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We study the Bhatnagar–Gross–Krook (BGK) approximation to first-order scalar con-
servation laws with a flux which is discontinuous in the space variable. We show that
the Cauchy problem for the BGK approximation is well posed and that, as the relax-
ation parameter tends to 0, it converges to the (entropy) solution of the limit problem.

1. Introduction

We consider the equation

∂tf
ε + ∂x(k(x)a(ξ)fε) =

χuε − fε

ε
, t > 0, x ∈ R, ξ ∈ R, (1.1)

with the initial condition

fε|t=0 = f0 in Rx × Rξ. (1.2)

Here k is given by
k = kL1(−∞,0) + kR1(0,+∞),

where 1B is the characteristic function of a set B, ξ �→ a(ξ) is a continuous function
on R such that, for all u ∈ [0, 1],

∫ u

0
a(ξ) dξ � 0,

∫ 1

0
a(ξ) dξ = 0 (1.3)

and, in (1.1), χuε , the so-called equilibrium function associated to fε is defined by

uε(t, x) =
∫

R

fε(t, x, ξ) dξ, χα(ξ) = 1]0,α[(ξ) − 1]α,0[(ξ)

for t > 0, x ∈ R, ξ ∈ R and α ∈ R.
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954 F. Berthelin and J. Vovelle

Equation (1.1) is the so-called Bhatnagar–Gross–Krook (BGK) approximation
to the scalar conservation law

∂tu + ∂x(k(x)A(u)) = 0, A(u) =
∫ u

0
a(ξ) dξ. (1.4)

The flux (x, u) �→ k(x)A(u) is discontinuous with respect to x ∈ R; actually, (1.4)
is a prototype of the scalar (first-order) conservation law with discontinuous flux
function. In the last 10 years, scalar conservation laws with discontinuous flux func-
tions have been studied extensively. We refer the reader to [6] for a comprehensive
introduction to the subject and a complete list of references (see also [10]). Let us
simply mention that the discontinuous character of the flux function gives rise to a
multiplicity of weak solutions, even if traditional entropy conditions are imposed in
the spatial domain away from the discontinuity. An additional criterion therefore
has to be given in order to select solutions in a unique way. For the scalar conserva-
tion law in the general form ∂tu + ∂x(B(x, u)) = 0, where the function B is discon-
tinuous with respect to x, several criteria are possible [1]. For B(x, u) = k(x)A(u)
as above, the choice of entropy solution is unambiguous [1, remark 4.4] and we
consider here the selection criterion first given in [13]. A kinetic formulation (in the
spirit of [9]) equivalent to the entropy formulation in [13] has been given in [3]. In
particular, solutions given by this criterion are limits (almost everywhere (a.e.) and
in L1) of the solutions obtained by monotone regularization of the coefficient k in
(1.4). For example,

kε(x) = kL1x<−ε(x) +
(

kR − kL

2ε
x +

kR + kL

2

)
1−ε�x�ε + kR1ε<x, ε > 0.

The kinetic formulation of scalar conservation laws is well adapted to the analy-
sis of the (Perthame–Tadmor) BGK approximation of scalar conservation laws.
Developed in [12], this equation is a continuous version of the transport-collapse
method of Brenier [4, 5]. BGK models have also been used for gas dynamics and
the construction of numerical schemes. See, for example, [11] for a survey of this
field.

Our purpose here is to apply the kinetic formulation of [3] to show the convergence
of the BGK approximation. To this end we first study the BGK equation itself
in § 2. In § 3 we introduce the kinetic formulation for the limit problem. We also
introduce a notion of the generalized (kinetic) solution in definition 3.3. We show
that any generalized solution reduces to a mere solution, i.e. a solution in the
sense of definition 3.1. This theorem of ‘reduction’ is theorem 3.4. Then, in § 4 we
show that the BGK model converges to a generalized solution of (1.4) and, using
theorem 3.4, deduce the strong convergence of the BGK model to a solution of
(1.4), theorem 4.1.

A key step in the whole proof of convergence is the result of the reduction of
theorem 3.4. Its proof, given in § 3.2, is close to the proof of uniqueness of solutions
given in [3]. A minor difference is that we deal here with generalized solutions
instead of ‘kinetic process solutions’. There is also a minor error in the proof given
in [3] (specifically, the remainder terms Rα,ε,δ and Qβ,ν,σ in equations (3.17) and
(3.18) of the present paper are missing in [3]). We have therefore given a complete
proof of theorem 3.4.
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A BGK approximation to scalar conservation laws 955

We end this introduction with two remarks.

Remark 1.1. The BGK model provides an approximation of the entropy solutions
to (1.4) by relaxation of the kinetic equation corresponding to (1.4). A relaxation
scheme of the Jin–Xin-type applied directly to the original equation (1.4) has been
developed in [8].

Remark 1.2. The kinetic formulation of scalar conservation laws with discontinu-
ous spatial dependence of the form ∂tu + ∂x(B(x, u)) = 0 (which are more general
than (1.4)) is derived in the last chapter of [2]. We indicate (this would have to be
proved rigorously) that, in the case where our approach via the BGK approximation
was applied to this problem, the solutions obtained would be the type of entropy
solutions considered in [7].

Notation. For p, q ∈ [1, +∞] we denote the space Lp(Rx; Lq(Rξ)) by Lp
xLq

ξ and we
denote the space Lq(Rξ; Lp(Rx)) by Lq

ξL
p
x.

We also set sgn+(s) = 1{s>0}, sgn−(s) = −1{s�0} and sgn = sgn+ + sgn−, s ∈ R.

2. The BGK equation

2.1. The balance equation

By the change of variables f̃ε(t, x, ξ) = et/εfε(t, x, ξ), equation (1.1) can be rewrit-
ten as the balance equation

∂tf̃
ε + ∂x(k(x)a(ξ)f̃ε) =

et/ε

ε
χuε

with (unknown dependent) source term (et/ε/ε)χuε . Hence, we first consider the
following Cauchy problem for the balance equation:

∂tf + ∂x(k(x)a(ξ)f) = g, t > 0, x ∈ R, ξ ∈ R, (2.1)
f |t=0 = f0 in Rx × Rξ. (2.2)

Proposition 2.1. Suppose that kRkL > 0. Then problem (2.1), (2.2) is well posed
in L1

ξL
p
x, 1 � p < +∞: for all f0 ∈ L1

ξL
p
x, T > 0 and g ∈ L1( ]0, T [ ;L1

ξL
p
x), there

exists a unique f ∈ C([0, T ];L1
ξL

p
x) solving (2.1) in D′( ]0, T [ × Rx × Rξ) such that

f(0) = f0. Additionally, we have

‖f(t)‖L1
ξLp

x
� Mk

(
‖f0‖L1

ξLp
x

+
∫ t

0
‖g(s)‖L1

ξLp
x
ds

)
, (2.3)

where Mk = max(kL/kR, kR/kL).

Proof. Since (2.1) is linear, it is sufficient to solve the case when g = 0. The general
case will follow from Duhamel’s formula. Assume without loss of generality that
kR, kL > 0. Let A+ := {ξ ∈ R; a(ξ) > 0}. Then, for fixed ξ ∈ A+, and although k
is a discontinuous function, the ordinary differential equation

Ẋ(t, s, x, ξ) = k(X(t, s, x, ξ))a(ξ), t ∈ R, (2.4)
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956 F. Berthelin and J. Vovelle

with datum X(s, s, x, ξ) = x has an obvious solution for x �= 0, given by

X(t, s, x, ξ) = x + (t − s)kRa(ξ), t > s, when x > 0,

and by

X(t, s, x, ξ) =

⎧⎪⎪⎨
⎪⎪⎩

x + (t − s)kLa(ξ) if t < s +
|x|

kLa(ξ)
,

kR

kL
x + (t − s)kRa(ξ) if t > s +

|x|
kLa(ξ)

,

when x < 0. Denoting the positive and negative parts of s ∈ R by s+ = max(s, 0)
and s− = s+ − s, respectively, and introducing

αk(x) = 1{x>0} +
kR

kL
1{x<0},

this can be summed up as

X(t, s, x, ξ) = {αk(x)x + (t − s)kRa(ξ)}+ − {x + (t − s)kLa(ξ)}−, t > s. (2.5)

Similarly, we have, for the resolution of (2.4) backward in time,

X(t, s, x, ξ) = {x + (t − s)kRa(ξ)}+ − {βk(x)x + (t − s)kLa(ξ)}−, t < s, (2.6)

where
βk(x) =

kL

kR
1{x>0} + 1{x<0}.

A similar computation in the case where a(ξ) � 0 gives the solution to (2.4) by
(2.5) for (t−s)a(ξ) � 0, and by (2.6) for (t−s)a(ξ) � 0. For the transport equation
(∂t + k(x)a(ξ)∂x)ϕ∗ = 0, interpreted as

d
dt

ϕ∗(t, X(t, s, x, ξ), ξ) = 0,

this yields the solution

ϕ∗(t, x, ξ) = ψ(X(T, t, x, ξ), ξ),

which satisfies the terminal condition ϕ∗(T ) = ψ. We suppose in what follows that
ψ is independent of ξ, compactly supported and Lipschitz continuous. Then a simple
change of variable shows that, for every t ∈ [0, T ], for almost every ξ ∈ R,

‖ϕ∗(t, ·, ξ)‖Lq
x

� Mk‖ψ‖Lq
x
, Mk = max

(
kL

kR
,
kR

kL

)
, 1 � q � +∞. (2.7)

If f ∈ C([0, T ];L1
ξL

p
x) solves (2.1), (2.2), then, by duality (note that ϕ∗ is Lipschitz

continuous and compactly supported in x if ψ is) we have, for t ∈ [0, T ], for almost
every ξ ∈ R, ∫

R

f(T, x, ξ)ψ(x, ξ) dx =
∫

R

f0(x, ξ)ϕ∗(0, x, ξ) dx. (2.8)

In particular, for almost every ξ ∈ R, the estimate (2.7), where q is the conjugate
exponent of p, gives

‖f(T, ·, ξ)‖Lp
x

� Mk‖f0(·, ξ)‖Lp
x
,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S030821050900105X
Downloaded from https://www.cambridge.org/core. Bibliothèque Diderot de Lyon, on 19 Nov 2018 at 13:49:51, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S030821050900105X
https://www.cambridge.org/core


A BGK approximation to scalar conservation laws 957

and then by Duhamel’s principle, for g �= 0,

‖f(T, ·, ξ)‖Lp
x

� Mk

(
‖f0(·, ξ)‖Lp

x
+

∫ T

0
‖g(t, ·, ξ)‖Lp

x
dt

)
. (2.9)

The estimate (2.3) and uniqueness of the solution to (2.1), (2.2) readily follows.
Existence follows from (2.5), (2.6) and (2.8), from which one derives the explicit
formula

f(t, x, ξ) = J(t, x, ξ)f0(X(0, t, x, ξ), ξ),

the coefficient J(t, x, ξ) being given by

J(t, x, ξ) = 1{x<0}∪{x>tkRa(ξ)} +
kL

kR
1{0<x<tkRa(ξ)}

if a(ξ) > 0 and

J(t, x, ξ) = 1{x<tkLa(ξ)}∪{x>0} +
kR

kL
1{tkLa(ξ)<x<0}

if a(ξ) � 0.

2.2. The BGK equation

Denote by T (t)f0 the solution to (2.1), (2.2) with g = 0, i.e.

T (t)f0(x, ξ) = J(t, x, ξ)f0(X(0, t, x, ξ), ξ),

with X given by (2.5), (2.6).

Definition 2.2. Let f0 ∈ L1(Rx × Rξ), T > 0. A function fε ∈ C([0, T ];L1(Rx ×
Rξ)) is said to be a solution to (1.1), (1.2) if

fε(t) = e−t/εT (t)f0 +
1
ε

∫ t

0
e−s/εT (s)χuε(t−s) ds, uε =

∫
R

fε(ξ) dξ, (2.10)

for all t ∈ [0, T ].

Theorem 2.3. Assume that kR ·kL > 0. Let f0 ∈ L1(Rx ×Rξ), T > 0. There exists
a unique solution fε ∈ C([0, T ];L1(Rx ×Rξ)) to (1.1), (1.2). Denoting this solution
by Sε(t)f0, we have:

(i) ‖(Sε(t)f
�
0 − Sε(t)f 	

0)
+‖L1(Rx×Rξ) � Mk‖(f �

0 − f 	
0)

+‖L1(Rx×Rξ);

(ii) 0 � sgn(ξ)f0(x, ξ) � 1 a.e. ⇒ 0 � sgn(ξ)Sε(t)f0(x, ξ) � 1 a.e.;

(iii) if f0 = χu0 , u0 ∈ L∞(R), 0 � u0 � 1 a.e., then 0 � Sε(t)f0 � χ1.

Proof. The change of variable (t′, x′) = ε(t, x) reduces (1.1) to the same equation
with ε = 1. We then have to solve f = F (f) for

F (f)(t) := e−tT (t)f0 +
∫ t

0
e−sT (s)χu(t−s) ds, u =

∫
R

f(ξ) dξ.
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By (2.3) and the identity∫
R

|χu − χv|(ξ) dξ = |u − v|, u, v ∈ R,

we have F : C([0, T ];L1
x,ξ) → C([0, T ];L1

x,ξ) and F is a (1 − e−T ) contraction for
the norm

‖f‖ = sup
t∈[0,T ]

‖f(t)‖L1(Rx×Rξ).

Indeed, we compute

‖F (f �)(t) − F (f 	)(t)‖L1
x,ξ

�
∫ t

0
e−s‖T (s)(χu�(t−s) − χu�(t−s))‖L1

x,ξ
ds

=
∫ t

0
e−s‖χu�(t−s) − χu�(t−s)‖L1

x,ξ
ds

=
∫ t

0
e−s‖u�(t − s) − u	(t − s)‖L1

x
ds

�
∫ t

0
e−s‖f �(t − s) − f 	(t − s)‖L1

x,ξ
ds

�
∫ t

0
e−s ds‖f � − f 	‖.

By the Banach fixed-point theorem we obtain the existence and uniqueness of the
solution to (1.1), (1.2). Since 0 � sgn(ξ)χu(ξ) � 1 a.e., we have

0 � sgn(ξ)F (f)(t, x, ξ) � 1 a.e.

if 0 � sgn(ξ)f0(x, ξ) � 1 a.e. This proves part (ii) of theorem 2.3. Part (i) follows
from the following inequality:∫

R

sgn+(f − g)(Q(f) − Q(g)) dξ � 0, f, g ∈ L1(Rξ), Q(f) := χ∫
f dξ − f,

which is easy to check, and from the identity

f(t) = T (t)f0 +
∫ t

0
T (s)Q(f)(t − s) ds

for the solution to (1.1), (1.2). If f0 = χu0 , 0 � u0 � 1 a.e., then 0 = χ0 � f0 � χ1.
Hence, part (iii) of theorem 2.3 follows from part (i) and the fact that any constant
equilibrium function χα, α ∈ R, is a solution to (1.1).

3. The limit problem

Assume f0 = χu0 with u0 ∈ L∞(R), 0 � u0 � 1 a.e. Set

A(u) =
∫ u

0
a(ξ)1[0,1](ξ) dξ. (3.1)
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A BGK approximation to scalar conservation laws 959

Note that by (1.3) we have A � 0 and A vanishes outside the interval [0, 1]. We
expect the solution fε to (1.1), (1.2) to converge to the solution u of the first-order
scalar conservation law

∂tu + ∂x(k(x)A(u)) = 0, t > 0, x ∈ R, (3.2)

with initial datum
u(0, x) = u0(x), x ∈ R. (3.3)

For a fixed T > 0, set Q = ]0, T [ ×Rx.

Definition 3.1 (solution). Let u0 ∈ L∞(R), 0 � u0 � 1 a.e. A function u ∈
L∞(Q) is said to be a (kinetic) solution to (3.2), (3.3) if there exist non-negative
measures m± on [0, T ] × R × R such that

(i) m+ is supported in [0, T ]×R × ]−∞, 1], m− is supported in [0, T ]×R×[0, +∞[ ,

(ii) for all ψ ∈ C∞
c ([0, T [ × R × R),

∫
Q

∫
R

h±(∂tψ + k(x)a(ξ)∂xψ) dξ dt dx +
∫

R

∫
R

h0,±ψ(0, x, ξ) dξ dx

− (kL − kR)±
∫ T

0

∫
R

a(ξ)ψ(t, 0, ξ) dξ dt

=
∫

Q

∫
R

∂ξψ dm±(t, x, ξ), (3.4)

where h±(t, x, ξ) = sgn±(u(t, x) − ξ) and h0,±(x, ξ) = sgn±(u0(x) − ξ).

Proposition 3.2 (bound in L∞). Let u0 ∈ L∞(R), 0 � u0 � 1 a.e. If u ∈ L∞(Q)
is a kinetic solution to (3.2), (3.3), then 0 � u � 1 a.e.

Proof. Consider the kinetic formulation (3.4) for h+ with a test function

ψ(t, x, ξ) = ϕ(t, x)µ(ξ).

If µ is supported in ]1, +∞[ , two terms cancel as follows:∫
R

∫
R

h0,+ψ(0, x, ξ) dξ dx =
∫

R

∫
R

11�u0(x)>ξϕ(0, x)1ξ>1µ(ξ) dξ dx = 0

and ∫
Q

∫
R

∂ξψ dm+(t, x, ξ) = 0

by the hypothesis on the support of m+. Hence, we have
∫

Q

∫
R

h+(∂tϕ + k(x)a(ξ)∂xϕ)µ(ξ) dξ dt dx

− (kL − kR)+
∫ T

0

∫
R

a(ξ)ϕ(t, 0)µ(ξ) dξ dt = 0.
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960 F. Berthelin and J. Vovelle

A step of approximation and regularization shows that we can take µ(ξ) = 1ξ>1 in
this equation. Since∫ +∞

1
a(ξ) dξ = A(+∞) − A(1) = 0 − 0 = 0,

∫ +∞

1
h+(t, x, ξ) dξ =

∫ +∞

1
1ξ<u(t,x) dξ = (u(t, x) − 1)+,

∫ +∞

1
h+(t, x, ξ)a(ξ) dξ =

∫ +∞

1
1ξ<u(t,x)a(ξ) dξ

= sgn+(u(t, x) − 1)
∫ u(t,x)

1
a(ξ) dξ

= sgn+(u(t, x) − 1)(A(u(t, x)) − A(1)),

we obtain∫
Q

(u − 1)+∂tϕ + k(x) sgn+(u − 1)(A(u) − A(1))∂xϕ dt dx = 0.

It is then classical to deduce that (u − 1)+ = 0 a.e. (see the end of the proof of
proposition 3.8 after (3.25)); that is, u � 1 a.e. Similarly, we show u � 0 a.e.

Our aim is to prove the uniqueness of the solution to (3.2), (3.3). Actually, more
than mere uniqueness of the solution to (3.2), (3.3), we will show a result of reduc-
tion/uniqueness (see theorem 3.4) of a generalized kinetic solution. To this end, let
us recall that a Young measure Q → R is a measurable mapping (t, x) �→ νt,x from
Q into the space of probability (Borel) measures on R. The mapping is measurable
in the sense that, for each Borel subset A of R, (t, x) �→ νt,x(A) is measurable
Q → R. Let us also introduce the following notation: if f ∈ L1(Q × R), we set

f±(y, ξ) = f(y, ξ) − sgn∓(ξ), y ∈ Q, ξ ∈ R.

This is consistent with the notation used in definition 3.1 in the case where f = χu.

Definition 3.3 (generalized solution). Let u0 ∈ L∞(R), 0 � u0 � 1 a.e. A func-
tion f ∈ L1(Q × Rξ) is said to be a generalized (kinetic) solution to (3.2), (3.3)
if

0 � f � χ1 a.e., − ∂ξf+ is a Young measure Q → R,

and if there exists non-negative measures m± on [0, T ] × R × R such that
(i) m+ is supported in [0, T ]×R × ]−∞, 1], m− is supported in [0, T ]×R×[0, +∞[ ,

(ii) for all ψ ∈ C∞
c ([0, T [ × R × R),

∫
Q

∫
R

f±(∂tψ + k(x)a(ξ)∂xψ) dξ dt dx +
∫

R

∫
R

f0,±ψ(0, x, ξ) dξ dx

− (kL − kR)±
∫ T

0

∫
R

a(ξ)ψ(t, 0, ξ) dξ dt

=
∫

Q

∫
R

∂ξψ dm±(t, x, ξ), (3.5)

where f0,±(x, ξ) = sgn±(u0(x) − ξ).
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Theorem 3.4 (reduction, uniqueness). Let u0 ∈ L∞(R), 0 � u0 � 1 a.e. Prob-
lem (3.2), (3.3) admits at most one solution. Additionally, any generalized solution
is actually a solution: if f ∈ L1(Q × Rξ) is a generalized solution to (3.2), (3.3),
then there exists u ∈ L∞(Q) such that f = χu.

To prepare the proof of theorem 3.4 we first have to analyse formulation (3.5)
and the behaviour of f at t = 0 and x = 0.

3.1. Weak traces

Introduce the cut-off function

ωε(s) =
∫ |s|

0
ρε(r) dr, ρε(s) = ε−1ρ(ε−1s), s ∈ R, (3.6)

where ρ ∈ C∞
c (R) is a non-negative function with total mass 1 compactly supported

in ]0, 1[ . We have the following proposition.

Proposition 3.5 (weak traces). Let f ∈ L∞(Q × Rξ) be a generalized solution to
(3.2) and (3.3). There exists fτ0

± ∈ L2(R × R), F± ∈ L2( ]0, T [ × R) and a sequence
(ηn) ↓ 0 such that, for all ϕ ∈ L2

c(R×R) and for all θ ∈ L2
c( ]0, T [ × R) (the subscript

‘c’ denotes compact support),
∫

Q

∫
R

f±(t, x, ξ)ω′
ηn

(t)ϕ(x, ξ) dξ dt dx →
∫

R

∫
R

fτ0
± (x, ξ)ϕ(x, ξ) dξ dx,

(3.7)∫
Q

∫
R

f±(t, x, ξ)k(x)a(ξ)ω′
ηn

(x)θ(t, ξ) dξ dt dx →
∫ T

0

∫
R

F±(t, ξ)θ(t, ξ) dξ dt (3.8)

as n → +∞. In addition, there exist non-negative measures mτ0
± and m̄± on R

2

and [0, T ] × R, respectively, such that

(i) mτ0
+ (and, respectively, m̄+) is supported in R × ]−∞, 1] (and, respectively,

[0, T ]× ]−∞, 1 ]), mτ0
− (respectively, m̄−) is supported in R × [0, +∞[ (respec-

tively, [0, T ] × [0, +∞[ ),

(ii) for all ϕ ∈ C∞
c (R2), θ ∈ C∞

c ([0, T [ × R),
∫

R2
fτ0

± ϕ dxdξ =
∫

R2
f0,±ϕ dxdξ −

∫
R2

∂ξϕ dmτ0
± (x, ξ), (3.9)

∫ T

0

∫
R

F±θ dξ dt = −(kL − kR)±
∫ T

0

∫
R

a(ξ)θ dξ dt −
∫ T

0

∫
R

∂ξθ dm̄±(t, ξ).

(3.10)

Proof. The first part of the proposition does not use the fact that f is a solution.
Indeed, since |f±| � 2, we have

∣∣∣∣
∫ T

0
f±(t, x, ξ)ω′

η(t) dt

∣∣∣∣ � 2
∫ T

0
|ω′

η(t)| dt = 2
∫ T

0
ρη(t) dt � 2
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962 F. Berthelin and J. Vovelle

for all (x, ξ) ∈ R
2. This gives, in particular, a bound in L2(K), with K a compact

solution of R
2 on ∫ T

0
f±(t, ·)ω′

η(t) dt,

hence the existence of a subsequence that converges weakly in L2(K). Writing R
2

as an increasing countable union of compact sets and using a diagonal process, we
obtain (3.7). The proof of (3.8) is similar. To obtain (3.9), apply formulation (3.5)
to ψ(t, x, ξ) = ϕ(x, ξ)(1 − ωηn(t)). We obtain (3.9) by using (3.7) and setting

∫
R2

ϕ dmτ0
± (x, ξ) = lim

n→+∞

∫
Q

∫
R

ϕ(x, ξ)(1 − ωηn(t)) dm±(t, x, ξ)

for all non-negative ϕ ∈ Cc(R2): the limit is well defined since the argument is
monotone in n and it defines a non-negative functional on Cc(R2) which is repre-
sented by a non-negative Radon measure. Similarly, applying formulation (3.5) to
ψ(t, x, ξ) = θ(t, ξ)(1 − ωηn(x)), we obtain (3.10) with

∫ T

0

∫
R

θ dm̄±(t, ξ) = lim
n→+∞

∫
Q

∫
R

θ(t, ξ)(1 − ωηn(x)) dm±(t, x, ξ)

for all non-negative θ ∈ Cc([0, T ] × R).

Remark 3.6. Since 0 � f � χ1, (3.7) shows that fτ0
+ (respectively, fτ0

− ) is sup-
ported in R × ]−∞, 1] (respectively, R × [0, +∞[ ). Similarly, F+ (respectively, F−)
is supported in [0, T ]× ]−∞, 1] (respectively, [0, T ] × [0, +∞[ ). We use this remark
to show the following corollary.

Corollary 3.7. For all ϕ− ∈ L∞(R2) supported in [−R, R] × [−R, +∞[ , R > 0,
such that ∂ξϕ− � 0 (in the sense of distributions), we have

lim
n→+∞

∫
Q

∫
R

f+ω′
ηn

(t)ϕ−(x, ξ) dξ dt dx �
∫

R2
f0,+ϕ− dxdξ. (3.11)

For all θ− ∈ L∞( ]0, T [ × R) supported in [0, T ] × [−R, +∞[ , R > 0, such that
∂ξθ− � 0 (in the sense of distributions), we have

lim
n→+∞

∫
Q

∫
R

f+k(x)a(ξ)ω′
ηn

(x)θ−(t, ξ) dξ dt dx � −(kL − kR)+
∫ T

0

∫
R

a(ξ)θ− dξ dt.

(3.12)

Proof. Note first that each term in (3.11) is well defined by the remark above and
that, by (3.7),

lim
n→+∞

∫
Q

∫
R

f+(t, x, ξ)ω′
ηn

(t)ϕ−(x, ξ) dξ dt dx =
∫

R

∫
R

fτ0
+ ϕ− dξ dx.

By regularization (parameter ε) and truncation (parameter M), we have
∫

R2
(fτ0

+ − f0,+)ϕ− dxdξ =
∫

R2
(fτ0

+ − f0,+)ϕε,M
− dxdξ + η(ε, M),
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where limε→0, M→+∞ η(ε, M) = 0. More precisely, we set

ϕε,M
− = (ϕ− ∗ ψε) × χM ,

where ψε is a (smooth, compactly supported) approximation of the unit on R
2 and

χM is a smooth, non-increasing function such that χM ≡ 1 on ]−∞, M ] , χM ≡ 0
on [M + 1, +∞[ . Apply (3.9) to ϕε,M

− to obtain∫
R2

(fτ0
+ − f0,+)ϕ− dxdξ = −

∫
R2

∂ξϕ
ε,M
− dmτ0

+ (x, ξ) + η(ε, M).

For M > R + 1 and ε < 1, we have ϕε,M
− = ϕ− ∗ ψε; hence ∂ξϕ

ε,M
− � 0. It follows

that ∫
R2

(fτ0
+ − f0,+)ϕ− dxdξ � η(ε, M)

for M > R + 1, ε < 1. At the limit M → +∞, ε → 0, we obtain (3.11). The proof
of (3.12) is similar.

3.2. Proof of theorem 3.4

Our aim is to show the following.

Proposition 3.8. Let u0, v0 ∈ L∞(R), 0 � u0, v0 � 1 a.e., and let f (respectively,
g) be a generalized solution to (3.2), (3.3) with datum u0 (respectively, v0). Let
M = supx∈R, ξ∈[0,1] |k(x)a(ξ)|. Then we have, for R > 0,

1
T

∫ T

0

∫
{|x|<R}

∫
R

−f+g− dξ dxdt �
∫

{|x|<R+MT}
(u0 − v0)+ dx. (3.13)

Remark 3.9. In the case where f = χu, g = χv, we have∫
R

−f+g− dξ = (u − v)+,

and hence (3.13) gives the uniqueness of the solution to (3.2), (3.3). More precisely,
it gives the L1-contraction with averaging in time and the comparison result

u0 � v0 a.e. ⇐⇒ u � v a.e.

Remark 3.10. To obtain the second part of theorem 3.4, we apply (3.13) with
g = f to obtain ∫ T

0

∫
{|x|<R}

∫
R

−f+f− dξ dxdt � 0. (3.14)

Since 0 � f � χ1, we have f+ � 0 a.e. and f− � 0 a.e. We deduce from (3.14)
that f+f− = 0 a.e. Let νt,x denote the Young measure −∂ξf+. We have ∂ξf− =
∂ξf − δ0 = ∂ξf+ and, by examination of the values at ξ = ±∞ of f±, for almost
every (t, x) ∈ Q,

f+(t, x, ξ) = νt,x(ξ,+∞), f−(t, x, ξ) = −νt,x(−∞, ξ).

But then the relation f+f− = 0 implies that νt,x is a Dirac mass at, say, u(t, x). By
measurability of ν, u is measurable and f = χu.
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964 F. Berthelin and J. Vovelle

Proof of proposition 3.8. Since f+ and g− satisfy

∫
Q

∫
R

f+(∂tψ + k(x)a(ξ)∂xψ) dξ dt dx +
∫

R

∫
R

f0,+ψ(0, x, ξ) dξ dx

− (kL − kR)+
∫ T

0

∫
R

a(ξ)ψ(t, 0, ξ) dξ dt

=
∫

Q

∫
R

∂ξψ dm+(t, x, ξ) (3.15)

and
∫

Q

∫
R

g−(∂tψ + k(x)a(ξ)∂xψ) dξ dt dx +
∫

R

∫
R

g0,−ψ(0, x, ξ) dξ dx

− (kL − kR)−
∫ T

0

∫
R

a(ξ)ψ(t, 0, ξ) dξ dt

=
∫

Q

∫
R

∂ξψ dp−(t, x, ξ) (3.16)

for all ψ ∈ C∞
c ([0, T [ × R × R) (here, g0,− = sgn−(v0 − ξ) and p− is a non-negative

measure on [0, T ]×R×R supported in [0, T ]×R× [0, +∞[ ). It is possible to obtain
an estimate for −f+g− by setting ψ = −g−ϕ in (3.15) and ψ = f+ϕ in (3.16) (ϕ
being a given test function) and adding the result. First, however, this requires a
regularization step.

Step 1 (regularization). Let ρα,ε,δ denote the approximation of the unit on R
3

given by

ρα,ε,δ(t, x, ξ) = ρα(t)ρε(x)ρδ(ξ), (t, x, ξ) ∈ R
3,

where ρε is defined as in (3.6). Let ψ ∈ C∞
c ([0, T [ × R×R) be compactly supported

in ]0, T [ × R\{0}×R. Use ψ∗ρα,ε,δ as a test function in (3.15) and Fubini’s theorem
to obtain∫

Q

∫
R

fα,ε,δ
+ (∂tψ + k(x)a(ξ)∂xψ) dξ dt dx

+
∫

R

∫
R

f0,+ψ ∗ ρα,ε,δ(0, x, ξ) dξ dx

− (kL − kR)+
∫ T

0

∫
R

a(ξ)ψ ∗ ρα,ε,δ(t, 0, ξ) dξ dt

=
∫

Q

∫
R

∂ξψ dmα,ε,δ
+ (t, x, ξ) + Rα,ε,δ(ψ),

where fα,ε,δ
+ := f+ ∗ ρ̌α,ε,δ, mα,ε,δ

+ := m+ ∗ ρ̌α,ε,δ and

Rα,ε,δ(ψ) =
∫

Q

∫
R

f+[k(x)a(ξ)(∂xψ) ∗ ρα,ε,δ − (k(x)a(ξ)∂xψ) ∗ ρα,ε,δ] dξ dt dx.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S030821050900105X
Downloaded from https://www.cambridge.org/core. Bibliothèque Diderot de Lyon, on 19 Nov 2018 at 13:49:51, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S030821050900105X
https://www.cambridge.org/core


A BGK approximation to scalar conservation laws 965

Here we have defined ρ̌(t, x, ξ) = ρ(−t, −x,−ξ). Also observe that, implicitly, we
have extended f+ by 0 outside [0, T ] since, for example,

∫ T

0
f+(t)ψ ∗ ρα(t) dt =

∫ T

0

∫
R

f+(t)ψ(s)ρα(t − s) ds dt

=
∫

R

ψ(s)
∫ T

0
f+(t)ρ̌α(s − t) dt ds.

Since ψ is supported in ]0, T [ × R \ {0} × R we have, for sufficiently small α, ε,∫
R

∫
R

f0,+ψ ∗ ρα,ε,δ(0, x, ξ) dξ dx = 0,

∫ T

0

∫
R

a(ξ)ψ ∗ ρα,ε,δ(t, 0, ξ) dξ dt = 0

and

Rα,ε,δ(ψ) =
∫

Q

∫
R

f+k(x)[a(ξ)(∂xψ) ∗ ρα,ε,δ − (a(ξ)∂xψ) ∗ ρα,ε,δ] dξ dt dx.

We deduce∫
Q

∫
R

fα,ε,δ
+ (∂tψ + k(x)a(ξ)∂xψ) dξ dt dx =

∫
Q

∫
R

∂ξψ dmα,ε,δ
+ (t, x, ξ) + Rα,ε,δ(ψ).

(3.17)

A similar procedure on g− gives
∫

Q

∫
R

gβ,ν,σ
− (∂tψ + k(x)a(ξ)∂xψ) dξ dt dx =

∫
Q

∫
R

∂ξψ dpβ,ν,σ
− (t, x, ξ) + Qβ,ν,σ(ψ),

(3.18)

where

Qβ,ν,σ(ψ) =
∫

Q

∫
R

g−k(x)[a(ξ)(∂xψ) ∗ ρβ,ν,σ − (a(ξ)∂xψ) ∗ ρβ,ν,σ] dξ dt dx.

Step 2 (equation for −fα,ε,δ
+ gβ,ν,σ

− ). Let ϕ ∈ C∞
c ([0, T [ × R) be non-negative and

compactly supported in ]0, T [×R \ {0}. Note that ϕ does not depend on ξ. Set
ψ = −ϕgβ,ν,σ

− in (3.17) and ψ = −ϕfα,ε,δ
+ in (3.18). Since

f∂t(ϕg) + g∂t(ϕf) = fg∂tϕ + ∂t(ϕfg),

we obtain, by addition of the resulting equations,∫
Q

∫
R

−fα,ε,δ
+ gβ,ν,σ

− (∂tϕ + k(x)a(ξ)∂xϕ) dξ dt dx

= −
∫

Q

ϕ

∫
R

∂ξf
α,ε,δ
+ dpβ,ν,σ

− (t, x, ξ) + ∂ξg
β,ν,σ
− dmα,ε,δ

+ (t, x, ξ)

+ Rα,ε,δ(−ϕgβ,ν,σ
− ) + Qβ,ν,σ(−ϕfα,ε,δ

+ ).
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966 F. Berthelin and J. Vovelle

Note that the term

−
∫

Q

ϕ

∫
R

∂ξf
α,ε,δ
+ dpβ,ν,σ

− (t, x, ξ) + ∂ξg
β,ν,σ
− dmα,ε,δ

+ (t, x, ξ)

is well defined since the intersection of the supports of the functions fα,ε,δ
+ and pβ,ν,σ

−
(respectively, fβ,ν,σ

− and mα,ε,δ
+ ) is compact. Actually, this term is non-negative since

pβ,ν,σ
− , mα,ε,δ

+ � 0 and ∂ξf
α,ε,δ
+ , ∂ξg

β,ν,σ
− � 0. We thus have

∫
Q

∫
R

−fα,ε,δ
+ gβ,ν,σ

− (∂tϕ + k(x)a(ξ)∂xϕ) dξ dt dx

� Rα,ε,δ(−ϕgβ,ν,σ
− ) + Qβ,ν,σ(−ϕfα,ε,δ

+ ). (3.19)

It is easily checked that

Rα,ε,δ(−ϕjβ,ν,σ
− ) = O(ν−1δ), Qβ,ν,σ(−ϕhα,ε,δ

+ ) = O(ε−1σ);

hence,
lim

δ,σ→0
Rα,ε,δ(−ϕgβ,ν,σ

− ) + Qβ,ν,σ(−ϕfα,ε,δ
+ ) = 0.

At the limit δ, σ → 0 in (3.19), we conclude that∫
Q

∫
R

−fα,ε
+ gβ,ν

− (∂tϕ + k(x)a(ξ)∂xϕ) dξ dt dx � 0. (3.20)

Step 3 (traces). Suppose that kL < kR. We then pass to the limit ε, α → 0 in
(3.20) to obtain ∫

Q

∫
R

−f+gβ,ν
− (∂tϕ + k(x)a(ξ)∂xϕ) dξ dt dx � 0. (3.21)

Note that in the opposite case kL > kR, and with our method of proof we would first
pass to the limit on β, ν. Let us now remove the hypothesis that ϕ vanishes at t = 0:
suppose that ψ ∈ C∞

c ([0, T [ × R) is non-negative and supported in [0, T [ × R \ {0}
and apply (3.21) to ϕ(t, x) = ψ(t, x)ωηn(t). We have

∫
Q

∫
R

−f+gβ,ν
− ωηn(t)(∂tψ + k(x)a(ξ)∂xψ) dξ dt dx

+
∫

Q

∫
R

−f+gβ,ν
− ψ(t, x)ω′

ηn
(t) dξ dt dx � 0. (3.22)

By (3.11) applied with ϕ−(x, ξ) = gβ,ν
− (0, x, ξ)ψ(0, x), we obtain

lim
n→+∞

∫
Q

∫
R

f+gβ,ν
− (0, x, ξ)ψ(0, x)ω′

ηn
(t) dξ dt dx

�
∫

R

∫
R

f0,+gβ,ν
− (0, x, ξ)ψ(0, x) dξ dx.

Now f+(t, x, ξ)gβ,ν
− (t, x, ξ)ψ(t, x) has a compact support, say in

[0, T ] × [−R, R] × [−R, R],
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A BGK approximation to scalar conservation laws 967

and thus ϕ−(t, x, ξ) = gβ,ν
− (t, x, ξ)ψ(t, x) is uniformly continuous on this compact

support. Therefore, for µ > 0, there exists γ > 0 such that

|ϕ−(t, x, ξ) − ϕ−(0, x, ξ)| � µ

8R2

for any 0 � t < γ and any x, ξ ∈ [−R, R], and then for large n we have ηn < γ and

∣∣∣∣
∫

Q

∫
R

f+(t, x, ξ)(gβ,ν
− (t, x, ξ)ψ(t, x) − gβ,ν

− (0, x, ξ)ψ(0, x))ω′
ηn

(t) dξ dt dx

∣∣∣∣
�

∫
Q

∫
R

|f+(t, x, ξ)|ρηn
(t)

µ

8R2 1(x,ξ)∈[−R,R]2 dξ dt dx

� µ

∫
ρηn

(t) dt = µ. (3.23)

Thus, we obtain, at the limit n → +∞ in (3.22),

∫
Q

∫
R

−f+gβ,ν
− (∂tψ + k(x)a(ξ)∂xψ) dξ dt dx

+
∫

R

∫
R

−f0,+gβ,ν
− (0, x, ξ)ψ(0, x) dξ dx � 0.

The next step is to remove the hypothesis that ψ vanishes at x = 0 by setting
ψ(t, x) = θ(t, x)ωηn

(x), where θ ∈ C∞
c ([0, T [ × R) is a non-negative test function.

We have
∫

Q

∫
R

−f+gβ,ν
− ωηn

(x)(∂tθ + k(x)a(ξ)∂xθ) dξ dt dx

+
∫

Q

∫
R

−f+gβ,ν
− θ(t, x)k(x)a(ξ)ω′

ηn
(x) dξ dt dx

+
∫

R

∫
R

−f0,+gβ,ν
− (0, x, ξ)θ(0, x)ωηn(x) dξ dx � 0.

By (3.12) with θ−(t, ξ) = gβ,ν
− (t, 0, ξ)θ(t, 0),

lim
n→+∞

∫
Q

∫
R

f+k(x)a(ξ)ω′
ηn

(x)gβ,ν
− (t, 0, ξ)θ(t, 0) dξ dt dx

� −(kL − kR)+
∫ T

0

∫
R

a(ξ)gβ,ν
− (t, 0, ξ)θ(t, 0) dξ dt,

and, by an argument similar to (3.23), the limit as [n → +∞] of the term

∫
Q

∫
R

f+k(x)a(ξ)ω′
ηn

(x)(gβ,ν
− (t, x, ξ)θ(t, x) − gβ,ν

− (t, 0, ξ)θ(t, 0)) dξ dt dx
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968 F. Berthelin and J. Vovelle

is zero. We therefore have∫
Q

∫
R

−f+gβ,ν
− (∂tθ + k(x)a(ξ)∂xθ) dξ dt dx

+ (kL − kR)+
∫ T

0

∫
R

a(ξ)gβ,ν
− (t, 0, ξ)θ(t, 0) dξ dt

+
∫

R

∫
R

−f0,+gβ,ν
− (0, x, ξ)θ(0, x) dξ dx � 0.

Since (kL − kR)+ = 0, we actually have
∫

Q

∫
R

−f+gβ,ν
− (∂tθ + k(x)a(ξ)∂xθ) dξ dt dx

+
∫

R

∫
R

−f0,+gβ,ν
− (0, x, ξ)θ(0, x) dξ dx � 0.

Take β = ηn where (ηn) is given in proposition 3.5. First at the limit ν → 0, then
at n → +∞, we obtain

∫
Q

∫
R

−f+g−(∂tθ + k(x)a(ξ)∂xθ) dξ dt dx

+ lim sup
n→+∞

∫
R

∫
R

−f0,+gηn

− (0, x, ξ)θ(0, x) dξ dx � 0. (3.24)

Observe that

gηn

− (0, x, ξ) =
∫ T

0
g−(t, x, ξ)ρηn

(t) dt

=
∫ T

0
g−(t, x, ξ)ω′

ηn
(t) dt.

By (3.11) (transposed to g− tested against a function ϕ+), we have

lim
n→+∞

∫
R

∫
R

−f0,+gηn

− (0, x, ξ)θ(0, x) dξ dx �
∫

R

∫
R

−f0,+g0,−θ(0, x) dξ dx.

Since ∫
R

−f0,+g0,− dξ =
∫

R

− sgn+(u0 − ξ) sgn−(v0 − ξ) dξ = (u0 − v0)+,

we obtain, by (3.24),∫
Q

∫
R

−f+g−(∂tθ + k(x)a(ξ)∂xθ) dξ dt dx +
∫

R

(u0 − v0)+θ(0, x) dx � 0. (3.25)

It is then classical to conclude to (3.13): let M > 0, R > MT , let η > 0 and let
r be a non-negative, non-increasing function such that r ≡ 1 on [0, R], r ≡ 0 on
[R + η,+∞[ . Set θ(t, x) = (T − t)r(|x| + Mt)/T in (3.25) to obtain

1
T

∫
Q

∫
R

−f+g−r(|x| + Mt) dξ dt dx �
∫

{|x|�R+η}
(u0 − v0)+ dx + I,
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where the remainder term is

I =
∫

Q

∫
R

−f+g−
T − t

T
r′(|x| + Mt)(M + k(x)a(ξ) sgn(x)) dξ dxdt.

By definition of M , I � 0, and since r(|x| + Mt) = 1 for |x| � R − MT , 0 � t � T ,
we obtain

1
T

∫ T

0

∫
|x|<R−MT

∫
R

−f+g− dξ dxdt �
∫

{|x|�R+η}
(u0 − v0)+ dx.

Replacing R by R + MT and letting η → 0 gives (3.13).

4. Convergence of the BGK approximation

Theorem 4.1. Let u0 ∈ L1 ∩ L∞(R), 0 � u0 � 1 a.e. When ε → 0, the solution
fε to (1.1) with initial datum f0 = χu0 converges in Lp(Q × Rξ), 1 � p < +∞, to
χu, where u is the unique solution to (3.2), (3.3).

Proof. For f ∈ L1(Rξ), set

mf (ξ) =
∫ ξ

−∞
(χu − f)(ζ) dζ, u =

∫
R

f(ξ) dξ.

It is easy to check that mf � 0 if 0 � sgn(ξ)f(ξ) � 1 for almost every ξ (see equation
(29) of [5]). In our context, we have 0 � fε � χ1 hence, mε := 1/εmfε � 0. Viewed
as a measure, mε is supported in [0, T ] × Rx × [0, 1]. Integration with respect to ξ
in (1.1) gives

mε(ξ) = ∂t

( ∫ ξ

0
fε(ζ) dζ

)
+ ∂x

(
k(x)

∫ ξ

0
a(ζ)fε(ζ) dζ

)

in D′( ]0, T [ × Rx). Summing over (t, x) ∈ [0, T ] × [x1, x2], ξ ∈ ]0, 1[ , we obtain the
estimate

mε([0, T ] × [x1, x2] × [0, 1]) =
∫ x2

x1

∫ 1

0
(1 − ξ)(fε(T, x, ξ) − fε(0, x, ξ)) dξ dx

+
[ ∫ T

0

∫ 1

0
(1 − ξ)k(x)a(ξ)fε(t, x, ξ) dξ dt

]x2

x1

.

(4.1)

Since fε(t) ∈ L1(Rx × Rξ), there exist sequences (xn
1 ) ↓ −∞ and (xn

2 ) ↑ +∞ such
that the last term of the right-hand side of (4.1) tends to 0 when n → +∞. Since
fε � 0 and ∫

R

∫
R

fε(T, x, ξ) dξ dx �
∫

R

∫
R

χu0 dξ dx = ‖u0‖L1(R),

we obtain the uniform estimate

mε([0, T ] × R × [0, 1]) � ‖u0‖L1(R). (4.2)
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970 F. Berthelin and J. Vovelle

We also have
0 � fε � χ1, −∂ξf

ε
+(t, x, ξ) = νε

t,x(ξ) + O(ε), (4.3)

where νε
t,x(ξ) := δuε(t,x)(ξ) and the identity is satisfied in D′( ]0, T [ × Rx × Rξ).

Indeed, by (1.1),

fε = χuε + ε(∂tf
ε + ∂x(k(x)a(ξ)fε)) = χuε + O(ε);

hence,

−∂ξf
ε
+ = −∂ξf

ε + δ0(ξ) = −∂ξχuε + δ0(ξ) + O(ε) = δuε(ξ) + O(ε).

Note that, for almost every (t, x), νε
t,x is supported in the fixed compact subset

[0, 1] of Rξ. We deduce from (4.2), (4.3) that, up to a subsequence, there exists a
non-negative measure m on R

3 supported in [0, T ] × Rx × [0, 1], a function f ∈
L∞( ]0, T [ ;L1(Rx × Rξ)) such that 0 � f � χ1, −∂ξf+(t, x, ξ) = νt,x(ξ), where
ν is a Young measure Q → Rξ and such that mε ⇀ m weakly in the sense of
measures (i.e. 〈mε − m, ϕ〉 → 0 for every continuous compactly supported ϕ on
R

3) and fε ⇀ f in L∞(Q × Rξ) weak∗. Besides, since fε ∈ C([0, T ];L1
x,ξ) satisfies

fε(0) = f0 and the BGK equation

∂tf
ε + ∂x(k(x)a(ξ)fε) = ∂ξm

ε,

it satisfies the weak formulation: for all ψ ∈ C∞
c ([0, T [ × R × R),

∫
Q

∫
R

fε(∂tψ + k(x)a(ξ)∂xψ) dξ dt dx +
∫

R

∫
R

f0ψ(0, x, ξ) dξ dx

=
∫

Q

∫
R

∂ξψ dmε(t, x, ξ).

In particular, we have
∫

Q

∫
R

fε
±(∂tψ + k(x)a(ξ)∂xψ) dξ dt dx +

∫
R

∫
R

f0,±ψ(0, x, ξ) dξ dx

= −
∫

Q

∫
R

sgn∓(ξ)k(x)a(ξ)∂xψ dξ dt dx +
∫

Q

∫
R

∂ξψ dmε(t, x, ξ)

= (kR − kL)
∫ T

0

∫
R

sgn∓(ξ)a(ξ)ψ(t, 0, ξ) dξ dt +
∫

Q

∫
R

∂ξψ dmε(t, x, ξ)

= (kL − kR)±
∫ T

0

∫
R

a(ξ)ψ(t, 0, ξ) dξ dt +
∫

Q

∫
R

∂ξψ dmε
±(t, x, ξ), (4.4)

where

〈mε
±, ∂ξψ〉 := 〈mε, ∂ξψ〉 −

∫ T

0

∫
R

a(ξ)[(kL − kR) sgn∓(ξ)

+ (kL − kR)±]ψ(t, 0, ξ) dξ dt. (4.5)
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More precisely, we set

mε
+ = mε +

∫ +∞

ξ

a(ζ)[(kL − kR)+ sgn+(ζ) − (kL − kR)− sgn−(ζ)] dζδ(x = 0)

and

mε
− = mε +

∫ ξ

−∞
a(ζ)[(kL − kR)+ sgn+(ζ) − (kL − kR)− sgn−(ζ)] dζδ(x = 0).

Note that in both cases, and since A(ξ) � 0 for any ξ, we have added a non-negative
quantity to mε. At the limit ε → 0 we thus obtain mε

± ⇀ m±, where m± is a non-
negative measure. Examination of the support of mε

± shows that m+ (respectively,
m−) is supported in [0, T ] × Rx× ]−∞, 1] (respectively, [0, T ] × Rx × [0, +∞[ ). At
the limit ε → 0 we thus obtain the kinetic formulation (3.5). We conclude that f
is a generalized solution to (3.2), (3.3). By theorem 3.4, f = χu, where u ∈ L∞(Q)
is a solution to (3.2), (3.3). By uniqueness, the whole sequence (fε) converges (in
L∞ weak∗) to χu. Actually, the convergence is strong since

∫
Q

∫
R

|fε − χu|2 dξ dt dx =
∫

Q

∫
R

|fε|2 − 2fεχu + χu dξ dt dx

�
∫

Q

∫
R

fε − 2fεχu + χu dξ dt dx. (4.6)

We have used the fact that 0 � fε � 1. The right-hand side of (4.6) tends to 0
when ε → 0 since 1, χu ∈ L∞ can be taken as test functions. Hence fε → χu in
L2(Q × R). The convergence in Lp(Q × R), 1 � p < +∞, follows from the uniform
bound on fε in L1 ∩ L∞(Q × R).

Remark 4.2. It is possible to relax the assumption that the initial datum for (1.1)
is at equilibrium and independent of ε in theorem 4.1. Indeed, the conclusion of
theorem 4.1 remains valid under the hypothesis that the initial datum fε

0 for (1.1)
satisfies

0 � fε
0 � χ1, fε

0 ⇀ f0, u0(x) :=
∫

R

f0(x, ξ) dξ, (4.7)

where fε
0 ⇀ f0 in (4.7) denotes weak convergence in L1(Rx ×Rξ). Indeed, the proof

of theorem 4.1 remains unchanged under the following modification: passing to the
limit in (4.4), we obtain that f is a generalized solution to (3.2) with an initial
datum f0 that is not necessary at equilibrium. However, we have (see equation (29)
of [5])

f0 − sgn∓(ξ) = sgn±(u0 − ξ) − ∂ξm
0
±,

where m0
+ (respectively, m0

−) is a non-negative measure supported in [0, T ] ×
R × ]−∞, 1] (respectively, [0, T ]×R× [0, +∞[ ). Consequently, up to a modification
of the kinetic measure m±, we obtain that f is indeed a generalized solution to
(3.2), (3.3). The rest of the proof is similar.
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