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Abstract

In the perspective of annotating a text with

respect to an ontology, we have partici-

pated in the subtask 1 of the BB BioNLP-

ST whose aim is to detect, in the text,

Bacteria Habitats and associate to them

one or several categories from the Onto-

Biotope ontology provided for the task.

We have used a rule-based machine learn-

ing algorithm (WHISK) combined with a

rule-based automatic ontology projection

method and a rote learning technique. The

combination of these three sources of rules

leads to good results with a SER measure

close to the winner and a best F-measure.

1 Introduction

Ontology-based semantic annotation consists in

linking fragments of a text to elements of a do-

main ontology enabling the interpretation and the

automatic exploitation of the texts content. Many

systems annotate texts with respect to an ontology

(Dill et al., 2003). Some of them use machine-

learning techniques to automate the annotation

process (Ciravegna, 2000).

On one side, machine-learning techniques de-

pend strongly on the amount and quality of pro-

vided training data sets and do not use information

available in the ontology. On the other side, using

the ontology to project its elements onto the text

depends strongly on the richness of the ontology

and may neglect important information available

in texts.

Our participation in the subtask 1 (entity de-

tection and categorization) of the BB BioNLP-

ST leverages the provided OntoBiotope ontology

and the training and development data sets pre-

processed using our annotation platform based on

UIMA (Ferrucci and Lally, 2004) (section 2). We

first tested, on the development set, a rule-based

machine-learning algorithm (WHISK (Soderland

et al., 1999)) that used training set examples (sec-

tion 3). Its results are limited because of the weak-

nesses of training data (section 4). We, then, com-

puted a rule-based automatic ontology projection

method consisting in retrieving from the text field

information content provided by the ontology (eg.

name of the concept). Thanks to the wealth of

the OntoBiotope ontology, this method gave good

results (section 5) that have been improved by

adding a rote learning technique that uses train-

ing examples and some filtering techniques (sec-

tion 6). Finally, we combined our method with

WHISK results, which slightly improved the F-

measure (section 7) on the development data.

2 TextMarker and data preprocessing

In a rule-based information extraction or seman-

tic annotation system, annotation rules are usually

written by a domain expert. However, these rules

can be learned using a rule-based learning algo-

rithm. The TextRuler system (Kluegl et al., 2009)

is a framework for semi-automatic development

of rule-based information extraction applications

that contains some implementations of such algo-

rithms ((LP)2 (Ciravegna, 2001; Ciravegna, 2003),

WHISK (Soderland et al., 1999), RAPIER (Califf

and Mooney, 2003), BWI (Freitag and Kushmer-

ick, 2000) and WIEN (Kushmerick et al., 1997)).

TextRuler is based on Apache UIMA TextMarker

which is a rule-based script language.

TextMarker is roughly similar to JAPE (Cun-

ningham et al., 2000), but based on UIMA (Fer-

rucci and Lally, 2004) rather than GATE (Cun-

ningham, 2002). According to some users ex-

periences, it is even more complete than JAPE.

Here is an example that gives an idea about how

to write and use TextMarker rules: Given an

UIMA type system that contains the types SPACE

(whitespace) and Lemma (with a feature ”lemma”

containing the lemmatized form of the matched
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word), the following rule can be used to recognize

the term ”human body” in whatever form it ap-

pears in the text (singular, plural, uppercase, low-

ercase):

Lemma{FEATURE("lemma","human")}

SPACE Lemma{FEATURE("lemma","body")

--> MARK(Habitat, 1, 2, 3)};

This rule allows the creation of an annotation

called ”Habitat” that covers the three matched pat-

terns of the condition part of the rule.

To be able to use TextMarker, we have used our

annotation platform based on UIMA to preprocess

data with:

• Tokenisation, lemmatisation, sentence split-

ting and PoS-tagging of input data using

BioC (Smith et al., 2004; Liu et al., 2012).

• Term extraction using BioYatea (Golik et

al., 2013), a term extractor adapted to the

biomedical domain.

• Bacteria Habitat annotation to train learning

algorithms using annotation files provided in

this task (.a2).

For simplicity reasons, we do not take into ac-

count discontinuous annotations. We consider a

discontinuous annotation as the smallest segment

that include all fragments.

3 Rule Learning using WHISK

”In the subtask 1 of the BB BioNLP-ST, par-

ticipants must detect the boundaries of Bacteria

Habitat entities and, for each entity, assign one

or several concepts of the OntoBiotope ontology.”

Should we decompose the task into two subtasks

like it is suggested in the task formulation : (1) en-

tity detection and (2) categorization ? To answer

this question, we have conducted two experiments.

• Learning the root concept Habitat without as-

signing a Category to matched terms.

• Learning Bacteria Categories directly: each

Habitat Category is learned independently.

For the two experiments we considered only

Categories that have more than two examples in

the training set to train WHISK. Results are shown

in Table 1:

Experiment Precision Recall F-measure

Habitats learning 76.9% 24.5% 37.2%

Categories learning 77.3% 24% 36.6%

Table 1: Habitats learning vs Categories learning

WHISK gives an acceptable precision but a

low recall (the explanation is provided in sec-

tion 4) for both experiments. There is no big

difference between the two experiments’ results:

WHISK doesn’t generalize over Habitats Cate-

gories. Learning Habitat Categories seems to be

the easier and safer way to use WHISK in this task.

4 Weaknesses of training examples

explain poor rule learning results

Training Development Total

Nb. Concepts: 333 274 491

Nb. Habitat: 934 611 1545

Nb. Annotation: 948 626 1574

Nb. C. 1 Instance: 182 179 272

Nb. C. 2 Instances: 66 41 86

Nb. C. > 2 Instances: 27 15 133

Number of concepts in ontology: 1756

Table 2: Figures on provided data

A close look at data samples helps understand

why the WHISK algorithm did not obtain good re-

sults. Table 2 exhibits some figures on training and

development data:

• 158 of the 274 concepts (58%) present in the

development data do not appear in the train-

ing data.

• Concepts present in sample data account for

19% of the ontology for the training data,

16% for the development data and 28% for

their combination.

• Obviously, it is difficult for a machine learn-

ing algorithm to learn (i.e. generalize) on

only one instance. This is the case for 55%

(272) of the concepts considering both the

training and the development sample data.

• If we consider that at least 3 instances are

needed to apply a machine learning algo-

rithm, only 27% of concepts present in the

training or development data are concerned.

This means that the ontology coverage is less

than 8%.

The conclusion is that training data are too

small to lead to a high performance recall for a

machine learning algorithm based exclusively on

these data.

5 The wealth of the ontology helps build

an efficient ontology-based rule set

The BB BioNLP-ST’s subtask 1 provides the On-

toBiotope ontology used to tag samples. For ex-
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ample, the information provided by the ontology

for the concept MBTO:00001516 is

[Term]

id: MBTO:00001516

name: microorganism

exact_synonym: "microbe" [TyDI:23602]

related_synonym: "microbial" [TyDI:23603]

is_a: MBTO:00000297 ! living organism

Text segments tagged with this concept in ex-

amples are : microbe, microbial, microbes,

microorganisms, harmless stomach bugs.

One can notice that the name, exact synonym

and related synonym field information provided

by the ontology can help identify these segments.

If this strategy works, it will be a very robust one

because it is not sample dependent and it is ap-

plicable for all the 1756 concepts present in the

ontology.

The main idea is to directly search and tag in

the corpus the information provided by the con-

tent of fields name, exact synonym and related-

synonym of the ontology. Of course, projecting

them directly on samples raises inflection issues.

Our corpus provides two levels of lemmatisation

to avoid inflection problems: one from BioC and

the other from BioYaTeA. Our experiments show

that using the two of them in conjunction with the

token level (without any normalisation of words)

provides the best results. For example, the rules to

project name field of MBTO:00001516 are:

Token{REGEXP("ˆmicroorganism$")

-> MARKONCE(MBTO:00001516,1)} ;

Lemma{FEATURE("lemma","microorganism$")

-> MARKONCE(MBTO:00001516,1)} ;

Term{FEATURE("lemma","microorganism$")

-> MARKONCE(MBTO:00001516,1)} ;

Table 3 provides results obtained on develop-

ment data. We have also used training data to gen-

erate rote learning rules introduced in the next sec-

tion.

Rule set name Precision Recall F-measure

name: 67.4% 61.2% 64.2%

exact synonym: 61.2% 4.2% 7.8%

related synonym: 26.6% 5.9% 9.7%

rote learning: 63.6% 50.2% 56.1%

all together: 58.9% 73.8% 65.5%

Table 3: Performances of some sets of rules

6 Improving ontology-based rules

Rote learning rules

Results obtained for name and exact synonym

rules in Table 3 are very encouraging. We can

apply the same strategy of automatic rule genera-

tion from training data to text segments covered by

training examples. Projection rules are generated,

as described in section 5, for each example seg-

ment using the associated concept’s name as the

rule conclusion. This is a kind of rote learning.

Of course, we use an appropriate normalised ver-

sion of example segment to produce appropriate

rules based on BioC lemmatisation and BioYaTeA

lemmatisation1. For example, rote learning rules

for the segment harmless stomach bugs tagged

as MBTO:00000297 in trainning data are:

Token{REGEXP("ˆharmless$")}

Token{REGEXP("ˆstomach$")}

Token{REGEXP("ˆbugs$")

-> MARKONCE(MBTO:00001516,1,3)} ;

Lemma{FEATURE("lemma","harmless")}

Lemma{FEATURE("lemma","stomach")}

Lemma{FEATURE("lemma","bug")

-> MARKONCE(MBTO00001516,1,3)} ;

Rule sets filtering

Rule set name Precision Recall F-measure

name: 87.6% 55.1% 67.6%

exact synonym: 94.4% 2.7% 5.3%

related synonym: 71.4% 2.4% 4.6%

rote learning: 75.8% 44% 55.8%

all together: 80.9% 63.4% 71.1%

all together bis: 81.4% 63.4% 71.2%

Table 4: Performances of sets of filtered rules

A detailed analysis shows that our strategy

works well on the majority of concepts, but pro-

duces poor results for some concepts. To over-

come this limitation, we have adopted a strategy

consisting in filtering (deleting) rules that produce

lots of erroneous matches. More precisely, we

have deleted rules that match at least one time and

that conclude on a concept that obtains both a pre-

cision less or equal to 0.66 and a F-measure less or

equal to 0.66. This filtering is computed on train-

ing data. Table 4 shows performances on develop-

ment data obtained by filtered versions of rules of

table 3.

Rule sets combination

Our goal is to maximise the F-measure. F-

measure in table 4 for exact synonym and

related synonym rules is worse than in table 3 be-

cause of the decrease of the recall. But the com-

bination of the four simple rule sets allows to re-

cover some of the lost recall. The significative im-

1The information from BioYaTeA exists only for seg-
ments identified as a term.
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provement of precision finally leads to an overall

improvement of the F-measure (all together in ta-

ble 4). Removing either one of the four sets of

rules that constitute the all together set of rules

from table 4 leads systematically to a decrease of

the F-measure.

Embedded rules removing

We have noticed a phenomenon that decreases pre-

cision and that can be corrected when combining

ontology-based sets of rules with the rote learn-

ing set of rules. To illustrate it, the name of the

concept MBTO:00002027 is plant. Among exam-

ples tagged with this concept, we can find healthy

plants. The name rule set matches on plants

and tags it with MBTO:00002027 (which is a mis-

take), while the rote learning rule set matches on

healthy plants and tags it with MBTO:00002027.

It is possible to correct this problem by a simple

rule that unmarks such embedded rules:

MBTO:00002027{ PARTOFNEQ( MBTO:00002027 )

-> UNMARK( MBTO:00002027 ) } ;

We have generated such a rule systematically for

all the concepts of the ontology to remove a few

mistakes (all together bis set of rules in table 4).

7 Adding Learned rules

Finally, we have completed the all together bis

set of filtered rules with the rules produced by the

WHISK algorithm. The difference between all to-

gether bis + whisk set of rules and the submitted

set of rules is that, by mistake, the last one did not

contain the related synonym rule set.

It is important to mention that all rules may ap-

ply simultaneously. There is also no execution or-

der between them except for rules that remove em-

bedded ones which must be applied at the end of

the rules set but before WHISK rules.

Rule set name Precision Recall F-measure

all together bis: 81.4% 63.4% 71.2%

all[...] + whisk: 79.1% 65% 71.4%

submitted: 79.3% 64.4% 71.1%

Table 5: Performances of final sets of rules on dev

data

Table 5 summarises performances achieved by

our final rule sets. Precision, Recall and F-

measure are computed on the development data

with rules based on the training data.

Table 6 summarises performances on test data

with the evaluator’s measures achieved by our fi-

nal rule sets based on training plus development

data.

Rule set name Precision Recall F1 SER

all together bis: 66.5% 61.4% 63.9% 42.5%

all[...] + WHISK: 61.4% 64.4% 62.9% 46.0%

submitted: 60.8% 60.8% 60.8% 48.7%

IRISA-TexMex (winner): 48% 72% 57% 46%

Table 6: Performances of final sets of rules on test

data

The subtask 1 of the BB BioNLP-ST ranks

competitors using the SER measure that must be

as close as possible to 0. We are quite close to the

winner with a SER of 48.7% against 46%. Our

F-measure (60.8%) is even better than the win-

ner’s F-measure (57%). Without our mistake, we

would have been placed equal first with a far bet-

ter F-measure (62.9%). We can also notice that

the WHISK rule set contribution is negative while

it was not the case on the developement data.

8 Conclusion and perspectives

Given the wealth of the OntoBiotope ontology

provided for subtask 1 of the BB BioNLP-ST, we

have decided to use a method that consists in iden-

tifying Bacteria Habitats using information avail-

able in this ontology. The method we have used is

rule-based and allows the automatic establishment

of a set of rules, written in the TextMarker lan-

guage, that match every ontology element (Habitat

Category) with its exact name, exact synonyms or

related synonyms in the text. As expected, this

method has achieved good results improved by

adding a rote learning technique based on train-

ing examples and filtering techniques that elimi-

nate categories that don’t perform well on the de-

velopment set.

The WHISK algorithm was also used to learn

Bacteria Habitats Categories. It gives a good pre-

cision but a low recall because of the poverty

of training data. Its combination with the ontol-

ogy projection method improves the recall and F-

measure in developement data but not in the final

test data.

The combination of these sources of rules leads

to good results with a SER measure close to the

winner and a best F-measure.

Actually, due to implementation limitations,

WHISK rules are essentially based on the Token

level (inflected form) of the corpus. Improvements

can be made by ameliorating this implementation
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considering the lemmatized form of words, their

postags and also terms extracted by a term extrac-

tor. There is also another way of improvement

that consists in taking into account the is a rela-

tion of the ontology, both on WHISK rule set and

on ontology-based projection rules. Last, a closer

look at false positive and false negative errors can

lead to some improvements.

Acknowledgments

This work was realized as part of the Quaero Pro-

gramme funded by OSEO, French State agency for

innovation.

References

Mary Elaine Califf and Raymond J. Mooney. 2003.
Bottom-up relational learning of pattern matching
rules for information extraction. J. Mach. Learn.
Res., 4:177–210, December.

Fabio Ciravegna. 2000. Learning to tag for infor-
mation extraction from text. In Proceedings of the
ECAI-2000 Workshop on Machine Learning for In-
formation Extraction.

Fabio Ciravegna. 2001. (lp)2, an adaptive algorithm
for information extraction from web-related texts.
In In Proceedings of the IJCAI-2001 Workshop on
Adaptive Text Extraction and Mining.

Fabio Ciravegna. 2003. (lp)2: Rule induction for
information extraction using linguistic constraints.
Technical report.

Hamish Cunningham, Diana Maynard and Valentin
Tablan. 2000. JAPE: a Java Annotation Pat-
terns Engine (Second Edition). Technical report, of
Sheffield, Department of Computer Science.

Hamish Cunningham. 2002. Gate, a general architec-
ture for text engineering. Computers and the Hu-
manities, 36(2):223–254.

Stephen Dill, Nadav Eiron, David Gibson, Daniel
Gruhl, R. Guha, Anant Jhingran, Tapas Kanungo,
Kevin S. Mccurley, Sridhar Rajagopalan, Andrew
Tomkins, John A. Tomlin, and Jason Y. Zien. 2003.
A case for automated large scale semantic annota-
tions. Journal of Web Semantics, 1:115–132.

David Ferrucci and Adam Lally. 2004. Uima: an
architectural approach to unstructured information
processing in the corporate research environment.
Nat. Lang. Eng., 10:327–348.

Dayne Freitag and Nicholas Kushmerick. 2000.
Boosted wrapper induction. pages 577–583. AAAI
Press.

Wiktoria Golik, Robert Bossy, Zorana Ratkovic, and
Nédellec Claire. 2013. Improving Term Extraction
with Linguistic Analysis in the Biomedical Domain.
Proceedings of the 14th International Conference on
Intelligent Text Processing and Computational Lin-
guistics (CICLing13), Special Issue of the journal
Research in Computing Science, pages 24–30.

Peter Kluegl, Martin Atzmueller, Tobias Hermann,
and Frank Puppe. 2009. A framework for semi-
automatic development of rule-based information
extraction applications. In Proc. LWA 2009 (KDML
- Special Track on Knowledge Discovery and Ma-
chine Learning), pages 56–59.

Nicholas Kushmerick, Daniel S. Weld and Robert
Doorenbos. 1997. Wrapper induction for informa-
tion extraction. In Proc. Int. Joint Conf. Artificial
Intelligence.

Haibin Liu, Tom Christiansen, William A. Baumgart-
ner, and Karin Verspoor. 2012. BioLemmatizer: a
lemmatization tool for morphological processing of
biomedical text. Journal of biomedical semantics,
3(1):3+.

Stephen Soderland, Claire Cardie, and Raymond
Mooney. 1999. Learning information extraction
rules for semi-structured and free text. In Machine
Learning, pages 233–272.

Lawrence H. Smith, Thomas C. Rindflesch and W.
John Wilbur. 2004. MedPost: a part-of-speech
tagger for bioMedical text. Bioinformatics (Oxford,
England), 20(14):2320–2321, September.

143


