%0 Journal Article %T Optomechanical Rydberg-Atom Excitation via Dynamic Casimir-Polder Coupling %+ Physique de l'Exciton, du Photon et du Spin (PEPS) %+ Università degli Studi di Padova = University of Padua (Unipd) %+ Laboratoire Charles Coulomb (L2C) %+ Università degli studi di Palermo - University of Palermo %+ Laboratori Nazionali di Legnaro (LNL) %A Antezza, Mauro %A Braggio, Caterina %A Carugno, Giovanni %A Noto, Antonio %A Passante, Roberto %A Rizzuto, Lucia %A Ruoso, Giuseppe %A Spagnolo, Salvatore %< avec comité de lecture %Z L2C:14-065 %@ 0031-9007 %J Physical Review Letters %I American Physical Society %V 113 %P 023601 %8 2014-07-07 %D 2014 %R 10.1103/PhysRevLett.113.023601 %Z Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas] %Z Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]Journal articles %X We study the optomechanical coupling of a oscillating effective mirror with a Rydberg atomic gas, mediated by the dynamical atom-mirror Casimir-Polder force. This coupling may produce a near-field resonant atomic excitation whose probability scales as $\propto (d^2\;a\;n^4\;t)^2/z_0^8$, where $z_0$ is the average atom-surface distance, $d$ the atomic dipole moment, $a$ the mirror's effective oscillation amplitude, $n$ the initial principal quantum number, and $t$ the time. We propose an experimental configuration to realize this system with a cold atom gas trapped at a distance $\sim 2\cdot10 \, \mu$m from a semiconductor substrate, whose dielectric constant is periodically driven by an external laser pulse, hence realizing en effective mechanical mirror motion due to the periodic change of the substrate from transparent to reflecting. For a parabolic gas shape, this effect is predicted to excite about $\sim 10^2$ atoms of a dilute gas of $10^3$ trapped Rydberg atoms with $n=75$ after about $0.5 \,\mu \mbox{s}$, hence high enough to be detected in typical Rydberg gas experimental conditions. %G English %2 https://hal.science/hal-01020218/document %2 https://hal.science/hal-01020218/file/24-PRL_113_023601_2014.pdf %L hal-01020218 %U https://hal.science/hal-01020218 %~ CNRS %~ L2C %~ MIPS %~ UNIV-MONTPELLIER %~ UM-2015-2021