation on the position in the world. However, none of them took

profit of the accelerations-gravity decoupling, even when attitude

reconstruction was an important component of the reconstructed

state vector [19], [20].

To our best knowledge, only one method takes this advantage,

which is presented by Bloesch et al. [21] for a multi-legged

18 mm

2 
m

m

14 mm

1 
m

m

19 mm

4 
m

m

Fig. 5. In the top left, a screen capture of the robot’s hand during the
compensation experiment. In the top right a superimposition of the two
pictures of the extreme points of hand stabilization during the excitation
of the flexibility. In the bottom left, a superimposition of extreme positions
during oscillation. And in the bottom right, a superimposition of extreme
positions during combined oscillation and excitation of the flexibility. For
each superimposition, the position displacement for the hand is shown.

robot. They used the contact information provided by proprioceptive

sensors and kinematics model and merged them with IMU signals in

an multiplicative/additive extended Kalman filter. They could then

constrain the dynamics of their state to respect contact kinematics,

and use translations-rotation coupling to improve their estimation.

However, their model considers the IMU signals as inputs to the

system and not measurements. So their model of the dynamics is

an integration of the measurements. This prevents having another

model of the state dynamics (e.g. inverted pendulum, spring damper,

etc) because this would remove IMU information from models.

They also consider slipping contacts as measurements, which may

be adapted to walking on uncertain environments, but which leads to

the non-observability of the position as aknowledged by the authors.

That means that the position may drift for long observation periods.

This would lead for example the hand compensation experiment to

deviate eventually from the reference positions. This issue could

possibly be partially solved by reducing the covariance of the noise

model of the measurements, but Kalman filtering is likely to have

numerical issues with too certain or perfect measurements [22]. In

fact, for humanoid robots in known environments, we can consider

the contacts as firmly linked to the ground and this should be

exploited to constrain the dynamics of the reconstructed attitude,

as presented in our study. Finally, Bloesch et al. model a rigid

contact with the ground while our model enables small deviation

in translation from the contact point. This deviation may happen

in the case of a flexibility in translation, but this is different from

slipping contact because in average the contact position is assumed

constant, as it is guaranteed by our observer.

Some issues may raise and be considered as limitations of our

approach. First, if there is more than one flexible part in the

robot, one single IMU does not guarantee the observability of the

flexibility. In that case, a solution may be to use several IMUs [23].

Second, in the case the joint positions are not perfectly known,

the estimations error would be proportional to errors in contact

positions and to errors in the position/orientation of the IMU and

their derivatives in the control frame.
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Fig. 6. Signals of accelerometer along x, the gyrometer around y, and
flexibility orientation ΩC around y, in the case of the three experiments. In
top, the first experiment (the external perturbations on the upright robot).
In middle, the second experiment (the robot’s trunk is oscillating without
external perturbations). In bottom, the third experiment (trunk oscillation
and external perturbations are combined).

Finally, the main purpose of a flexibility-deformation state-

observer should go beyond simply stabilizing end-effectors. Indeed,

estimating efficiently the flexibility deformation means that (i) we

know the actual kinematics of the center of mass in the world

reference frame and (ii) we have an estimation of the ground

reaction forces if we have a model of the force-response to

deformations of the flexible part of the robot. Both estimations

are precious information on the dynamic balance of the humanoid

robot. Therefore, the main objective of this study is to open the

way to balancing and stabilizing techniques that would not only run

on robots that are not equipped by force sensors, but also provide

redundant sensing to stabilization methods relying on force/torque

sensors.
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