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Institut de Mathématiques de Jussieu – Paris Rive Gauche, UMR 7586,

Bâtiment Sophie Germain, case 7012, 75205 Paris Cedex 13, France
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Abstract

We give new Turing machines that simulate the iteration of the Collatz 3x + 1
function. First, a never halting Turing machine with 3 states and 4 symbols, improving
the known 3× 5 and 4× 4 Turing machines. Second, Turing machines that halt on the
final loop, in the classes 3× 10, 4× 6, 5× 4 and 13× 2.
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1 Introduction

Turing machines can be classified according to their numbers of states and symbols. It is
known (see [8] for a survey) that there are universal Turing machines in the following sets
(number of states × number of symbols):

2× 18, 3× 9, 4× 6, 5× 5, 6× 4, 9× 3, 18× 2.

On the other hand, all the Turing machines in the following sets are decidable:

1× n, 2× 3, 3× 2, n× 1.

In order to refine the classification of Turing machines between universal and decidable
classes, properties in connection with the 3x+ 1 function have been considered.

∗Corresponding address: 59 rue du Cardinal Lemoine, 75005 Paris, France.
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Recall that the 3x+ 1 function T is defined by

T (x) =

{

x/2 if x is even
(3x+ 1)/2 if x is odd

This can also be written T (2n) = n, T (2n+ 1) = 3n+ 2. When function T is iterated on a
positive integer, it seems that the loop 2 7→ 1 7→ 2 is always reached, but this is unproven,
and is a famous open problem in mathematics [3]. For further references, we set

3x+1 Conjecture: When function T is iterated from positive integers, the loop
2 7→ 1 7→ 2 is always reached.

The 3x+1 function is also called the Collatz function, and Collatz-like functions are functions
on integers with a definition of the following form: there exist integers d ≥ 2, ai, bi, 0 ≤ i ≤
d− 1, such that, for all integers x,

f(x) =
aix+ bi

d
if x ≡ i (mod d).

With these definitions, we can state the following properties of Turing machines, that have
been used to refine the classification according to the numbers of states and symbols (see [7]
for a survey).

• Turing machines that simulate the iteration of the 3x + 1 function and never halt. It
is known that there are such machines in the sets

2× 8, 3× 5, 4× 4, 5× 3, 10× 2.

We improve these results by giving a 3× 4 Turing machine.

• Turing machines that simulate the iteration of the 3x + 1 function and halt when the
loop 2 7→ 1 7→ 2 is reached. It is known that there is such a machine in the set 6 × 3.
In this article, we give four new Turing machines, in the classes 3× 10, 4× 6, 5× 4 and
13× 2.

• Turing machine that simulate the iteration of a Collatz-like function. It is known that
there are such machines in the sets

2× 4, 3× 3, 5× 2.

2 Preliminaries: Turing machines

The Turing machines we use have

• one tape, infinite on both sides, made of cells containing symbols,

• one reading and writing head,

• a set Q = {A,B, . . .} of states, plus a halting state H (or Z),

2



symbols
10 Ma Mi2
9
8 Ba
7
6 Ma Mi2
5 Ba
4 Mi2 Ma Mi2
3 Ma Mi1
2 Ba Ma Mi2

2 3 4 5 6 7 8 9 10 11 12 13 states

Table 1: Turing machines simulating the 3x + 1 function: Ma = Margenstern [4, 5], Ba =
Baiocchi [1], Mi1 = Michel [6], Mi2 = Michel (this paper). In roman boldface, halting
machines.

• a set Σ = {b, 0, 1, . . .} of symbols, where b is the blank symbol (or Σ = {0, 1}, when 0
is the blank symbol),

• a next move function

δ : Q× Σ → Σ× {L,R} × (Q ∪ {H}).

If δ(p, a) = (b,D, q), then the Turing machine, reading symbol a in state p, replaces a by b,
moves in the direction D ∈ {L,R} (L for Left, R for Right), and comes into state q. On
an input xk . . . x0 ∈ Σk+1, the initial configuration is ωb(Axk) . . . x0b

ω. This means that the
word xk . . . x0 is written on the tape between two infinite strings of blank symbols, and the
machine is reading symbol xk in state A.

3 The known Turing machines

Let us give some more precisions about the Turing machines that simulate the 3x+1 function.
The following results are displayed in Table 1.

Michel [6] gave a 6×4 Turing machine that halts when number 1 is reached. This machine
works on numbers written in binary. Division by 2 of even integers is easy and multiplication
by 3 is done by the usual multiplication algorithm.

Margenstern [4, 5] gave never halting 5 × 3 and 11 × 2 Turing machines in binary, and
never halting 2 × 10, 3 × 6, 4 × 4 Turing machines in unary, that is working on numbers n
written as strings of n 1s.

Baiocchi [1] gave five never halting Turing machines in unary, including 2× 8, 3× 5 and
10× 2 machines that improved Margenstern’s results.

In this article, we give a never halting 3 × 4 Turing machine that works on numbers
written in base 3. Multiplication by 3 is easy and division by 2 is done by the usual division
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algorithm. Note that Baiocchi and Margenstern [2] already used numbers written in base 3
to define cellular automata that simulate the 3x+ 1 function.

By adding two states to this 3× 4 Turing machine, we derive a 5× 4 Turing machine that
halts when number 1 is reached.

We also give three other Turing machines that halt when number 1 is reached:

• A 3 × 10 Turing machine obtained by adding one state to the 2 × 10 Turing machine
of Margenstern [4, 5].

• A 4 × 6 Turing machine obtained by adding one state to the 3 × 6 Turing machine of
Margenstern [4, 5].

• A 13× 2 Turing machine obtained by adding two states to the 11× 2 Turing machine
of Margenstern [4, 5].

4 A never halting 3× 4 Turing machine

This Turing machine M1 is defined as follows:

M1 b 0 1 2
A bLC 0RA 0RB 1RA
B 2LC 1RB 2RA 2RB
C bRA 0LC 1LC 2LC

The idea is simple. A positive integer is written on the tape, in base 3, in the usual
order. Initially, in state A, the head reads the most significant digit, at the left end of the
number. The initial configuration on input x =

∑k

i=0
xi3

i is ωb(Axk) . . . x0b
ω. Then the

machine performs the division by 2, using the usual division algorithm. Partial quotients are
written on the tape. Partial remainders are stored in the states: 0 in state A, 1 in state B.
When the head passes the right end of the number, reading a b, then

• if the remainder is 0, nothing is done: 2n 7→ n,

• if the remainder is 1, a 2 is concatenated to the number: 2n+ 1 7→ n 7→ 3n+ 2.

Then the head comes back, in state C, to the left end of the number and is ready to perform
a new division by 2.

We have the following theorem.

Theorem 4.1 The 3x+ 1 conjecture is true iff, for all positive integer x = xk . . . x0 written

in base 3, there exists an integer n ≥ 0 such that, on input xk . . . x0, the Turing machine M1

eventually reaches the configuration ωb0n(A1)bω.

5 Turing machines that halts on the final loop

5.1 A 3× 10 Turing machine

Margenstern [5, Fig. 11] gave the folowing never halting 2× 10 Turing machine M2.
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M2 b 1 x r u v y z t k
A bRA xRB 1LA kRB xRA xRA rLA rLA yRA
B zLB uRB xRB yRB vLB uRA tLB 1LA xRB bRB

Turing machine M2 works on numbers written in unary, so that the initial configuration
on number n ≥ 1 is ωb(A1)1n−1bω. By adding a new state C, we can detect the partial
configuration (A1)b, and we obtain the following 3× 10 Turing machine M3.

M3 b 1 x r u v y z t k
A bRA xRC 1LA kRB xRA xRA rLA rLA yRA
B zLB uRB xRB yRB vLB uRA tLB 1LA xRB bRB
C bLH uRB yRB

We have the following theorem

Theorem 5.1 The 3x+ 1 conjecture is true iff, for all positive integers n, Turing machine

M3 halts on the initial configuration ωb(A1)1n−1bω.

5.2 A 4× 6 Turing machine

Margenstern [5, Fig. 10] gave the folowing never halting 3×6 Turing machine M4 (Note that
transition (1, z) 7→ (xR2) in this figure should be (1, z) 7→ (rR2)).

M4 b 1 x a z r
A bRA xRB 1LA 1LA rRB
B 1LB aRC 1LB 1LA xRB bRA
C zLC xRC 1LC aRA rRC zLC

Turing machineM4 works on numbers written in unary, with initial configuration ωb(A1)1n−1bω.
By adding a new state D, we can detect the partial configuration (A1)b, and we obtain the
following 4× 6 Turing machine M5.

M5 b 1 x a z r
A bRA xRD 1LA 1LA rRB
B 1LB aRC 1LB 1LA xRB bRA
C zLC xRC 1LC aRA rRC zLC
D bLH aRC xRB

We have the following theorem.

Theorem 5.2 The 3x+ 1 conjecture is true iff, for all positive integers n, Turing machine

M5 halts on the initial configuration ωb(A1)1n−1bω.

5.3 A 5× 4 Turing machine

This Turing machine M6 is defined as follows.
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M6 b 0 1 2
A bLC 0RA 0RB 1RA
B 2LE 1RB 2RA 2RB
C bRD 0LC 1LC 2LC
D bRA bRB 1RA
E bRH 0LC 1LC 2LC

Turing machine M6 is obtained from Turing machine M1 by adding a state D that wipes
out the useless 0s, and a state E that detects the partial configuration b(Bb).

We have the following theorem.

Theorem 5.3 The 3x + 1 conjecture is true iff Turing machine M6 halts on all input x =
xk . . . x0 representing a positive integer written in base 3.

5.4 A 13× 2 Turing machine

Margenstern [5, Fig. 8] gave the following never halting 11 × 2 Turing machine M7 (in this
table, H is not a halting state).

M7 0 1
A 1RI 0RB
B 0RA 0RG
C 0RA 1RD
D 0RC 1RE
E 1RI 1RF
F 1RC 0RG
G 1RC 1RH
H 0RE 1RG
I 1LJ
J 0RB 1LK
K 0LJ 1LJ

This machine works on numbers written in binary, with the least significant bit at the left
end of the number, and digits 0 and 1 coded by 10 and 11, so that the initial configuration on
number n = xk . . . x0 =

∑k

i=0
xi2

i is ω0(A1)x01x1 . . . 1xk0
ω. Division by 2 of even integers

is easy, and multiplication by 3 is done by the usual algorithm.
By adding two new states L and M , we can detect the partial configuration (A1)10, and

we obtain the following 13× 2 Turing machine M8, where Z is the halting state.
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M8 0 1
A 1RI 0RL
B 0RA 0RG
C 0RA 1RD
D 0RC 1RE
E 1RI 1RF
F 1RC 0RG
G 1RC 1RH
H 0RE 1RG
I 1LJ
J 0RB 1LK
K 0LJ 1LJ
L 0RA 0RM
M 0LZ 1RH

We have the following theorem.

Theorem 5.4 The 3x + 1 conjecture is true iff, for all positive number n = xk . . . x0 =
∑k

i=0
xi2

i, Turing machine M8 halts on the initial configuration ω0(A1)x01x1 . . . 1xk0
ω.

6 Conclusion

We have given a new 3× 4 never halting Turing machine that simulates the iteration of the
3x+ 1 function. It seems that it will be hard to improve the known results on never halting
machines.

On the other hand, for Turing machines that halt on the conjectured final loop of the
3x+ 1 function, more researches are still to be done.
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