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The change of resonance widths in an open system under a perturbation of its interior was
recently introduced by Fyodorov and Savin [PRL 108, 184101 (2012)] as a sensitive indicator of the
nonorthogonality of resonance states. We experimentally study universal statistics of this quantity
in weakly open two-dimensional microwave cavities and reverberation chambers realizing scalar
and electromagnetic vector fields, respectively. We consider global as well as local perturbations,
and also extend the theory to treat the latter case. The impact of the perturbation type on the
width shift distribution is increasing with the number of open channels. We compare the theory to
experimental results for one and two attached channels and to numerical simulations with higher
channel numbers, observing a good agreement in all cases.

PACS numbers: 05.45.Mt, 03.65.Nk, 05.60.Gg

The most general feature of open quantum or wave
systems is the set of complex resonances. They manifest
themselves in scattering through sharp energy variations
of the observables and correspond to the complex poles
of the S matrix. Theoretically, the latter are given by the
eigenvalues En = En− i

2Γn of the effective non-Hermitian
Hamiltonian Heff of the open system [1–4]. The anti-
Hermitian part of Heff originates from coupling between
the internal (bound) and continuum states, giving rise to
finite resonance widths Γn > 0. The other key feature
is that the associated eigenfunctions become nonorthog-
onal [2, 4]. Their nonorthogonality is crucial in many
applications; it influences nuclear cross-sections [5], fea-
tures in decay laws of quantum chaotic systems [6], and
yields excess quantum noise in open laser resonators [7].
For systems invariant under time reversal, like open mi-
crowave cavities studied below, the nonorthogonality is
due to the complex wavefunctions, yielding the so-called
phase rigidity [8–10] and mode complexness [11, 12].
Nonorthogonal mode patterns also appear in reverber-
ant dissipative bodies [13], elastic plates [14], optical mi-
crostructures [15] and lossy random media [16].
Recently, an important connection was recognized in

[17], identifying such nonorthogonality as the root cause
for enhanced sensitivity of open systems to perturbations.
Namely, one considers the parametric motion of complex
resonances under a perturbation of the internal region.
This can be modeled by a Hermitian term V added to
Heff , soH′

eff = Heff+V . By applying perturbation theory
for non-Hermitian operators [17, 18], the complex energy
shift δEn of the nth resonance in leading order reads

δEn ≡ E ′
n − En = 〈Ln|V |Rn〉 . (1)

〈Ln| and |Rn〉 stand for the left and right eigenfunctions
of Heff indexed by the same (non-perturbed) eigenvalue

En. They form a biorthogonal system; in particular,
〈Ln|Rm〉 = δnm but Unm ≡ 〈Ln|Lm〉 6= δnm in general.
U is known in nuclear physics as the Bell-Steinberger
nonorthogonality matrix [2, 5], see also [19]. Crucially,
a nonzero value of the width shift, δΓn = −2Im δEn, is
induced solely by the off-diagonal elements Unm, as is
clearly seen from the following representation [17]:

δΓn = i
∑

m

(UnmVmn − VnmUmn) , (2)

where Vnm = 〈Rn|V |Rm〉 = V ∗
mn. The width shift (2) is

therefore an indicator of the nonorthogonality, vanishing
only if the resonance states were orthogonal.
Note that the nonorthogonality measures studied in [7–

12] are related to the diagonal elements Unn. Those and
the width shift (2) contain complementary information
on nonorthogonality. In particular, the off-diagonal ele-
ments Unm are parametrically stronger for weakly open
systems, when the widths Γ are small compared to the
level spacing ∆ (Γ ≪ ∆): then Un 6=m ∼ Γ

∆ [17] whereas

Unn−1 is only of the order of
(

Γ
∆

)2
[12]. Thus the width

shift (2) is more sensitive to nonorthogonality effects.
In this Letter, we report the first experimental study

of the width shift statistics for fully chaotic systems us-
ing microwave cavities of different kinds. We consider
both local and global perturbations and also investigate
whether a different behaviour occurs in the scalar case
(two-dimensional billiards) and the vectorial case (rever-
beration chambers). Additionally, we perform numerical
simulations for the latter case, where the system’s open-
ness is introduced by local absorption.
Global vs local perturbations.— Analytical treatment

of chaotic systems usually deals with statistical model-
ing based on random matrix theory [20, 21]. We con-
sider below only weakly open systems with time-reversal
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symmetry. The energy levels are then induced by the
eigenvalues of a random matrix drawn from the Gaussian
orthogonal ensemble (GOE). Those N levels are coupled
through the anti-Hermitian part of Heff toM open chan-
nels [1, 2], which are assumed to be statistically equiva-
lent and characterized by the coupling strength κ. In the
regime of weak coupling, κ≪ 1, the resonance positions
En are given just by those eigenvalues, revealing univer-
sal fluctuations on the local scale of ∆ ∼ 1

N in the limit
N ≫ 1. Correspondingly, the wave function components
become Gaussian distributed random variables, yielding
the well-known χ2

M distribution for the resonance widths,

PM (γ) =
1

2M/2Γ(M/2)
γM/2−1e−γ/2 . (3)

Here, we have expressed the widths γn = Γn/Γ in units of
the average partial width Γ = 2κ∆/π. With the variance
var(γ) = 2

M 〈γ〉, distribution (3) becomes sharply peaked
around its mean 〈γ〉 =M when M ≫ 1 [2, 3].
To describe both local and global perturbations on

equal footing, we follow [22, 23] and represent the pertur-
bation term as V =

∑r
q=1 αq|q〉〈q|. Its rank r governs the

transition between the local (r small) and global (r ≫ 1)
case. One can interpret V as r point scatterers char-
acterized by the strength coefficients αq. For example,
a single scatterer added to the system induces an en-
ergy shift δEn = 〈n|V |n〉 = αψ2

n(q) for the nth level,
with ψn(q) = 〈q|n〉 being the wave function component
at point q. However, moving the scatterer from point q to
q′, what we did in our experiment (see Fig. 1), results in
the shift δEn = α(ψn(q)

2−ψn(q
′)2). The latter is equiva-

lent to a rank-2 perturbation with V = α(|q〉〈q|−|q′〉〈q′|)
[23]. Generally, the variance of the energy shifts is given
by var(δEn) = 2

N2 tr(V
2), which sets up a scale for the

parametric level dynamics [24]. Importantly, the rescaled
energy shifts ∼ δEn/

√

var(δEn) (also called ‘level veloc-
ities’) acquire universal fluctuations of a distinct type in
the case of local and global perturbations, being given
by a K0 distribution (for r = 2) [25] and Gaussian, re-
spectively. A gradual transition between the two occurs
quickly as the perturbation rank r grows [23].
For the width shifts at κ ≪ 1, it was shown in [17]

that the assumption of the Gaussian distributed wave
functions results in the following representation for the
rescaled width shifts (‘width velocities’):

yn ≡ δΓn

2κ
√

2var(δEn)
=

√
γn

π

∑

m 6=n

zmvm∆

En − Em
. (4)

Here, real zm are normally distributed random variables
(stemming from coupling to the channels) whereas real
vm = N〈m|V |v〉/

√

Tr(V 2) are the normalized matrix el-
ements (m6=n) of the perturbation. These quantities are
statistically independent, which is a result of separating
independent fluctuations in spectra and in wave functions
of weakly open chaotic systems.
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FIG. 1. (color online). The experimental setup (left) to-
gether with the parametric dependence (right) of the Weyl
normalized energies (+) and widths (red vertical lines) for
two microwave cavities: (a) Sinai stadium with a mov-
able wall (R1=W=240mm, R2=50mm), L ranging from 1.5
to 70.5mm in steps of 0.5mm. (b) Rectangular billiard
(L=340mm, W=240mm) with 19 randomly placed scatter-
ers (black dots) of radius rc=2.3mm. One additional scatterer
(red open circle) with radius rp1=2.3mm or rp2=9.75mm was
moved along the green arrow in steps of δr=1mm or 0.5mm,
respectively, from the starting position (xs,ys)=(20,85)mm to
the final one (xs,ys)=(320,85)mm (the origin is at the lower
left corner). The blue crosses mark the antenna position. The
parameter axis is the change of the billiard length L in (a),
and the scatterer position along the line xs in (b).

To characterize universal statistics of the width veloc-
ities (4), we compute their probability distribution func-

tion, PM (y) = ∆〈∑N
n=1 δ(En)δ(y − yn)〉. Making use of

the convolution theorem, it can be cast as follows [17]

PM (y) =

∫ ∞

0

dγ√
γ
PM (γ)φ

(

y√
γ

)

, (5)

where the function φ(y) is defined by

φ(y) =

∫ ∞

−∞

dω

2π
eiωy

〈

∏

m 6=n

exp

{

−i ωzmvm
πEm/∆

}

〉

. (6)

For global perturbations, the quantities vm become
normally distributed random variables [17], which makes
the averaging over {zm, vm} straightforward. The result-
ing expression can be then reduced to the GOE average
of certain spectral determinants, which was also derived
in [17], with the explicit form of φ being

φ(gl)(y) =
4 + y2

6(1 + y2)5/2
. (7)
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When substituted into (5), it leads to the distribution of

the width velocities in this (global) case, P(gl)
M (y).

The case of local perturbations is more tricky, due to
less trivial statistics of vm. However, an exact result can
be found in the particular case of r equivalent scatterers
(all |αp| = α), which is of interest here. To this end, we
first treat vm = N√

r
(ψm · ψn) as a scalar product of two

r-dimensional vectors of the wave function components

and parametrize it as vm =
√
ηn√
r
νm in terms of their

magnitudes
√
ηn and the projection νm. The advantage

of such a parametrization is that ν and η are statistically
independent [12], with a normal and χ2

r distribution [cf.
Eq. (3)], respectively. Then one can readily perform a
Gaussian integration over {zm, νm} in (6), arriving at

φ(loc)r (y) =

〈√
r√
η
φ(gl)

(√
ry√
η

)〉

η

, (8)

where φ(gl) is given by Eq. (7) and the remaining average
over η is left at the end [26]. Combination of Eqs. (5)
and (8) solves the problem exactly at arbitrary rank r.

Functional dependencies of φ
(loc)
r (y) and φ(gl)(y) are

the same in the tails and differ only in the bulk, but
their difference diminishes quickly as r grows. For small
channel numbers, the difference becomes even less no-
ticeable for the width velocity distribution PM (y), e.g.
see Fig. 2, due to the additional integration in Eq. (5)
over the widths. Since the width distribution (3) tends to

δ(γ−M) asM → ∞, one has PM≫1(y) =
1√
M
φ
(loc)
r ( y√

M
)

as the limiting distribution of the width velocities in this
case. Hence, many-channel systems turn out to be more
sensitive to the impact of finite r than their few channel
analogues. We also mention the general power-law decay
PM (y) ∝ |y|−3 of the distribution at |y| ≫ 1, which can
be linked to the linear level repulsion [17]. Such tails get
exponentially suppressed in chaotic systems with rigid
spectra without spectral fluctuations [12, 27].
Scalar experiments.— To investigate the statistics of

the width velocity for scalar fields we use cylindrical (two-
dimensional) microwave cavities, where the z-component
of the electric field corresponds to the quantum wave
function ψ and the wavenumber k2 to the energy E [28].
Their heights are 8mm leading to a cutoff frequency of
νcut = 18.75GHz. Figure 1 shows the three different
systems. The first one is a chaotic Sinai-stadium billiard
[see Fig. 1(a)] which we will denote as global perturba-
tion. We used the range from the 50th to 100th resonance
for the width velocity distribution. The second (third)
system is a rectangular cavity with 19 scatterers, where
an additional scatterer with the same (a larger) radius
was moved [for further details see Fig. 1(b)], being de-
noted by local 1 (local 2). Again we took resonances
from the 50th to 100th (85th) for the local 1 (2) case.
All three systems are chaotic and in the ballistic regime.
As the resonances for the three systems are well iso-

lated in this frequency regime, the complex eigenfre-
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FIG. 2. (color online). Distribution of the experimental
normalized width velocities y for three systems corresponding
to Fig. 1: Sinai-stadium (global, N), rectangular billiard with
scatterers and one small (local 1, •) or larger (local 2, ⊙)
movable perturber. The solid (dashed) curve stand for the
theoretical prediction for the global (local, r=2) perturbation
at M = 1, according to Eqs. (5), (7) and (8). The lower inset
shows the corresponding behavior of function (8).

quencies have been obtained by Lorentzian fitting. In
all cases we normalize the energies and widths to the
mean level spacing ∆ by using the Weyl formula given
by En/∆ = πA(νn/c)

2+P (νn/c), where νn, A and P are
the eigenfrequency, area and circumference, respectively.
In case of the global perturbation, this unfolding also
removes the global energy shift due to the area change.
In Fig. 1, we also show the dependence of the com-

plex eigenvalues on the parameter for the global and local
level dynamics. The blue crosses indicate the resonance
positions in the units of ∆, whereas the length of the
red vertical lines corresponds to the width. A distinct
difference in the parametric dynamics of the level veloc-
ities (i.e. the change of En with the perturbation) for
the global and local perturbations is already visible here.
The level velocity distribution is Gaussian in the global
case, whereas it is a K0 distribution in the local case,
both cases have been experimentally studied in [25, 29].
Notably, such differences are much less pronounced for
the width velocities, as already discussed before.
In the theoretical description of the width velocities

(4) only two parameters enter: the antenna coupling and
the variance of the level velocities. Both can be fixed in
advance. The antenna coupling can be calculated by [30]

κ =
|1− 〈S11〉ν,p|2

1− |〈S11〉ν,p|2
, (9)

where special care has been taken to remove global phase
shifts induced by the antennas. The average has been
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performed over the whole investigated frequency range
and for all parameters. We find κ1= 0.180 (global), κ2=
0.065 (local 1) and κ3=0.098 (local 2). In principle,
one has to incorporate also the width Γw,n induced by
the additional absorption due to the finite conductance
within the metallic walls. These effects have to be taken
into account if one looks into the width distribution [31].
Here, we assume that Γw,n as a function of the parameter
stays constant or induces much smaller variations than
the change induced by the coupled antenna and there-
fore can be neglected for the width velocity distribution.
Note that we do not assume that Γw,n is the same for all
resonances [11, 32, 33].

Now we look at the experimental distributions of the
normalized width shifts yn, which are presented in Fig. 2.
The normalization of the width Γn takes into account the
variance of the real parts and the coupling extracted as
mentioned before. As M is fixed by the number of at-
tached antennas, i.e. M = 1, there is no free parameter in
the comparison of the experimental results and the the-
ory. In all cases, we find good agreement with the corre-
sponding theoretical predictions. However, the amount
of statistics is not sufficient to distinguish between the
global and local perturbations in the width velocity dis-
tribution. At the only point where this would be possible
from the statistical point of view (y close to 0), the ex-
perimental approximation of neglecting effects induced
by absorption becomes not valid any more. To this end,
we have seen that the width shift is a good quantity to
indicate the nonorthogonality of the eigenfunctions, dif-
ficult to be extracted by other means.

Vectorial electromagnetic cavities.— To support the
validity of this test of nonorthogonality in the three di-
mensional case for electromagnetic vector fields, we now
present experimental results as well as numerical sim-
ulations in a chaotic reverberation chamber (RC). We
also emphasize the dependence on the number of chan-
nels M through various types of losses induced in the
cavity either through an antenna or locally distributed
Ohmic dissipation at walls. The experiments were per-
formed in a commercial reverberation chamber that was
made chaotic by adding three metallic half-spheres on the
walls, see the inset on Fig. 3. The parametric variation
is ensured by an asymmetric stirrer which can be rotated
around a vertical axis. The chaotic character of this cav-
ity has been checked through the methodology described
in Ref. [34]. The volume of the RC is approximately
V = 19m3 and measurements were performed via either
one single dipole antenna connected in a wall or between
the latter antenna and a monopole antenna placed inside
the cavity far from all the walls. These two situations
correspond to M = 1 and M = 2 coupling channels, re-
spectively. The measurements were performed at 104 ex-
citation frequencies regularly spaced in a band of 20 MHz
centered around 400 MHz (corresponding to the 372th
resonance of the RC), for 128 (M = 1) or 90 (M = 2)
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FIG. 3. (color online). Distribution of the width velocities
for several configurations of the chaotic reverberation cham-
ber with rotating stirrer (shown in the inset). Experimental
realization with M=1 (•) and M=2 (⊙) and two numerical
configurations presented in the main text with M=10 (�)
and M=35 (⊡). The lines stand for the corresponding an-
alytical results. For the normalization of the width shifts a
fitted value of the coupling was used, yielding κM=1 = 0.45,
κM=2 = 0.16, κM=10 = 0.049, and κM=35 = 0.019.

positions of the rotating stirrer (acting as a global pertur-
bation) spaced by 1 degree. The mean quality factor is
about 2500, corresponding to a moderate average modal
overlap of d = 〈Γ〉/∆ ≃ 0.4−0.5. Here we extract around
70 resonance frequencies and their widths for each posi-
tion of the rotating stirrer by means of the harmonic
inversion [31]. The resulting distributions of widths are
shown in Fig. 3 (full and empty circles). In these specific
cases, we have used again that the dominant contribu-
tion to the parametric fluctuations of widths comes from
the coupling antenna(s), whereas the other types of losses
(Ohmic dissipation at walls, junction defects, etc.) have
negligible effects. This is further supported by the fair
agreement with the analytical predictions for global per-
turbation at M=1, 2, as illustrated on Fig. 3 [35]. Thus
the width shift distribution, theoretically obtained for
quantum chaotic systems, i.e. scalar fields, appears to be
valid also for vectorial electromagnetic fields.

It is difficult to investigate the role of higher number
of channels experimentally since the coupling of each an-
tenna would have to be reduced, leading to too small
signal to noise ratios for any practical extraction of the
complex resonances. Moreover, in such a case, all the
type of losses would become of the same order as those
induced by antennas. Therefore, we performed numeri-
cal calculations using a finite-element method and calcu-
lated the resonances of two different configurations of the
chaotic RC described in [34, 36], where the coupling was
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mimicked by local absorption at the boundaries through
ohmic dissipative square patches scattered over the walls.
All the patches have the same size, and both their con-
ductivity and their number can be adjusted in order to
obtain a specific value of the quality factor and to con-
trol the effective number of equivalent weakly coupling
channels. Since then the width distribution is given by
eq. (3), one can deduce the effective number of channels
from M/2 = 〈Γ〉2/var(Γ), which is also found to be valid
for reasonably moderate modal overlap [32, 37]. The cou-
pling strength can be estimated by

κ ≃ πd/(2M) . (10)

For the two configurations investigated, we obtained
M = 10, d = 0.34, and κ10 = 0.05 in one case and
M = 35, d=0.51, and κ35 = 0.024 in the other. For both
configurations, the width velocity distributions are shown
on Fig. 3 (full and empty squares) where the fitted values
of κ are κM=10 = 0.049 and κM=35 = 0.019, respectively,
which are very close to the expected values. Again, we
find an excellent agreement with the theoretical predic-
tions, extending our findings for the experimental results.
In conclusion, we experimentally verified the theoreti-

cal results for the width shift distribution [17] for global
perturbations for scalar as well as for electromagnetic
vectorial fields, supporting universal statistics of width
shift fluctuations in weakly open wave chaotic systems.
Additionally, we extended the theoretical approach to ar-
bitrary rank perturbation which was also found to be in
good agreement with our experimental findings.
We acknowledge support by the ANR via the project

CAOREV.
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