Constitutive modeling of the anisotropic behavior of Mullins softened filled rubbers - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Mechanics of Materials Année : 2012

Constitutive modeling of the anisotropic behavior of Mullins softened filled rubbers

Résumé

Original constitutive modeling is proposed for filled rubber materials in order to capture the anisotropic softened behavior induced by general non-proportional pre-loading histo-ries. The hyperelastic framework is grounded on a thorough analysis of cyclic experimental data. The strain energy density is based on a directional approach. The model leans on the strain amplification factor concept applied over material directions according to the Mul-lins softening evolution. In order to provide a model versatile that applies for a wide range of materials, the proposed framework does not require to postulate the mathematical forms of the elementary directional strain energy density and of the Mullins softening evo-lution rule. A computational procedure is defined to build both functions incrementally from experimental data obtained during cyclic uniaxial tensile tests. Successful compari-sons between the model and the experiments demonstrate the model abilities. Moreover, the model is shown to accurately predict the non-proportional uniaxial stress-stretch responses for uniaxially and biaxially pre-stretched samples. Finally, the model is effi-ciently tested on several materials and proves to provide a quantitative estimate of the anisotropy induced by the Mullins softening for a wide range of filled rubbers.
Fichier principal
Vignette du fichier
PIMM-MM-MERCKEL-2013.pdf (871 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00992343 , version 1 (16-05-2014)

Identifiants

Citer

Yannick Merckel, Julie Diani, Mathias Brieu, Julien Caillard. Constitutive modeling of the anisotropic behavior of Mullins softened filled rubbers. Mechanics of Materials, 2012, 57, pp.30-41. ⟨10.1016/j.mechmat.2012.10.010⟩. ⟨hal-00992343⟩
276 Consultations
225 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More