
HAL Id: hal-00979034
https://hal.science/hal-00979034v2

Submitted on 6 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Smarties: An Input System for Wall Display
Development

Olivier Chapuis, Anastasia Bezerianos, Stelios Frantzeskakis

To cite this version:
Olivier Chapuis, Anastasia Bezerianos, Stelios Frantzeskakis. Smarties: An Input System for Wall Dis-
play Development. Proceedings of the 32nd international conference on Human factors in computing
systems, Apr 2014, Toronto, Canada. pp.2763-2772, �10.1145/2556288.2556956�. �hal-00979034v2�

https://hal.science/hal-00979034v2
https://hal.archives-ouvertes.fr


Smarties: An Input System for Wall Display Development
Olivier Chapuis1,2 Anastasia Bezerianos1,2 Stelios Frantzeskakis2,1,3

1Univ Paris-Sud & CNRS (LRI) 2INRIA
3University of Crete

F-91405 Orsay, France F-91405 Orsay, France GR-70013 Heraklion, Greece

ABSTRACT

Wall-sized displays can support data visualization and collab-
oration, but making them interactive is challenging. Smarties
allows wall application developers to easily add interactive
support to their collaborative applications. It consists of an
interface running on touch mobile devices for input, a commu-
nication protocol between devices and the wall, and a library
that implements the protocol and handles synchronization,
locking and input conflicts. The library presents the input as
an event loop with callback functions. Each touch mobile has
multiple cursor controllers, each associated with keyboards,
widgets and clipboards. These controllers can be assigned to
specific tasks, are persistent in nature, and can be shared by
multiple collaborating users for sharing work. They can con-
trol simple cursors on the wall application, or specific content
(objects or groups of them). The types of associated wid-
gets are decided by the wall application, making the mobile
interface customizable by the wall application it connects to.

Author Keywords

input toolkit; wall display; hand-held touch devices; cscw;
multi-cursors.

ACM Classification Keywords

H.5.2 [Information Interfaces and Presentation]: User Inter-
faces - Graphical user interfaces

INTRODUCTION

High-resolution wall-sized displays allow multiple people to
see and explore large amounts of data. They are well adapted
to data analysis and collaboration, due to physical navigation
that affords a natural pan-and-zoom in the information space,
an enlarged physical space that enables collaborative work,
and millions of pixels that allow viewing large amounts of
data in one shared environment [1, 8]. They are well suited
for application domains such as command and control, data
visualization, astronomical imagery, collaborative design, etc.

Deciding on appropriate interaction techniques for wall dis-
plays is nevertheless not a simple matter. Mice, keyboards and
direct touch are limiting in environments where more than one
user can move freely, come close to the display to see details
or move away to acquire an overview [1]. Research on mid-air
interaction for remote displays (e.g. [22, 37, 25]), and recent
work on mobile devices (mainly smartphones, e.g. [20]) fo-
cuses on specific interactions such as navigation, pointing and

Olivier Chapuis, Anastasia Bezerianos & Stelios Frantzeskakis. Smarties: An

Input System for Wall Display Development. In CHI ’14: Proceedings of the 32nd

international conference on Human factors in computing systems, 2763-2772, ACM,

April 2014.

c© ACM, 2014. This is the author’s version of the work. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive

version will be published in CHI 2014, April 26–May 1, 2014, Toronto, Ontario,

Canada. http://dx.doi.org/10.1145/2556288.2556956

selection. Thus it cannot be applied as-is in real wall-display
applications that need support for multiple users performing
complex interactions that combine navigation, pointing, se-
lection, dragging, text editing and content sharing. Finally,
interaction techniques are often application or content specific
(e.g. using a brain prop to rotate virtual brain scans [10]),
requiring considerable design and implementation effort, thus
making quick prototype development and setup challenging.

The few existing toolkits for programming collaborative in-
teraction on walls require a significant effort to develop com-
munication protocols between input devices and applications
(e.g. [28]), prohibiting quick prototyping. Or assume users
are static (e.g. [35]), forcing them to carry multiple devices
(mice and keyboard) to perform complex tasks while moving.

The design goal of Smarties is to address all of the above:
support complex interactions, using mobile devices to accom-
modate multiple mobile users, in a way that is easy to setup,
develop, and use with different wall-display applications. Our
motivation is the following: although specialized interaction
techniques and devices can be very well adapted to specific
applications, often wall application developers need input tech-
nology they can setup and use quickly to prototype and test
their interactive applications.

Concept and Contributions

The components of the Smarties system, whose concept is
described next, are: (i) an input interface on touch mobile
devices (mobile input interface), (ii) a communication protocol
between these devices and wall applications, and (iii) libraries
implementing the protocol at the wall application side.

Mobile input interface

Classic desktops include a pointing device (mouse), a key-
board, and a clipboard to store data. If a large number of
mice is available, together with associated keyboards and clip-
boards (we’ll call them extended mice), we could use them
for different tasks (e.g. one for pointing, one for selecting
objects, or one for editing a shape or a text object in a drawing
application). Or we could leave a mouse permanently attached
to one or more specific objects (e.g. selected drawing shapes),
making it synonymous to the objects it’s attached to, i.e. a
shortcut to them. In a simple desktop, if we copy a shape
and then a text object in the same application, the second
copy would overwrite the first. With the extended mouse idea
both copies can still be available in their respective mouse’s
clipboard, ensuring persistence of interaction at the task level.

These extended mice, which we call pucks due to their round
shape, form the central component of our mobile input inter-
face. Each puck also has specific actions available to them, in
the form of gestures or widgets on the mobile device: e.g. a

1

http://dx.doi.org/10.1145/2556288.2556956


Figure 1. Left image: mobile device interface. The top area is taken up by multiple pucks. The bottom area has space reserved for (i) storing unused

pucks; (ii) buttons for creating and sharing pucks; and finally (iii) an area for widgets customized by the wall application that can be associated to the

active puck (green one here). The second image presents the view from another mobile device. Here the active puck is the orange one and the green one

looks faded-out as it is unavailable. The last image shows possible presentation and behavior of the cursors on a wall display, controlled by these pucks.

For example a moving puck can be associated with a simple moving cursor (top), moving an object (middle), or a group of objects (bottom).

puck attached to a text object can have shortcut action buttons
for turning text bold, italic, etc. If we move this puck to an-
other text editing object (even in another application) the same
associated actions will still be available.

Multiple such pucks are available at any given time for per-
forming different tasks, and their states (thus the users’ work)
can be stored. They can be also shared between multiple peo-
ple to share tasks with colleagues: e.g. a user can hand over
all her text editing work (including current mouse position,
widget states, clipboard) just by handing over the puck.

This is the concept behind our interface: it is a collection of
extended mice, referred to as pucks, together with their as-
sociated keyboards, widgets and clipboards. They reside in
multiple touch mobile devices, ensuring that users can move
freely in front of the wall, and control a wall application. They
can be seen as simple mouse cursors, or shortcuts to specific
tasks or content on the wall display. They are persistent in
nature and can be shared among collaborating users. In our
design, the associated widgets and keyboards are decided upon
by the wall application, making the puck interface customiz-
able by the wall application they connect to. See Fig. 1.

Protocol and Library

Smarties uses a client - server logic: the server is the wall
application and the clients are the mobile devices. A proto-
col ensures the communication between mobiles and the wall
application, with messages to: set up connections, maintain
synchronization of pucks and their widgets/clipboards/key-
boards across devices, and send high level input events (e.g.
gestures or widget values) associated with the pucks.

The libraries implement the protocol in the server side and
provides developers with the following functionality: a cen-
tralized way to synchronize pucks and their widgets across de-
vices, ways of implementing ownership and locking of pucks,
an event loop with callback functions to handle the events
sent by pucks and their widgets, and methods for dealing with
event conflicts from multiple devices.

The major advantage of the protocol and library is that the
internal workings of pucks are hidden and developers can
setup and use them as they would use regular mice and widgets.
Thus, they provide a quick way of setting up and prototyping
interaction support for wall display applications.

The main contributions of our work are:

• An open-source framework that combines (i) a mobile in-
put interface, (ii) a communication protocol between multiple
mobiles running the interface and the wall applications, and
(iii) libraries encapsulating the protocol and mobile interface
customization functionality, allowing for fast development of
input support for collaborative interactive wall applications.

• The library hides completely the communication between
wall application and mobile interface devices(s) from the de-
veloper. It provides collaborative interaction support in a few
lines of code in the wall application side. And it allows the
customization of the mobile interface with simple instructions
in the wall application side, without modifying the code on
the mobile devices.

• The mobile input interface components support complex
interaction, from touchpad, keyboard, and clipboard, to com-
binations of specialized widgets such as menus, buttons or
sliders with programmable interaction behavior (e.g. a button
for ”gathering” a set of selected objects). Multiple interaction
elements called pucks act as shortcuts either to user tasks or
wall display content, allowing for persistent work, that can can
be stored and shared with other users.

Contrary to systems such as Pebbles [21], jBricks [28],
ZOIL [17] and iRoom/iStuff [2], Smarties focuses on the
input side only, offering an integrated system with a high-
level protocol coupled with libraries that hide the complexity
of the protocol, for quicker input prototyping. Contrary to
these previous systems, it also comes with a ready to use (but
customizable) original input interface running on mobile de-
vices, handling advanced input (e.g. widgets and multi-touch
gestures) and collaborative interaction (e.g. sharing policies).

SMARTIES MOBILE INPUT INTERFACE

The interface on the mobile clients is divided into two areas,
the touch area where pucks exist and the widget area (Fig. 1).

Puck Visual Design and Basic Interaction

A proxy of the entire wall is represented visually on the top
of the mobile device (touch area). A puck is represented as a
small colored circle. We chose a round shape to both provide
a large enough target and remind users of a touch footprint1.

1 Multiple pucks together look like Smarties candies, thus the name
of the system.

2



Users can create several pucks on their device using the
”Pucks” container on the widget area. Each device has at
most one active puck at a time, rendered more opaque. Pucks
can be deleted by moving them back to the ”Pucks” area, or
stored for later use by dragging them in a corridor on the left.
Stored pucks can retain their interaction behavior and any
properties the wall application associated with them. These
designs were informed by user studies (see Applications).

A puck can simply control a cursor of the same color that
appears on the wall. Moving the puck on the touch area
moves the corresponding wall cursor in different ways. When
users drag the puck itself, its wall cursor is moved with a
direct mapping, traversing quickly large distances on the wall
display. When users start the drag outside the active puck,
we use an indirect mapping with appropriate CD gain transfer
functions (see [24]) that slow down at low dragging speeds.
This allows precise cursor movements even when the touch
area is relatively small compared to the size of the wall. To
allow switching between pucks, but limit accidental switching,
users can long-press on another puck to activate it.

By default, a puck is visible in all mobile devices connected to
the wall application to provide awareness during collaboration.
An active puck on one device is seen as locked (faded out) on
other devices and other users cannot use it. This puck becomes
available to all users implicitly when it is no longer active, i.e.
when the user selects another puck, or explicitly, through a
”sharing” button. We have implemented alternative sharing
policies described in the library section.

Widgets and Advanced Interaction

The widgets contained in the widget area are application de-
pendent, and specified directly by the wall application without
changing the mobile interface code (see library section).

A widget can control the active puck’s behavior (e.g. a state
button decides dragging vs hovering behavior for the corre-
sponding wall cursor), execute actions (e.g. a button perma-
nently attaches a set of objects to the puck), or control param-
eters (e.g. a slider changes the opacity of attached objects).

We currently support text view widgets, buttons, toggle but-
tons, check boxes, radio buttons, sliders, and different popup
menu types. For example if users want to annotate objects
attached to a puck, the wall application can specify a button
”annotate” that pops up a keyboard and a dialogue window
with a text field. When the user finishes typing and presses ok
the text is sent from the mobile device to the wall application.
We give more examples in the applications section.

By default a widget is puck dependent: its actions and values
are associated to the active puck, and can thus change or
even disappear when the user activates a new puck. However,
a widget can be specified by the wall application as puck
independent, for executing global actions, e.g. loading a new
scene in our Lenses application example.

The system also supports several touch and tap gestures with
single or multiple fingers. For example to allow wall applica-
tions to distinguish between cursor hover and drag, the touch
area can distinguish a simple drag event (hovering) and a

Figure 2. Basic Architecture. Rounded arrows indicate that the mobile

clients communicate via the library, e.g. if a puck is moved in a client,

this information is sent to the library that (i) transforms it into an event

for the application developer; and (ii) sends it back to the other clients.

tap-and-drag gesture to emulate the usual press-drag-release
interaction seen in touchpads. As we will see in the library
and Lenses application example, detected multi-touch taps and
gestures (e.g. multi-finger pinch or move) are not necessarily
linked to puck movement and can be freely interpreted by the
wall application for other purposes (e.g. zoom the wall view).

THE SMARTIES COMMUNICATION PROTOCOL

A common software architecture for tiled wall displays con-
sists of a master application running on one machine (server),
that may be connected to slave machines on a rendering clus-
ter. User input is sent to the master application, that in turn
instructs the slaves to modify their rendering state depending
on the input events. A Smarties library sits on the master appli-
cation side, managing input received from the mobile interface
clients trough our communication protocol (see Fig. 2).

This abstract protocol is hidden by a library (described next),
and ensures that the mobile interface client implementation is
independent of the wall application. This section describes the
internal communication process between the mobile clients,
that are application agnostic, and the wall application.

Our high-level protocol: (i) is extensible, (ii) does not require
programming or restarting the mobile clients, (iii) synchro-
nizes states among multiple mobiles, (iv) supports complex
multi-finger input and (v) widgets and keyboard mapping.

Extensibility

For the mobile clients a server is an IP address and a com-
munication port that sends or receives messages. All mes-
sages from a mobile client to the wall server start with the
IP address of the client, considered as their unique identi-
fier. A message consists of a name followed by a sequence of
typed values (boolean, integer, float, double or string), whose
length depends on the name of the message (e.g. <IP, menu,

[list of item names]> for a popup menu).

Our protocol builds upon OSC2, a low level communication
protocol that is flexible in message naming and length. It can
thus be extended either by adding new messages or appending
new values at the end of existing messages, ensuring that new
types of widgets and behaviors can be added.

Mobile Client Customization

To connect to a wall server, a client sends a NewConnection

message (msg) at startup or when the user changes the IP
or port (i.e. the wall server ID). Clients send continuously
interaction messages. Whenever the wall receives a msg from
an unknown client it sends a Hello msg, and whenever a client

2
http://opensoundcontrol.org/introduction-osc

3

http://opensoundcontrol.org/introduction-osc


receives such a msg it resets itself to receive customization
information. Thus, it is never necessary to restart a mobile
client (even if a different wall application is started) and a wall
server can ask a mobile client to reset itself at any time (e.g.
to install a different interface on the mobile).

After communication is established, the server initializes and
customizes the mobile client. This consists of: (i) a msg defin-
ing default behaviors, e.g. what touch events the client should
send; (ii) a description of the widgets that will appear in the
widget area, their types, relative positions, values, labels, etc.;
and (iii) the description of any existing pucks, through a series
of NewPuck msg, consisting of a unique puck id, a position, a
color, an icon name and a status (free/locked/active).

Puck Synchronization

Mobile clients ask the server to create a puck with a
AskNewPuck msg. The server responds with a NewPuck msg
with a unique puck id to all the clients (with active status
for the requesting client). After that, to ensure interactive
response times, the mobile client can update its pucks’ state,
and simultaneously send messages to reflect user interaction
that modify the status of a puck (e.g. store, activate, move,
etc.). In turn, the server forwards this information to the other
clients, or can chose to ignore them and force a change of
state on the requesting client. Thus while puck creation and
management is centralized on the server side to synchronize
different mobile clients, requests from mobile clients are also
treated locally to ensure quick responses to users’ actions.

Single- and Multi-touch events

Our protocol distinguishes one finger drag on the touch area
used to manipulate the pucks (move, activation, etc.) from
multi-fingers gestures and multi-taps that a wall application
can use for specific purposes. We provide two alternatives
(chosen by the wall server at connection time): a raw protocol
that simply forwards the touch events (with time stamps), and
a Smarties protocol consisting of higher level events.

The raw protocol sends the usual three events: Down or Up with
a unique “finger” identifier and position, or Motion as an array
of positions with a unique identifier for each down “finger”.

The Smarties protocol sends msgs consisting of single and
multi-tap events3 that report: the number of taps and number
of fingers for each tap, followed by single- or multi-finger
move or multi-finger pinch gesture events. So a simple single-
finger drag can be interpreted as cursor hover, while a tap and
then drag as a press-drag-release interaction. Or a two finger
pinch can be interpreted as global zoom, while a three finger
pinch can scale a particular object. Thus due to the nature
of the protocol, either the number of taps or the number of
fingers can act as modifiers for the semantic of a gesture.

Widgets & Keyboard

When users interact with a widget on a mobile client, a msg
is sent describing the id of the active puck and the new state
of the widget (e.g. button click, state of a toggle button, value
for a slider, etc.). The server propagates the msg to the other
clients, synchronizing the widgets’ state. For example, if a

3 Sequence of finger taps separated by less than 200 ms.

client changes the value of a slider, the server communicates
this value to all other clients that in turn update the value of
the corresponding slider immediately, if the slider is global, or
when the associated puck becomes active on them.

Finally there are messages to ask a client to map or unmap a
keyboard. Regarding key events (up and down) sent by the
mobile clients, we have fixed a keyboard mapping so that the
protocol does not depend on a specific client toolkit or OS.

SMARTIES LIBRARIES FOR WALL APPLICATIONS

We wanted Smarties mobile clients (under Android), to be
setup and used as input by wall application developers, al-
most as easily as desktop developers can use a mouse. To
simplify the protocol, a library implementation takes care of
issues not directly related to the behavior of a wall application,
such as connections, maintaining states, etc. We developed
a multi-platform C++ library (libSmarties) and a Java library
(javaSmarties) for Smarties.

The libraries hide the protocol and the communication needed
to keep puck properties synchronized across mobile clients.
It also simplifies the initialization, widget creation and han-
dling through callbacks. The heart of the libraries is an event
queue that provides Smarties events of various types: puck cre-
ate/delete/store/activate, touch events and widget use. These
come with data structures and classes for the pucks, Smarties
events and widgets. The class for pucks also includes an object
(the “clipboard”) used solely for storing application specific
data. Functions are also provided to facilitate the synchroniza-
tion of widget states, and to access a large part of the protocol
allowing customization, extensions and advanced use.

Wall application developers can create new sharing policies or
use one of the three already implemented: strict, where pucks
are unlocked and available to others only when an explicit
share action is taken; medium, where a puck is immediately
unlocked when another is selected; or permissive, where a
puck is unlocked if it is not actively used.

Example walkthrough

Let us sketch the needed code for a wall application to support
multi-cursors with pick-and-drop of graphical objects using
Smarties. We use the C++ version of the library here, but both
are (intentionally) very similar.

We first create a Smarties object with the wall geometry:

Smarties *smarties = new Smarties(wallWidth, ...);

We can then override some defaults, e.g. the sharing policy
and the type of multitouch events, using simple class methods.
The final step in the initialization is to create some widgets in
the widget area. Here we create a slider in the center of the
widget area to change the size of the cursor associated to the
active puck, set the default value of the slider, specify that it is
puck dependent (default) and attach it to a callback function.

SmartiesWidget *slider; int wid;

slider = smarties->addWidget(

&wid, SMARTIES_WIDGET_TYPE_SLIDER, "Cursor Size",

0.3f,0.3f,0.3f,0.6f);

slider->slider_value = 50; // default range from 0 to 100

slider->dependence(SMARTIES_WIDGET_DEP_PUCK); // default

SET_CALLBACK(slider, &sliderHandler);

4



After the initialization, the smarties instance is ready to run
on a thread, smarties->run(). The library provides access to
the events that can be handled in a classic ”event loop”:

SmartiesEvent *evt;

while((evt = smarties->getNextEvent()) != NULL) {
puck *p = evt->puck; // the puck of this event

float x = (p->getX()*wallWidth); // x pos in the wall

float y = (p->getY()*wallHeight); // y pos in the wall

// switch on event type ...

switch(evt->type) {
case SMARTIE_EVENTS_TYPE_CREATE:

// a new puck; create an associated WallCursor

p->app_data = new WallCursor(x, y);

break;

case SMARTIE_EVENTS_TYPE_DELETE:

delete (WallCursor)p->app_data; // remove wall cursor

// allows the library to delete the puck

smarties->delete(p);

break;

// ... handle the other event types

In the code above we assume that we have a WallCursor class
that draws a cursor at a given position, and the code just (i)
creates an instance of this class for each new puck and stores
it in the field of the puck object reserved for the application;
and (ii) removes the wall cursor if the puck is deleted. Store
and restore puck events can also be handled by using methods
defined in the WallCursor class.

We assume that the application has a picker to select graphical
objects rendered in the wall, and that such objects can be
attached to a cursor. Here is an example of coding pick-and-
drop interaction (tap to pick) using Smarties touch events.

case SMARTIE_EVENTS_TYPE_TAP:

WallCursor *wc = (WallCursor)p->app_data;

if (wc->attached_object != NULL) {
wc->attached_object = NULL; // drop

else { // pick eventually

wc->attached_object = pickObject(x,y);

}
break;

case SMARTIE_EVENTS_TYPE_MOVE:

// move wall cursor and attached_object if not NULL

((WallCursor)p->app_data)->move(x, y);

break;

Widget callback functions are called in the same manner from
the event loop, for synchronization purposes and for allowing
to pass on data depending on the interaction context:

case SMARTIE_EVENTS_TYPE_WIDGET:

evt->widget->handler(evt->widget, evt, some_data);

break;

In our example, the slider callback just calls the setSize

method of the WallCursor class that changes the cursor size:

void sliderHandler(

SmartiesWidget *w, SmartiesEvent *evt, void *user_data) {
WallCursor *wc = (WallCursor)w->puck->app_data;

wc->setSize(w->slider_value);

}

The example illustrates how implementing mobile multi-user
input for a wall application with libSmarties resembles closely
the usual development of interactive applications using an
event loop. Here multi-user pick-and-drop is supported with
code very similar to the one a developer would use to code
pick-and-drop for a single mouse. Thus, Smarties allows to
quickly prototype input for mobile multi-user interaction, so

as to move fast into more interesting aspects, for instance
collaborative pick-and-drop: observe how one user can pick
an object with a puck on one side of the wall, share it with
another user, that can then drop it on the other side.

Although the library treats commands executed simultane-
ously as FIFO (e.g. when two users want to activate the same
free puck), it does not deal with complex operations that may
cause conflicts in the state of the application, for instance if a
user tries to pick a graphical object that is already picked by
someone else in our example. These situations are highly ap-
plication dependent and as such need to be handled by the wall
application itself, e.g. by adding a picked state to graphical
objects that is checked in pickObject for our example.

APPLICATION EXAMPLES

Besides toy examples for testing, we developed three wall dis-
play applications to demonstrate our framework. These server
applications are developed in different rendering engines, a
Java one (zvtm-cluster [28]) and two C++ ones (Equalizer [7],
and Qt4 with OpenMPI5), showing how Smarties is indepen-
dent of the rendering engine. The first application was used to
design the Smarties concepts and client interface, informed by
user studies. The other two use libSmarties and are drastically
different, demonstrating the generality of the Smarties system.

a. Object Grouping (server in ZVTM cluster, Java)

In a workshop we conducted on potential wall display uses, a
group of biologists felt wall displays could be an appropriate
environment to collaborate for their task of cataloging photos
of plants sent by volunteers in the field. Depending on their
expertise, they sort and tag the images based on specific char-
acteristics (origin, leaf or stem shape and color, flower family,
etc.), compare them with existing images for similarities, and
group them into entries of existing plants. Similar needs for
wall display use have been identified in [10] where a team of
neuroscientists needed to compare and classify brain images
to study variations in the brain.

Motivated by such scenarios we developed a prototype ap-
plication (Smarties client and wall application), that allows
users to access one or more objects on the wall display, apply
properties (tagging), and perform actions on them (grouping
and moving). The prototype can be seen in Fig. 3 and was
preceded by two iterations used to run laboratory experiments.

Interface: A puck’s behavior is set through toggle buttons on
the widget area: (i) a select mode adds or removes objects
in a group associated with the puck by a simple tap when
the corresponding cursor is on the object; (ii) a move mode
where a simple gesture on the touch area moves together all
the objects selected by the puck; and in our final prototype (iii)
a cursor-inside mode that allows interaction inside an object as
if it is a classical desktop application window. In this last case
the cursor associated to the puck is confined inside the object
and the touch area of the mobile devices acts as a touchpad (in
our prototype we use it to treat some objects as post-it notes
where free hand drawing and annotation is possible).

4
http://qt.digia.com/

5
http://www.open-mpi.org/

5

http://qt.digia.com/
http://www.open-mpi.org/


Figure 3. Object selection and grouping with three users. The interface

running on a phone (left, middle user) and on a tablet (right, right user).

Six state button widgets have been added by the application. The ”Cur-

sor Inside” action (device on the right) is attached to the active green

puck, and acts as a mouse cursor confined inside a window.

The Smarties widget area also has buttons to perform actions:
“Gather” groups spatially all the selected objects of a puck;
“Deselect All” deselects all objects selected by a puck; and
“Annotate” pops up a keyboard and adds a text tag to the objects
selected by a puck. These behaviors and actions indicate how
a puck goes beyond cursor control and can be associated with
multiple wall objects and properties.

User Studies: With an initial prototype, we run a first user
study comparing Smarties to an interface where objects on the
wall were represented on the client device, a simplification
of a world in miniature (WiM) interface [34]. Participants in
pairs, had to group rectangles on two different locations on
the wall either based on their color or on a small text label that
forced participants to see rectangles up-close (see Fig. 4). We
varied the difficulty of the task by controlling the number of
rectangles to be classified (10 or 30) and by optionally adding
distractor rectangles (0, 10 or 30) using a third color or label.

We found that Smarties (i) leads to fewer input conflicts, i.e.
manipulation of the same object by two user (a conflict hap-
pened in 1.9% of the trials for Smarties and in 8.6% of the trial
for WiM); (ii) leads to fewer errors, i.e. moving an object in
the wrong place (error rate of 5.3% for Smarties and of 14.3%
for WiM); (iii) showed better performance when tasks become
more difficult (presence of distractors and number of objects).
Moreover, participants gave it significantly higher subjective
scores on speed, accuracy, comfort and cognitive demand. We
also noticed that participants could use the touch area of the
Smarties client while keeping their attention on the wall.

In a second experiment we explored how users shared and
reused pucks, refined their selections, and tagged sets of ob-
jects. The task was motivated by our biologists scenario:
participants had to select groups of objects and then progres-
sively refined these selections depending on different roles
assigned to them. Optimal strategies led to exchanging se-
lections by sharing pucks and keeping some selections alive

Figure 4. Participants collaborating and performing grouping by color.

for reuse. Overall, pucks helped users share and exchange
work. Nevertheless, their reuse comes at the cost of display
clutter: users either kept potentially useful pucks by placing
them out of the way; or decided to continue using them for
other tasks to avoid having many pucks on the screen, risking
duplicating work later. This led to the design of the ”storage”
pucks area on the left of the widget area, that allows short term
storage (persistence during a working session). Application
programmers can turn this into a long term storage by saving
the state of the stored pucks and their widgets, and resending
them to mobile clients at connection time in the next session.

b. Multiple Lenses and DragMags (server Equalizer, C++)

Despite their size and resolution, wall displays are relatively
small compared to existing data sets and big high resolution
images (e.g. galaxy surveys). This led to the study of pan-and-
zoom navigation alternatives [25]. However, these techniques
are not well adapted to multi-user contexts, as they affect
the entire screen and prevent concurrent navigation. We de-
veloped a prototype (Fig. 5) where users can create and use
several fisheyes, magnification lenses and DragMags to navi-
gate scenes, allowing local multi-user multi-scale navigation.
We used Equalizer, a powerful platform for developing cluster
applications for intensive, but fast, graphics rendering.

Interface: When created, a puck is a simple touchpad cursor
on the wall. Actions are performed on the object (lens or
anchor) that is each time under the puck cursor. Users can use
a button on the widget area to create a magnification lens at the
cursor’s position. They can then change the type of lens with a
popup menu (magnification, magnification with transparency,
or fisheye), transform a magnification lens into a DragMag (a
lens whose focus or ”anchor” is at a remote location), or move
it to a new location using a tap-and-drag gesture.

A puck can also be attached to a specific object with a tog-
gle button, and any subsequent puck movements move the
attached object. This is interpreted by the wall application as
locking the object to that puck, making it unaccessible to other
pucks. Thus lenses can act as territories that mobile users can
lock and move with them.

A DragMag can be manipulated by two pucks, one attached to
the lens itself and one to its anchor. Users can move the anchor
around to see content from different areas of the wall close to
their position (as in [5, 19]). This can be done collaboratively
by two users, each manipulating one puck.

6



Figure 5. Left: Multiple Lenses, starting from the left a magnification lens, a DragMag and a fisheye. Right: the two mobile client interfaces running on

tablets. The four pucks are attached respectively to a magnification lens (left of wall), the anchor and lens of a DragMag (middle) and a fisheye (right).

The active puck is the blue for the device on top, and green for the bottom. The described widgets added by the application are seen on the widget area.

We grouped global widgets (i.e., independent of the active
puck) at the bottom of the widget area. A drop down menu
loads a new scene, and another sets the behavior of two lenses
bumping each other. We use a 2D physical model where the
lenses are considered as disks with their center attached to the
ground with a spring. A global slider is used to change the
strength of the spring from rigid, where bumping lenses don’t
move at all, to flexible, where they are pushed out of the way
by other lenses and spring back when possible.

Advanced Functionality: Thanks to libSmarties it was easy
to add multi-touch features: A two finger pinch changes the
magnification factor, or resizes the lens if it is preceded by
a tap. A three finger pinch changes both the size and the
magnification factor so that the content rendered in the lens
does not change. We also use a five finger pinch for lens
creation (finger expansion) and deletion (finger contraction).

We used the store area to “bookmark” positions on the scene.
Dragging a puck attached to a lens into the store area will hide
the lens, but the wall application remembers both the position
and the properties of the lens (type, magnification factor, etc.).
If a user restores the puck, the wall application restores the
lens and its properties to its original position.

Input Extensions: Although we developed this application
using Smarties, we easily extended it to other input techniques,
such as implicit input by tracking user movement. We used the
distance of the user to the wall to change a lens’ magnification
factor (keeping the viewing area constant), and the position
of the user to have the lens follow her. This required some
setup work (linking the prototype to a motion tracking system
and code appropriate computations). When it come to the user
interaction, i.e. to allow a user to enable and disable these
features, we added 10 lines of code to the wall application: two
toggle buttons to the clients and corresponding widget handlers
that enable/disable the features related to the different input
techniques. By following a MVC development architecture
we were able to easily share the event handling code from
Smarties with other inputs.

c. Wall Native Cursors (server in Qt with OpenMPI, C++)

Several pieces of software6 allow sharing a mouse, keyboard
and clipboard between computers. In the presence of a ren-
dering wall cluster, one can use the mouse and keyboard of a
computer outside the cluster to control different machines of
the cluster by moving the cursor from the ”edge” of one screen
to another. This allows interacting with the native window
system of each machine for testing or admin purposes.

Interface: We implemented such a software on top of Smar-
ties and extended it further. An active puck moves the native
cursor of the screen it is on, and the client’s touch area is used
as a touch pad: one finger tap is a left click; two and three
finger taps are middle and right clicks; tap and drag are a press
and drag; and two moving fingers emulate a mouse wheel
(with four directions). For text input the clients contain a
popup keyboard, and buttons that emulate complete keyboard
shortcuts that appear often (e.g. CTRL+Z). In the wall applica-
tion, we forward the pointer/key events to the slave machines,
and we added a transparent overlay covering each screen to
render large cursors at the position of the pucks (larger than
the native cursors), that are visible at a distance.

There are obvious advantages of using the Smarties over a
traditional sharing application on a laptop or desktop computer:
users can move freely and at any distance in front of the wall
with their mobile, while ”moving” interactively the cursor
from screen to screen. They can also create several pucks,
reserving some for certain areas of the wall, or associating
them to some selection (as each puck has its own clipboard).
Moreover, several users with their own pucks can interact in
front of the wall, working with the native windowing system
of the screens closest to them, thus transforming the wall
into a computer lab. Users can also share their work via the
clipboard by exchanging pucks. Note, however, that as our
native window manager does not support multi-pointers, if
two (or more) active pucks are on the same screen, then they
will all send pointer events leading to cursor jumping. This
can be solved by introducing a priority rule in the server side
such as “the older puck in a screen controls the cursor”.

6 E.g. PointRight [18] or synergy http://synergy-foss.org/.

7

http://synergy-foss.org/


Figure 6. The mobile client running with the Smarties wall cursors appli-

cation. A drop-down menu has been triggered by the top-left button of

the widget area, to choose one of three replication modes.

Replication Extension: What came naturally to mind when
testing this prototype was to replicate the interaction done
in one screen to others. Our wall consists of 16 identical
machines, each with two graphic cards driving two screens
(30” and 2560×1600 each). We added a drop-down menu to
the client (Fig. 6) for choosing ways to replicate interaction
done in one screen with a puck: (i) no-replication (as the
examples so far); (ii) all-machine replication (i.e., on half of
the screens); and (iii) all-screen replication.

Replication can be used for graphical administration of a clus-
ter. We configured the window manager (FVWM) so that a
right click (3 fingers tap) pops up a menu of common applica-
tions (a terminal, packages manager, a browser, etc.). A user
can then open 16 terminals simultaneously (one on each ma-
chine) and start typing commands. She can start the package
manager and install an application on all the machines as she
would on her desktop computer (we installed Gimp and VLC
this way), or start simultaneously a web browser to search
and download a video on all machines (as we did with the
basketball clip shown in our video figure).

We used this replication mechanism to experiment with a col-
laborative artistic performance scenario using the image editor
Gimp7. In all-screen mode an artist starts Gimp and draws
simultaneously on all 32 canvases. The artist can switch to no-
replication mode to draw on a specific canvas, or collaborate
with other artists, each using their own puck in no-replication
mode. At the end the artist saves the 32 created images in
machine-replication mode and uses a script to upload and
combine all the images into a single art piece.

We also experimented with a propagation delay in the inter-
action replication. We added to the Smarties clients a toggle
button to switch on/off this propagation delay, and a slider
to set the delay d. When this mode is on, the interaction per-
formed by the puck on one screen is replicated to its adjacent
screens after d ms, to their adjacent screens after 2 × d ms,
and so on. This leads to interesting effects, such as being able
to observe one’s interaction history.

Although this example started as a basic cursor support for
the wall, the ease of programming and flexibility of Smarties
allowed us to think of creative ways to interact beyond what
we originally envisioned.

7
http://www.gimp.org/

DISCUSSION AND FUTURE WORK

As Greenberg [11] explains, building toolkits is an iterative
process. Smarties went through at least three major devel-
opment iterations (see Applications), that were informed by
usability studies of the interface and observations of its use in
complex tasks, while progressively hiding nonessential house-
keeping and input managing tasks. It has several desired
characteristics of groupware toolkits [11], such as the ability
to work in common languages (C++, Java) and use a known
event programming paradigm, hide low level implementation
details related to communication and sharing, and can be used
in a few lines of code. More importantly, the flexibility of the
library gave the means to think creatively and come up with
diverse and often playful application examples.

As researchers in wall display interaction and visualization, it
gave us the freedom to:

• quickly setup and run pilot studies to determine detailed
interaction needs and explore possibilities for applications
and systems we develop;

• easily prototype and run studies where the main focus is
not the interface design (e.g. studies on visual perception),
without worrying about interaction choices and mobility
constraints (e.g. how can we have moving participants that
need to provide answers both by typing and pointing);

• conduct iterative interface design, by progressively discov-
ering interaction needs, and slowly replacing functionalities
developed for Smarties by other interaction means (e.g. the
addition of motion tracking in the Lens example).

As Olsen mentions [26] there are several ways to evaluate a
toolkit. We hope that our application demonstrations showed
the generality of Smarties for wall display input support. Our
system is designed to reduce the effort of adding input control
and goes beyond previous work on wall display input support,
particularly during the early stages of wall application devel-
opment. Future work includes a more thorough evaluation
of our system by observing its use by other developers. We
will also extend the Smarties (Protocol & Libraries) to support
complex Multi Display Environments (e.g., several walls and
tabletops) and geographically distributed settings. Currently
developers can customize the mobile Smarties interface using
predefined widgets and events. We plan to extend our system
to allow developers to create their own widgets and gestures.

Beyond the toolkit extensions and evaluation, we will study
the potential of the Smarties interface as more than a proto-
typing input mechanism. This requires studies comparing this
interface to other interaction techniques adapted to mobile
settings, such as laser pointers mounted on mobile devices,
mid-air gesture input, and direct touch input on the wall. In
this context it is important to understand the cost of attention
switching between the wall and the mobile when users ma-
nipulate widgets on the Smarties interface. Finally, we will
investigate how the Smarties interface, that has a moveable
ownership context (e.g. groups of objects attached to a mov-
ing puck), affects the perception of working territories [32],
spatial separation [36] and coordination [23], and coworker
and workspace awareness during collaboration.

8

http://www.gimp.org/


RELATED WORK

There is a large body of work on wall display interaction tech-
niques using touch or a pen to reach and manipulate remote
content (e.g. [9, 4]), accessing and manipulating content us-
ing pointing (e.g. [22]), freehand gestures (e.g. [25, 37]), or
combinations of pointing and mobile devices [25]. There is
also work on using custom interaction props (e.g. a motion
tracked brain prop to rotate virtual brains [10]), simple phys-
ical devices [2] or tangible widgets attached to a tablet [16].
This work often requires specialized hardware (e.g. markers,
devices, or touch enabled walls), or at the very least a setup,
training and calibration phase.

Mobile devices such as smartphones and tablets, are widely
available and familiar to users, and have been used as input for
remote displays. Although there are several techniques that
use the mobile’s camera to interact with large displays, they
often require visual markers to identify the remote display (e.g.
[30]). Recently, Touch Projector [6] allowed interaction via
a live video captured with the mobile’s camera, without the
need for markers on the remote screens. This work generally
requires holding the mobiles at eye level to look at the remote
display through their camera, and is better suited for brief
interactions and not long term use.

Touch screens of new generation mobiles can be used to inter-
act with wall displays without the need of additional tracking
technology. They allow user mobility, while having a large
enough interaction surface to accommodate more complex
input. In Hachet et al. [13] multiple users can see in their
devices a view of a 3D object displayed on the wall. Olwal
et al. [27], use mobile devices to display and interact with
parts of radiology material projected on a larger display. They
support multi-touch navigation gestures for manipulating con-
tent. These approaches, following the idea of the peephole
displays [39], assume that the mobile device is aware of the
content displayed on the wall, or can at the very least render
part of it. On the other hand, the Overlay interface [31] uses
the touch display only as input by defining interaction areas
for each user on a wall display. Similarly, ARC-Pad [20] uses
only the mobile’s touchpad to combine absolute (tap) and rel-
ative (drag) cursor positioning on a wall display. Smarties
falls in the middle: our touch area has pucks representing
links to display content (but not the content itself), and it is
configurable while being application agnostic. It is closer to
older approaches using PDA’s, that treat the mobile device as
a personal tool pallet (e.g. [29]), or as cursor and keyboard
controllers (e.g in Pebbles [21] discussed later).

The majority of this work on interaction, supports only very
specific tasks (e.g. point and select, pan and zoom), and needs
to be re-thought in a fully operational environment where
long term use may be tiring, text needs to be entered, and the
wall includes interactive application windows [10, 38] and
not simple targets. The rest tend to be complex to implement
and are highly application dependent. Our goal is to provide
a means to easily add complex interactive support to wall
applications that is easy to setup and use for prototyping.

Existing toolkits for developing interaction on walls focus on
other aspects. The SDG Toolkit [35] and nowadays native

operating system support for multi-user interaction (e.g. [14]),
focus on managing classic input devices attached to a screen
(mice, keyboards, touch input). Supporting user locomotion is
challenging, even when we consider carrying mobile versions
of these devices, as in real life users switch frequently between
tasks that require different devices. JBricks [28], ZOIL [17]
and iStuff [2] provide customizable bridges between remote
displays and different possible input devices, but require pro-
grammers to define or use low level communication protocols
to treat the input events.

Pebbles [21], although not a toolkit, is a concept close to our
work: it includes two different mobile applications, one that
sends cursor and keyboard events from a PDA to a remote
machine and one that provides widget controllers. Smarties
goes further: it is a development toolkit that requires program-
ming only on the server side (not the mobile), with few and
simple lines of code for communication, and thus allows quick
input prototyping of collaborative apps. It has a larger input
vocabulary (gestures and widgets), creates shortcuts to content
on the wall beyond simple cursors, and allows storing and
sharing of interactive work between users.

Work on Single Display Groupware (SDG) [33] has investi-
gated the effects of such environments on user behavior (e.g.
[36]), problems both in following fast moving cursors [3], and
multiple cursor awareness and identification (e.g. [15]). As
pucks are often represented as cursors on the wall, this work
has influenced some of our designs (for example different col-
ored cursors [12]). These important research directions are
orthogonal to our work, as we focus more on the control side
(puck UI), but they need to be considered on the server side in
real world applications that go beyond prototyping.

CONCLUSION

Smarties is an input system for wall sized display application
prototyping. It consists of an application agnostic client that
acts as the input interface and runs on multiple mobile devices,
a communication protocol between the clients and the wall
application, and a library that implements the protocol and
handles input management.

The mobile application is made up of multiple interactive
pucks and associated widgets (e.g. buttons, sliders, menus,
text fields) that allow for command activation, and for chang-
ing properties of the wall application or of the puck behavior.
A puck can be associated with content on the wall display (cur-
sors, objects, groups of objects), and users can store and share
pucks and thus their interaction work. Each wall application
can customize a puck’s widgets to fit its particular needs. A
few lines of code initialize and setup the Smarties and widget
management using an event loop and callback functions.

We demonstrated through 3 application examples using Smar-
ties how the system supports very different wall applications,
with different interaction needs, developed using different wall
display software technology. We hope the ease and flexibility
of Smarties will help wall application designers to quickly add
mobile multi-user interaction support to their systems.

The Smarties software is available at http://smarties.lri.fr/

under free software licenses.

9

http://smarties.lri.fr/


REFERENCES

1. Ball R., North C. & Bowman D. A. Move to improve:
promoting physical navigation to increase user
performance with large displays. CHI ’07, ACM (2007).

2. Ballagas R., Ringel M., Stone M. & Borchers J. iStuff: a
physical user interface toolkit for ubiquitous computing
environments. CHI ’03, ACM (2003).

3. Baudisch P., Cutrell E. & Robertson G. High-density
cursor: a visualization technique that helps users keep
track of fast-moving mouse cursors. INTERACT ’03, IOS
(2003).

4. Bezerianos A. & Balakrishnan R. The Vacuum:
facilitating the manipulation of distant objects. CHI ’05,
ACM (2005).

5. Bezerianos A. & Balakrishnan R. View and space
management on large displays. IEEE CGA 25, 4 (2005).

6. Boring S., Baur D., Butz A., Gustafson S. & Baudisch P.
Touch Projector: mobile interaction through video. CHI
’10, ACM (2010).

7. Eilemann S., Makhinya M. & Pajarola R. Equalizer: a
scalable parallel rendering framework. IEEE TVCG 15, 3
(2009).

8. Endert A., Andrews C., Lee Y. H. & North C. Visual
encodings that support physical navigation on large
displays. GI ’11, CHCCS (2011).

9. Forlines C., Vogel D. & Balakrishnan R. Hybridpointing:
fluid switching between absolute and relative pointing
with a direct input device. UIST ’06, ACM (2006).

10. Gjerlufsen T., Klokmose C., Eagan J., Pillias C. &
Beaudouin-Lafon M. Shared Substance: developing
flexible multi-surface applications. CHI ’11, ACM
(2011).

11. Greenberg S. Toolkits and interface creativity.
Multimedia Tools Appl. 32, 2 (2007).

12. Greenberg S., Gutwin C. & Roseman M. Semantic
telepointers for groupware. OZCHI ’96, IEEE (1996).

13. Hachet M., Decle F., Knödel S. & Guitton P. Navidget for
3D interaction: camera positioning and further uses.
IJHCS 67, 3 (2009).

14. Hutterer P. & Thomas B. H. Groupware support in the
windowing system. AUIC ’07, ACS (2007).

15. Isenberg P., Carpendale S., Bezerianos A., Henry N. &
Fekete J.-D. Coconuttrix: collaborative retrofitting for
information visualization. IEEE CGA 29, 5 (2009).

16. Jansen Y., Dragicevic P. & Fekete J.-D. Tangible remote
controllers for wall-size displays. CHI ’12, ACM (2012).

17. Jetter H.-C., Zöllner M., Gerken J. & Reiterer H. Design
and implementation of post-wimp distributed user
interfaces with ZOIL. IJHCI 28, 11 (2012).

18. Johanson B., Hutchins G., Winograd T. & Stone M.
PointRight: Experience with flexible input redirection in
interactive workspaces. UIST ’02, ACM (2002).

19. Khan A., Fitzmaurice G., Almeida D., Burtnyk N. &
Kurtenbach G. A remote control interface for large
displays. UIST ’04, ACM (2004).

20. McCallum D. C. & Irani P. ARC-Pad: absolute+relative
cursor positioning for large displays with a mobile
touchscreen. UIST ’09, ACM (2009).

21. Myers B. A. Using handhelds and PCs together. CACM
44, 11 (2001).

22. Myers B. A., Bhatnagar R., Nichols J., Peck C. H., Kong
D., Miller R. & Long A. C. Interacting at a distance:
measuring the performance of laser pointers and other
devices. CHI ’02, ACM (2002).

23. Nacenta M. A., Pinelle D., Stuckel D. & Gutwin C. The
effects of interaction technique on coordination in
tabletop groupware. GI ’07, ACM (2007).

24. Nancel M., Chapuis O., Pietriga E., Yang X.-D., Irani P.
& Beaudouin-Lafon M. High-precision pointing on large
wall displays using small handheld devices. CHI ’13,
ACM (2013).

25. Nancel M., Wagner J., Pietriga E., Chapuis O. & Mackay
W. Mid-air pan-and-zoom on wall-sized displays. CHI
’11, ACM (2011).

26. Olsen Jr. D. Evaluating user interface systems research.
UIST ’07, ACM (2007).

27. Olwal A., Frykholm O., Groth K. & Moll J. Design and
evaluation of interaction technology for medical team
meetings. INTERACT ’11, Springer-Verlag (2011).

28. Pietriga E., Huot S., Nancel M. & Primet R. Rapid
development of user interfaces on cluster-driven wall
displays with jbricks. EICS ’11, ACM (2011).

29. Rekimoto J. Pick-and-drop: a direct manipulation
technique for multiple computer environments. UIST ’97,
ACM (1997).

30. Rohs M. Real-world interaction with camera phones.
UCS’04, Springer-Verlag (2005).

31. Satyanarayan A., Weibel N. & Hollan J. Using overlays
to support collaborative interaction with display walls.
IUI ’12, ACM (2012).

32. Scott S. D., Sheelagh M., Carpendale T. & Inkpen K. M.
Territoriality in collaborative tabletop workspaces. CSCW
’04, ACM (2004).

33. Stewart J., Bederson B. B. & Druin A. Single display
groupware: a model for co-present collaboration. CHI

’99, ACM (1999).

34. Stoakley R., Conway M. J. & Pausch R. Virtual reality on
a WiM: interactive worlds in miniature. CHI ’95,
ACM/Addison-Wesley (1995).

35. Tse E. & Greenberg S. Rapidly prototyping single display
groupware through the sdgoolkit. AUIC ’04, ACS (2004).

36. Tse E., Histon J., Scott S. D. & Greenberg S. Avoiding
interference: how people use spatial separation and
partitioning in sdg workspaces. CSCW ’04, ACM (2004).

37. Vogel D. & Balakrishnan R. Distant freehand pointing
and clicking on very large, high resolution displays. UIST

’05, ACM (2005).

38. Wigdor D., Jiang H., Forlines C., Borkin M. & Shen C.
Wespace: the design development and deployment of a
walk-up and share multi-surface visual collaboration
system. CHI ’09, ACM (2009).

39. Yee K.-P. Peephole displays: pen interaction on spatially
aware handheld computers. CHI ’03, ACM (2003).

10


	INTRODUCTION
	Concept and Contributions
	Mobile input interface
	Protocol and Library


	SMARTIES MOBILE INPUT INTERFACE
	Puck Visual Design and Basic Interaction
	Widgets and Advanced Interaction

	The SMARTIES Communication Protocol
	SMARTIES LIBRARIES FOR WALL APPLICATIONS
	APPLICATION EXAMPLES
	a. Object Grouping (server in ZVTM cluster, Java)
	b. Multiple Lenses and DragMags (server Equalizer, C++)
	c. Wall Native Cursors (server in Qt with OpenMPI, C++)

	DISCUSSION AND FUTURE WORK
	RELATED WORK
	CONCLUSION
	REFERENCES 

