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We study the Bhatnagar—Gross—Krook (BGK) approximation to first-order scalar con-
servation laws with a flux which is discontinuous in the space variable. We show that
the Cauchy problem for the BGK approximation is well posed and that, as the relax-
ation parameter tends to 0, it converges to the (entropy) solution of the limit problem.

1. Introduction

We consider the equation
Ouf° + 0u(k(2)a(E) f5) = % £>0, 7€R, £€R, (1.1)

with the initial condition
ffli=0o = fo In R, x Re. (1.2)

Here k is given by
k=FkLl(_,0) +kr1(0,400)

where 1p is the characteristic function of a set B, £ — a(€) is a continuous function
on R such that, for all u € [0,1],

/ “a(e)de >0, [ at@rae=o (13)
0 0

and, in (1.1), xue, the so-called equilibrium function associated to f¢ is defined by

W () = / Flhe€)de, xal€) = 1oa((€) — Lao(©)

fort >0,z € R, £ €Rand a € R.

(© 2010 The Royal Society of Edinburgh
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954 F. Berthelin and J. Vovelle

Equation (1.1) is the so-called Bhatnagar—Gross—Krook (BGK) approximation
to the scalar conservation law

Ou + Oy (k(x)A(uw)) =0, A(u) = /Ou a(€) d¢. (1.4)

The flux (z,u) — k(x)A(u) is discontinuous with respect to z € R; actually, (1.4)
is a prototype of the scalar (first-order) conservation law with discontinuous flux
function. In the last 10 years, scalar conservation laws with discontinuous flux func-
tions have been studied extensively. We refer the reader to [6] for a comprehensive
introduction to the subject and a complete list of references (see also [10]). Let us
simply mention that the discontinuous character of the flux function gives rise to a
multiplicity of weak solutions, even if traditional entropy conditions are imposed in
the spatial domain away from the discontinuity. An additional criterion therefore
has to be given in order to select solutions in a unique way. For the scalar conserva-
tion law in the general form dyu + 0, (B(z,u)) = 0, where the function B is discon-
tinuous with respect to x, several criteria are possible [1]. For B(z,u) = k(z)A(u)
as above, the choice of entropy solution is unambiguous [1, remark 4.4] and we
consider here the selection criterion first given in [13]. A kinetic formulation (in the
spirit of [9]) equivalent to the entropy formulation in [13] has been given in [3]. In
particular, solutions given by this criterion are limits (almost everywhere (a.e.) and
in L') of the solutions obtained by monotone regularization of the coefficient k in
(1.4). For example,

kr — k k k
R Lx+R+L

ke(x) = kuloc—c(z) + ( 5 2

>1E<z<€ + kR15<a:a e > 0.

The kinetic formulation of scalar conservation laws is well adapted to the analy-
sis of the (Perthame-Tadmor) BGK approximation of scalar conservation laws.
Developed in [12], this equation is a continuous version of the transport-collapse
method of Brenier [4,5]. BGK models have also been used for gas dynamics and
the construction of numerical schemes. See, for example, [11] for a survey of this
field.

Our purpose here is to apply the kinetic formulation of [3] to show the convergence
of the BGK approximation. To this end we first study the BGK equation itself
in §2. In §3 we introduce the kinetic formulation for the limit problem. We also
introduce a notion of the generalized (kinetic) solution in definition 3.3. We show
that any generalized solution reduces to a mere solution, i.e. a solution in the
sense of definition 3.1. This theorem of ‘reduction’ is theorem 3.4. Then, in §4 we
show that the BGK model converges to a generalized solution of (1.4) and, using
theorem 3.4, deduce the strong convergence of the BGK model to a solution of
(1.4), theorem 4.1.

A key step in the whole proof of convergence is the result of the reduction of
theorem 3.4. Its proof, given in § 3.2, is close to the proof of uniqueness of solutions
given in [3]. A minor difference is that we deal here with generalized solutions
instead of ‘kinetic process solutions’. There is also a minor error in the proof given
in [3] (specifically, the remainder terms Ry 5 and Qs , in equations (3.17) and
(3.18) of the present paper are missing in [3]). We have therefore given a complete
proof of theorem 3.4.
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A BGK approzimation to scalar conservation laws 955

‘We end this introduction with two remarks.

REMARK 1.1. The BGK model provides an approximation of the entropy solutions
to (1.4) by relaxation of the kinetic equation corresponding to (1.4). A relaxation
scheme of the Jin—Xin-type applied directly to the original equation (1.4) has been
developed in [8].

REMARK 1.2. The kinetic formulation of scalar conservation laws with discontinu-
ous spatial dependence of the form d;u + 0, (B(z,u)) = 0 (which are more general
than (1.4)) is derived in the last chapter of [2]. We indicate (this would have to be
proved rigorously) that, in the case where our approach via the BGK approximation
was applied to this problem, the solutions obtained would be the type of entropy
solutions considered in [7].

Notation. For p,q € [1,+00] we denote the space LP(R;; LY(R¢)) by LEL{ and we
denote the space LI(R¢; LP(Ry)) by L{LE.
We also set sgn, (s) = 14450}, 8gn_(5) = —1{,<0} and sgn = sgn, +sgn_, s € R.

2. The BGK equation

2.1. The balance equation
By the change of variables f¢ (t,x, &) = e/s f2(t,x,€), equation (1.1) can be rewrit-

ten as the balance equation

et/s

O f* + 0n(k(2)a(€) f7) = —xur

with (unknown dependent) source term (et/¢/e)y.,. Hence, we first consider the
following Cauchy problem for the balance equation:

Orf + 0 (k(x)a(&)f) =g, t>0, z€R, R, (2.1)
fli=o=fo inRy X Re. (2.2)

PROPOSITION 2.1. Suppose that kgky, > 0. Then problem (2.1), (2.2) is well posed
n L%LQ, 1< p<+oo: forall fo € LéLﬁ, T>0andg € Ll(]O,T[;LéLg), there
exists a unique f € C([0,T); L{LY) solving (2.1) in D'(]0, T[ x Ry x Re) such that
f(0) = fo. Additionally, we have

t
1 Olzzsz < e (ol + [ lo9lzyan s ). (23)

where My, = max(ky,/kr, kr/kL).

Proof. Since (2.1) is linear, it is sufficient to solve the case when g = 0. The general
case will follow from Duhamel’s formula. Assume without loss of generality that
kr,k, > 0. Let A :={£ € R; a(§) > 0}. Then, for fixed £ € A, and although k
is a discontinuous function, the ordinary differential equation

X(t,s,x,8) = k(X(t,s,x,8))a(f), teR, (2.4)
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with datum X (s,s,z,£) = x has an obvious solution for z # 0, given by

X(t,s,z,&) =x+ (t —s)kra(§), t>s, when z > 0,

and by ]
x+ (t— s)kra(§) ift<s+i,
k
X(tsr =1, e
Ex + (t — s)kra(§) ift>s+ FLa(®)’

when z < 0. Denoting the positive and negative parts of s € R by s™ = max(s,0)
and s~ = s — s, respectively, and introducing

kr
ak(x) = 1{a:>0} + El{w<0}7

this can be summed up as
X(t,s,2,8) = {on(@)z + (t — $)kra(€)} T — {z+ (t — )kLa(€)}~, t>s. (2.5)
Similarly, we have, for the resolution of (2.4) backward in time,
X(t,s,2,8) = {z + (t — s)kra(§)}" — {Be(x)z + (t — s)kra(§)} ™, t<s, (2.6)

where
kr,

Br(z) = gl{wo} + 1ip<oy-

A similar computation in the case where a(§) < 0 gives the solution to (2.4) by
(2.5) for (t—s)a(§) = 0, and by (2.6) for (t—s)a(§) < 0. For the transport equation
(01 + k(z)a(§)0s)p™ = 0, interpreted as
d .
agp (tv X(t7 5, T, E)a g) = Oa
this yields the solution

SD* (t7 ‘r’ g) = w(X(T7 t? x? g)? g)’

which satisfies the terminal condition ¢*(T") = ¥. We suppose in what follows that
1 is independent of £, compactly supported and Lipschitz continuous. Then a simple
change of variable shows that, for every t € [0,T], for almost every £ € R,
* kL kR
||<)0 (tvvé.)HL? ng”q/)”Lga Mk =max | —, 7 |, 1 <q<+oo (27)
kr’ kL
If f e C([0,T]; L%U;) solves (2.1), (2.2), then, by duality (note that ¢* is Lipschitz
continuous and compactly supported in z if ¢ is) we have, for ¢ € [0, T], for almost
every £ € R,

/&@mawmaM=/hu@wm%am. (2.8)
R R

In particular, for almost every & € R, the estimate (2.7), where ¢ is the conjugate
exponent of p, gives

(T Ol < Ml fol, )Lz
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and then by Duhamel’s principle, for g # 0,

T
(T, &)y < Mk(llfo(-,f)llyg +/0 lg(t, - E)lze dt)- (2.9)

The estimate (2.3) and uniqueness of the solution to (2.1), (2.2) readily follows.
Existence follows from (2.5), (2.6) and (2.8), from which one derives the explicit
formula

f(ta z, g) = ‘](ta z, f)fO(X(Ov t7 z, 5)3 5)7
the coefficient J(t, z, &) being given by

kr,
J(t,7,8) = 1pcoyuia>thkra©)} T g1{0<x<tha(g)}

if a(€) > 0 and
kr
J(t,2,€) = Vacikpa(e)}ufa>0) + Hl{tkLa(£)<rc<O}
if a(¢) < 0. O

2.2. The BGK equation
Denote by T (t)fo the solution to (2.1), (2.2) with g =0, i.e.

T(t)fo(.%‘,g) = J<tv-/17;f)fO(X(Ovtaw7§)7§)a
with X given by (2.5), (2.6).
DEFINITION 2.2. Let fy € L' (R, x R¢), T > 0. A function f¢ € C([0,T]; L*(R, x
R¢)) is said to be a solution to (1.1), (1.2) if

t/e 1 ! —s/e € €
FO = TWh+ 2 [ T ds o = [ PO (210)

for all ¢ € [0, T7.

THEOREM 2.3. Assume that kg -kr, > 0. Let fo € L'(R, xR¢), T > 0. There exists
a unique solution f¢ € C([0,T]; LY (R, xR¢)) to (1.1), (1.2). Denoting this solution
by Se(t) fo, we have:

(i) [1S()£5 = Se(t) ) Nl pr o xre) < Mill(f§ — £2)F o2 (o xre) s
(i) 0 <sgn(§)fo(z,€) <1 a.e. = 0 <sgn(§)S:(t) fo(,€) <1 ace;
(iil) if fo = Xues o € L®(R), 0 < ug < 1 a.e., then 0 < Sc(t) fo < xa

Proof. The change of variable (¥,2') = (&, ) reduces (1.1) to the same equation
with € = 1. We then have to solve f = F(f) fo

F(f)(t) = e*tT(t)f0+/O €T (5)Xu(t—s) ds, u:/Rf(ﬁ) dg.
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By (2.3) and the identity

/ IXu = Xu[(§)dE = [u—v], u,veER,

R

we have F: C([0,T};LL ) — C([0,T};LL ) and F is a (1 — =) contraction for
the norm

[£l=sup [If(O)]lzr R, xre)-
t€[0,T)

Indeed, we compute

t
IFUO = POl < [ e IT6) s = vl  ds
t
= /0 e || Xus (t—s) — Xub(t—s)HL;S ds
t
N / e 0 |ut(t — 5) — W’ (t = s)||L1 ds
0
t
< / e | fi(t—s)— fo(t — S)||L;6 ds
; :

t
</ e dsl|f* — £].
0

By the Banach fixed-point theorem we obtain the existence and uniqueness of the
solution to (1.1), (1.2). Since 0 < sgn(&)x.(§) < 1 a.e., we have

0<sgn(§)F(f)(t,z,&) <1 ae.

if 0 < sgn(€)fo(x,€) < 1 a.e. This proves part (ii) of theorem 2.3. Part (i) follows
from the following inequality:

/R sen, (f — 9)(Q(f) — Q) dE <0, f.g € L' (Re), Q) = X jae — /

which is easy to check, and from the identity

t
1) =T+ [ TR (=) ds
for the solution to (1.1), (1.2). If fo = Xue, 0 < up < 1 ae., then 0 = xo < fo < xa1-

Hence, part (iii) of theorem 2.3 follows from part (i) and the fact that any constant
equilibrium function x., @ € R, is a solution to (1.1). O

3. The limit problem
Assume fo = xu, With ug € L®(R), 0 < ug < 1 a.e. Set

/ CL 0 1] dg (31)
0
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A BGK approzimation to scalar conservation laws 959

Note that by (1.3) we have A > 0 and A vanishes outside the interval [0,1]. We
expect the solution f€ to (1.1), (1.2) to converge to the solution u of the first-order
scalar conservation law

Ou+ 0, (k(x)A(u)) =0, t>0, z€R, (3.2)

with initial datum
u(0,z) = uo(x), = €R. (3.3)

For a fixed T > 0, set @ =]0,T[ xR,.

DEFINITION 3.1 (solution). Let ug € L>®(R), 0 < up < 1 a.e. A function u €
L>(Q) is said to be a (kinetic) solution to (3.2), (3.3) if there exist non-negative
measures my on [0,7] x R x R such that

(i) my issupported in [0, T]xR x ]—o00, 1], m_ is supported in [0, T] xR x [0, +-o0],
(ii) for all v € C°([0,T[x R x R),

/Q/Rhi(atw+k(x)a(€)8w)d§dtdx+//ho,iw(O,x,S) d¢ dz

— (k1 — kgr) / / P(t,0,8)dede

N /Q/ﬂffz/’dmi(taz,f), (3.4)

where hy (t,z,€) = sgng (u(t,z) — &) and ho o (z,§) = sgn, (uo(z) — §).

PROPOSITION 3.2 (bound in L*®). Let ug € L*¥(R), 0 < up <1 a.e. If u € L>®(Q)
is a kinetic solution to (3.2), (3.3), then 0 < u < 1 a.e.

Proof. Consider the kinetic formulation (3.4) for hy with a test function

P(t,, &) = o(t, 2)u(E).

If 1 is supported in |1, 4o00[, two terms cancel as follows:

/R /R o, (0, 2,€) dé do = /R /R 11w (00, 2)Les 1 u(€) dé d = 0

[ [ocsamiens -

by the hypothesis on the support of m,. Hence, we have

and

/ / b (Brp + k(2)a(€)Da0) () A€ At d
QJr

— (ki — kRr) / / wu(€)dedt = 0.
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A step of approximation and regularization shows that we can take p(§) = 1¢>q in
this equation. Since

+oo
/ a(§)dé = A(+0) — A1) =0-0=0,
+o0 ' +oo
/ ho(t,2,€) dE = / Lecute € = (u(t, z) — 1),
1 1

+o0 +o0
/ b (t 2, ©)a(€) dE = / Lecu(ma() de
1 1

t,x)

u(
= s (uta) =) [ ate) e

= sgn (u(t, ) — 1)(A(u(t, z)) — A(1)),

we obtain
[;u—n+@¢+k@ﬁg4m_¢xAm)—Au»mwadm:o

It is then classical to deduce that (u — 1)* = 0 a.e. (see the end of the proof of
proposition 3.8 after (3.25)); that is, u < 1 a.e. Similarly, we show u > 0 a.e. O

Our aim is to prove the uniqueness of the solution to (3.2), (3.3). Actually, more
than mere uniqueness of the solution to (3.2), (3.3), we will show a result of reduc-
tion/uniqueness (see theorem 3.4) of a generalized kinetic solution. To this end, let
us recall that a Young measure () — R is a measurable mapping (¢, ) — v , from
Q into the space of probability (Borel) measures on R. The mapping is measurable
in the sense that, for each Borel subset A of R, (¢,2) — 14 ,(A) is measurable
Q — R. Let us also introduce the following notation: if f € L'(Q x R), we set

fi(y>§):f(ya£)_5gnq:(£); y€Q7 ¢ eR

This is consistent with the notation used in definition 3.1 in the case where f = x,,.

DEFINITION 3.3 (generalized solution). Let ug € L>®(R), 0 < up < 1 a.e. A func-
tion f € L'(Q x R¢) is said to be a generalized (kinetic) solution to (3.2), (3.3)
if
0< f<x1ae, —0:f is a Young measure @ — R,
and if there exists non-negative measures m4 on [0,7] x R x R such that
(i) my issupported in [0, T] xR X |—o0, 1], m_ is supported in [0, T| xR x [0, +o0],

(ii) for all ¥ € C°([0,T[x R x R),
/Q /R Fo (0 + K(2)a(€)d,0) dE dt dz + /}R /}R fo(0,z,€) d¢ dx
T
(b — ) u
(kr, — k) / / (€)(t,0,€) de dt
:LA@WW“%&(“)

where fo (2, ) = sgn (uo(x) — §).
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A BGK approzimation to scalar conservation laws 961

THEOREM 3.4 (reduction, uniqueness). Let ug € L>®(R), 0 < ug < 1 a.e. Prob-
lem (3.2), (3.8) admits at most one solution. Additionally, any generalized solution
is actually a solution: if f € L' (Q x R¢) is a generalized solution to (3.2), (3.3),
then there exists u € L>(Q) such that f = xu.

To prepare the proof of theorem 3.4 we first have to analyse formulation (3.5)
and the behaviour of f at £ =0 and x = 0.

3.1. Weak traces

Introduce the cut-off function

||
we(s) = /0 pe(r)dr, p.(s)=e'p(ets), seR, (3.6)

where p € C(R) is a non-negative function with total mass 1 compactly supported
in ]0,1[. We have the following proposition.

PROPOSITION 3.5 (weak traces). Let f € L®(Q x R¢) be a generalized solution to
(3.2) and (3.3). There exists f1° € L2 (R xR), Fy € L*(]0,T[x R) and a sequence
(7n) 4 0 such that, for all o € L2(RxR) and for all @ € L2(]0,T[ x R) (the subscript
‘e’ denotes compact support),

/ / feltr € (Dp(e.€) dé dt dz — / / S (@, €) (e, €) dé da,
QJR RJR
(3.7)

T
[ [ 1t k@ate, oo dsaras » [ [ Fuwoegagar @)
QYR 0o JR
as n — +oo. In addition, there exist non-negative measures my® and my on R?
and [0,T] x R, respectively, such that

(i) m%® (and, respectively, m ) is supported in R x |—o0, 1] (and, respectively,
[0, T]x ]—00,1]), m™ (respectively, m_) is supported in R x [0, +o0[ (respec-

tively, [0, 7] x [0, +oc[),

(ii) for all p € C°(R?), § € C([0, T x R),

/]R2 fPedrdé = /R2 Joxpdrd§ — /]R2 Oepdm (z,€), (3.9)
/OT/RFiedfdt:—(kL—kR)i/OT/Ra(g)edgdt—/OT/Ragedmi(t,g)_
(3.10)

Proof. The first part of the proposition does not use the fact that f is a solution.
Indeed, since |f4| < 2, we have

T T T
[ reaosoal <2 [Cgola=2 [Camar<
0 0 0
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for all (x,£) € R?. This gives, in particular, a bound in L?(K), with K a compact

solution of R? on .
/ fx(t
0

hence the existence of a subsequence that converges weakly in L?(K). Writing R?
as an increasing countable union of compact sets and using a diagonal process, we
obtain (3.7). The proof of (3.8) is similar. To obtain (3.9), apply formulation (3.5)
o(t,x, &) = p(x,§)(1 —wy, (t)). We obtain (3.9) by using (3.7) and setting

Lamee = tm [ [ oo -, @) dm. a0

n—>+oo

for all non-negative ¢ € C.(R?): the limit is well defined since the argument is
monotone in n and it defines a non-negative functional on C.(R?) which is repre-
sented by a non-negative Radon measure. Similarly, applying formulation (3.5) to
Pt z, &) =0(t,£)(1 —wy, (x)), we obtain (3.10) with

/ /Hdmi t,€) = ngrfoo/ /9 £,6)(1 — wy, () dm(t, x,€)

for all non-negative 6 € C.([0,T] x R). O

REMARK 3.6. Since 0 < f < xi1, (3.7) shows that f1° (respectively, f°) is sup-
ported in R x ]—oc0, 1] (respectively, R x [0, 4o00[). Similarly, F; (respectively, F_)
is supported in [0, T]x ]—o00, 1] (respectively, [0, T] x [0, 4+o00[). We use this remark
to show the following corollary.

COROLLARY 3.7. For all p_ € L>(R?) supported in [-R, R] x [-R, +oo[, R > 0,
such that Ozp— < 0 (in the sense of distributions), we have

lim //f+w _(x,&)dédtdx > /f0+<p dzx d&. (3.11)

n——4oo

For all 0_ € L*>(]0,T[xR) supported in [0,T] x [-R,+oo[, R > 0, such that
0:0_ < 0 (in the sense of distributions), we have

im_ /Q /R Fek(@)a(@)w, (@)0_(t,€) dedtdx > —(ky, — kr) / / £)0_ de dt.
(3.12)

Proof. Note first that each term in (3.11) is well defined by the remark above and
that, by (3.7),

Jim /Q [ 112,90, 00 @ dsdrar = [ [ oo agaa.

By regularization (parameter ¢) and truncation (parameter M), we have

/ (7 = fos ) dadé = / T for )™M dadé + (e, M),
R? R
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A BGK approzimation to scalar conservation laws 963

where lim,_,0, pr—+o00 7(€, M) = 0. More precisely, we set

=M = (p— %) x xar,

where 1. is a (smooth, compactly supported) approximation of the unit on R? and
XM is a smooth, non-increasing function such that xp = 1 on |—oo, M, xpr =0
on [M + 1,+00[. Apply (3.9) to = to obtain

/ (F = for)p—dzds = —/ Dep™™' dmP (2,€) + (e, M),
R2 R

e,M

For M > R+ 1 and € < 1, we have =™ = o_ % 4).; hence Oep
that

< 0. It follows

|0 = o0 dade > nte. M)

for M > R+ 1, ¢ < 1. At the limit M — 400, € — 0, we obtain (3.11). The proof
of (3.12) is similar. O

3.2. Proof of theorem 3.4

Our aim is to show the following.

PROPOSITION 3.8. Let ug,vg € L°(R), 0 < ug,vp < 1 a.e., and let [ (respectively,
g) be a generalized solution to (3.2), (3.3) with datum ug (respectively, vy). Let
M = sup,cg ¢cpoq |k(z)a(§)]. Then we have, for R > 0,

1 T
T / / / —fyrg—dédxdt < / (ug — vo)* da. (3.13)
0 {lz|<R} /R {lz|<R+MT}

REMARK 3.9. In the case where f = x4, ¢ = Xv, we have
[ ~teo-de= (o),
R

and hence (3.13) gives the uniqueness of the solution to (3.2), (3.3). More precisely,
it gives the L!'-contraction with averaging in time and the comparison result

Uy < Vg a.e. <= u < U a.e.

REMARK 3.10. To obtain the second part of theorem 3.4, we apply (3.13) with

g = f to obtain
T
/ / /—f+f, dédxdt < 0. (3.14)
0 J{lz|<R} JR

Since 0 < f < x1, we have fi > 0 a.e. and f_ < 0 a.e. We deduce from (3.14)
that fif- = 0 a.e. Let v, , denote the Young measure —0¢ f;. We have 0¢ f— =
O¢f — 60 = O¢ f+ and, by examination of the values at £ = +oo of fi, for almost

every (t,7) € Q,
f+(t,$,f) = Vt,w(§7+oo)’ f—(t’xag) = _VtJ(_OO’g)'

But then the relation fy f_ = 0 implies that v , is a Dirac mass at, say, u(t, z). By
measurability of v, u is measurable and f = x,.
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964 F. Berthelin and J. Vovelle
Proof of proposition 3.8. Since f; and g_ satisfy

/Q/Rer(atz/J+k(m)a(§)8x1/))d§dtdx+//fo,MZJ(O,x,g)dfdx

— (kL — kr) / / P(t,0,€) dedt

/Q/Ragwdm(t,x,g) (3.15)

/Q/Rg‘(atw+k(x)a(g)amw)dfdtder//go,_d)(O,x,g)dgdgg

— (kL — kr)™ / / B(t,0,€)dédt

_ /Q /}R devdp_(t,2,6)  (3.16)

for all ¢ € C(]0, T x R x R) (here, go,— = sgn_(vo — &) and p_ is a non-negative
measure on [0, 7] x R x R supported in [0,T] x R x [0, 4+00[). It is possible to obtain
an estimate for —fyg_ by setting ¥y = —g_¢ in (3.15) and ¥ = fr¢ in (3.16) (p
being a given test function) and adding the result. First, however, this requires a
regularization step.

STEP 1 (regularization). Let p,.s denote the approximation of the unit on R?
given by

pa,e,é(ta z, f) = pa(t)pe(x)pg(f), (ta .T,f) € R37

where p. is defined as in (3.6). Let ¢ € C2°([0,T[ x R x R) be compactly supported
in ]0, T x R\ {0} xR. Use ¢*pq ¢, as a test function in (3.15) and Fubini’s theorem
to obtain

/Q /R 25 (0 + k(x)a(€)Dpv) A€ dt du
+/R/Rf0,+w*pa,s,5(0’xa€) dfda:
T
(ke — k) / / Q(EN) * paes(t,0,€) dE dt
/ / Derp dm= =3 (£, 2,€) + Roe 5 (1),
where fo"s’ = f4 * Paess mi’e’é =My * Pacs and

Ry (0 / / FolE(@)a(€)(00t) * poes — (k(2)a(€)0s10) % pove.s] dE dt dar.
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A BGK approzimation to scalar conservation laws 965

Here we have defined p(t, z, &) = p(—t, —x, —&). Also observe that, implicitly, we
have extended fy by 0 outside [0, 7] since, for example,

/f+ Y # pa(t) dt = //f+ ()palt — ) ds dt
- [v / F4(B)pals — ) dtds.

Since 1 is supported in ]0, T[ x R\ {0} x R we have, for sufficiently small a, ¢,

/ / f0,+¢ * pa,€,5(07 x, 6) df dx = 0)
RJR

T
/ / G(E0) * pae 5(1,0,€) dEdt = 0
0 R
and
a e, 5 / / f+ a:w) * pa75,6 - (a(g)aw"/)) * pa,a76] d£ dt dz.
We deduce
/ / FOT0 (8 + k(2)a(€)d, ) dE dt dx = / / Aep AmS =0 (8, 2,€) + Ree 5(1).

(3.17)

A similar procedure on g_ gives

/ / 07 (O + k(@)a(€)Dut) de dt d = / / Deth AP (1,2, €) + Qs (),
QYR QJR
(3.18)

where
Qoo () = / / G- k(@) a(€) (Oat)) * pp o — (@(€)0s)) * p o] dE dt .
Q Jr

STEP 2 (equation for — f{° 298 7) . Let ¢ € C2°([0, T[ x R) be non-negative and
compactly supported in ]0 T[xR \ {0}. Note that ¢ does not depend on . Set
¥ = —pg?" in (3.17) and ¢ = —p = in (3.18). Since

f0i(pg) + 90(of) = fg0rp + Oi(pf9),

we obtain, by addition of the resulting equations,

// FE0 B (0,0 + k(2)a(€)Dpgp) AE dt da

= [ fLocrret a2t 000l amy it .6)

+Ra,a,6(_(pg— ) +Qﬁ,u,a( @fasé)'
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966 F. Berthelin and J. Vovelle
Note that the term

- / o /R De fo50 ApPY (1 2,€) + Deg®™ 7 Am= (1,2, )

a,e,d

is well defined since the intersection of the supports of the functions "= and pﬁ e

(respectively, f~ A% and my E’6) is compact. Actually, this term is non-negative since
pP7 mP%° > 0 and 8§fﬁ55 Deg”"? < 0. We thus have

/ / —FEE G By + k(x)a(€)Dup) A€ dt da

> Raes(—09""7) + Qoo (—ofT0).  (3.19)
It is easily checked that
Racs(—pi”"7) = 0W™0),  Qpu.o(—¢phT™’) =0 0);
hence,

v,o a,e,0
61;m Raes(—09""%) + Qpuo (—pf1°°) =

At the limit §,0 — 0 in (3.19), we conclude that

/ / FE292" (O + k(z)a(€)dsp) d€ de da > 0. (3-20)

STEP 3 (traces). Suppose that k;, < kr. We then pass to the limit e, — 0 in
(3.20) to obtain

/ / —f49”7 (Orp + k(2)a(€)d,yp) dE dt da > 0. (3.21)
QJRr

Note that in the opposite case kr, > kgr, and with our method of proof we would first
pass to the limit on 3, v. Let us now remove the hypothesis that ¢ vanishes at ¢t = 0O:

suppose that ¢ € C2°([0, T[ x R) is non-negative and supported in [0, 7[ xR\ {0}
and apply (3.21) to p(t,z) = ¥(t, x)wy,, (t). We have

/ [ =, ()0 + K@a(€)0,0) g dt o
/ / — 9P Yt 2)w) (t)dedtdr > 0. (3.22)
By (3.11) applied with ¢_(z,£) = ¢° (0,2, £)1(0, z), we obtain
ngglw/ /f 62 (0,2, €)(0, 2)ur, (1) A€ dt da

> [ [ fos? 0. 000.0) dc

Now f+(t,x,£)g’f’"(t, x,&)Y(t, x) has a compact support, say in
[OvT] X [7R5R] X [7R7 R]a
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A BGK approzimation to scalar conservation laws 967

and thus ¢_(t,z,£) = gé’”(t,m,f)w(t,x) is uniformly continuous on this compact
support. Therefore, for p > 0, there exists v > 0 such that

lo—(t,2,6) — p_(0,2,8)| < #

for any 0 < t < v and any z,£ € [-R, R], and then for large n we have n,, <y and
[ A 62 ) — 6205, €0000. 211, () d bt s
< [ [ 1550020l ) g it d€
<n [ o (rdt=p (3.23)
Thus, we obtain, at the limit n — +o0 in (3.22),
/Q [ 112 0+ k@) d e

—i—/R/R—f0,+g_w(0,x,§)¢(0,x) dédz > 0.

The next step is to remove the hypothesis that ¢ vanishes at = 0 by setting
Y(t,x) = 0(t, x)wy, (z), where § € C°([0,T] x R) is a non-negative test function.
We have

/ / gy, (2) (046 + (x)a(€)0,0) dE dt dx
QJR
+ /Q /R —fr 920t 2)k(2)a(€)w), (x) € dt da
N /R /R _f0,+g€71/(07 z, 5)0(07 x)wﬁn (33) d§ dz 2 0.

By (3.12) with 6_(t,€) = g7 (£,0,)0(t,0),
n—-4oo

im 2)a(. (2)g> x
! /Q / fek(@)a(€)w!, ()9 (£,0,6)0(,0) dE dt d

T
> (k)" [ [ €97 (1.0.600(0,0)de
o JRr
and, by an argument similar to (3.23), the limit as [n — 400] of the term

/Q / Fik@)a(€)w], (@)(g7" (2, )0(t 7) — g (+,0,€)6(t, 0)) de dt da
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968 F. Berthelin and J. Vovelle

is zero. We therefore have

/ / —f+97" (8,0 + k(2)a(£)D,0) d¢ dt dz
QJR
+ (=) / / )9 (£,0,€)0(t,0) d¢ dt
+/R/R—fo,+9_w(0,x,§)0((),x) dedz >0

Since (kr, — kr)* = 0, we actually have
/ / — 197" (0,6 + k(2)a(€)d,0) d¢ dt dx
QJR

+/R/]R—f0,+g;V(0,x,§)9(0,m)dgdx20

Take 8 = 7, where (7,) is given in proposition 3.5. First at the limit » — 0, then
at n — +o00, we obtain

[ [ ~rea-00 om0, acatas
QJR

+limsup/ / —fo,+49™(0,2,8)0(0,z)dEdx > 0. (3.24)
RJR

n—-+oo

Observe that

T
g7 (0,2,€) = / g-(t, 2, €)py () dt
0

T
- / g_(t2, €, () dt.

By (3.11) (transposed to g_ tested against a function ¢ ), we have

lim / / ~ fo.167 (0,2, )8(0, z) d€ de < /R /R ~ fo.+90-0(0, ) d€ da.

n—-+oo

Since
[ =foeao-ds = [ —sen,fuo € sen_(v0 =€) d€ = (w0 — o),
we obtain, by (3.24),
/Q /R g (40 + (x)a(€)0,0) de dt de + /R (g — v9) 700, ) dz > 0. (3.25)
Tt is then classical to conclude to (3.13): let M > 0, R > MT, let n > 0 and let
r be a non-negative, non-increasing function such that » = 1 on [0, R], r = 0 on

[R+n,+oo|. Set O(t,x) = (T — t)r(|z| + Mt)/T in (3.25) to obtain

1
—//—f+g,r(|x|+Mt)d§dtdx</ (up —vo)tdz +1,
T J)gJr {le|<R+n}
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A BGK approzimation to scalar conservation laws 969

where the remainder term is

Tt
1= /Q [ e T el 4 MO+ ko) sen(o)) s s

By definition of M, I < 0, and since r(|Jz| + Mt) =1 for || < R— MT,0< ¢t < T,

we obtain
1 T
—/ / / —frg—dédadt < / (up — vo) ™t dz.
T Jo Jizj<r—mr Jr {lz|<R+n}
Replacing R by R+ MT and letting n — 0 gives (3.13). O

4. Convergence of the BGK approximation

THEOREM 4.1. Let ug € L* N L=(R), 0 < up < 1 a.e. When ¢ — 0, the solution
f¢ to (1.1) with initial datum fo = Xy, converges in LP(Q x R¢), 1 < p < +o0, to
Xu, Where u is the unique solution to (3.2), (3.3).

Proof. For f € L*(Re), set

13
m(€) = / Ot — Q) AC, u= / £(6) dé.

—00

It is easy to check that my > 0if 0 < sgn(&) f(§) < 1 for almost every £ (see equation
(29) of [5]). In our context, we have 0 < f¢ < x; hence, m® := 1/emy- > 0. Viewed
as a measure, m° is supported in [0,7] x R, x [0, 1]. Integration with respect to £
in (1.1) gives

me(€) = ( / F© dc) +0, (k(m) / “aOF©) dc)

in D'(]0,T[ x R,). Summing over (¢,z) € [0,T] x [z1,x2], £ €]0,1[, we obtain the
estimate

e (0.7) % Loyl = [0.1) = [ - [ a-ou a9 - o0

- {/OT /01(1 —&k(z)a(§) f°(t, ,8) d{dt}

T1

(4.1)

Since f¢(t) € L*(R, x R¢), there exist sequences (z7) | —oo and (z%) 1 +oc such
that the last term of the right-hand side of (4.1) tends to 0 when n — 4o00. Since
f€>0and

/R/RfE(T,x,f)dgdx</R/quodgdx:||u0||L1(R)7

we obtain the uniform estimate

m=([0, T] x R x [0, 1]) < [|luol| L1 ®)- (4.2)
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970 F. Berthelin and J. Vovelle

We also have
0< fF<x1, —0efit, @, &) =v;,(§)+Oe), (4.3)

where v§ ,(§) 1= due(,2)(§) and the identity is satisfied in D'(]0,T[x R, x Rg).
Indeed, by (1.1),

fe = Xus +(0cf + 0u(k(z)a(§) f7)) = Xus + O(e);
hence,
=0 f§ = —0cf* 4+ 00(§) = —0eXus +00(§) + O(e) = du=(§) + Ofe).

Note that, for almost every (¢,z), v;, is supported in the fixed compact subset
[0,1] of Re. We deduce from (4.2), (4.3) that, up to a subsequence, there exists a
non-negative measure m on R3 supported in [0,7] x R, x [0,1], a function f €
L>(]0,T[; L' (R, x R¢)) such that 0 < f < x1, —0¢f+(t,2,8) = vp,,(€), where
v is a Young measure () — R¢ and such that m® — m weakly in the sense of
measures (i.e. (m® — m,¢) — 0 for every continuous compactly supported ¢ on
R3) and f¢ — f in L>=(Q x R¢) weak*. Besides, since f€ € C’([O,T];L;’g) satisfies
f2(0) = fo and the BGK equation

O f° + 0x(k(x)a(§) f7) = Oem?,

it satisfies the weak formulation: for all p € C2°([0, T x R x R),

L//F@¢HMM@mW%&M+//ﬁm&%®%M
QJR RJR

=AAQWM%%Q

//ﬁ@w+mw@@W&am+//mwmm®%m
QJr

//sgn a(&)0, wdfdtdx—i—//agwdm (t,x,¢)
kR—kL/ /sgn (tO§)d§dt+//8§wdm (t,x,€)

= (kp — kg) /g/ tO&%&+//megmﬁ)M®

In particular, we have

where

(mS., Bt} = (m, D) — / / a(©)[(kr, — Fr) sens (€)
+ (kp, — kr) T (t,0,€) dédt.  (4.5)
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A BGK approzimation to scalar conservation laws 971

More precisely, we set

“+oo
ms =mS + /5 a(Q)[(kr, — kr) ™" sgn, (¢) — (kL — kr) ™ sgn_(¢)]d¢o(x = 0)
and
13
me w4 [ a(Ol(h. ~ k) s, Q) (.~ k) s ()] Aoz =0)

Note that in both cases, and since A(£) > 0 for any £, we have added a non-negative
quantity to m®. At the limit € — 0 we thus obtain m§ — m., where m4 is a non-
negative measure. Examination of the support of mg shows that m, (respectively,
m_) is supported in [0, 7] x R, x ]—o00, 1] (respectively, [0,7] x R, x [0,+o00[). At
the limit € — 0 we thus obtain the kinetic formulation (3.5). We conclude that f
is a generalized solution to (3.2), (3.3). By theorem 3.4, f = xy, where u € L*(Q)
is a solution to (3.2), (3.3). By uniqueness, the whole sequence (f€) converges (in
L weak*) to x,. Actually, the convergence is strong since

/Q/R|f€_xu|2d§dtdx:/Q/R|f€2_2f€Xu+Xud§dtdx
</Q/Rf6_2faxu+xud§dtdx. (4.6)

We have used the fact that 0 < f° < 1. The right-hand side of (4.6) tends to 0
when € — 0 since 1,x, € L* can be taken as test functions. Hence f¢ — x, in
L?(Q x R). The convergence in LP(Q x R), 1 < p < +o00, follows from the uniform
bound on f¢ in L' N L*°(Q x R). O

REMARK 4.2. It is possible to relax the assumption that the initial datum for (1.1)
is at equilibrium and independent of € in theorem 4.1. Indeed, the conclusion of
theorem 4.1 remains valid under the hypothesis that the initial datum f§ for (1.1)
satisfies

0<fE<xi fi— for wm:éhma% 47)

where f§ — fo in (4.7) denotes weak convergence in L'(R, x R¢). Indeed, the proof
of theorem 4.1 remains unchanged under the following modification: passing to the
limit in (4.4), we obtain that f is a generalized solution to (3.2) with an initial
datum fy that is not necessary at equilibrium. However, we have (see equation (29)
of [5)
fo —sgng(€) = sgny (ug — &) — Iem,

where mY (respectively, m®) is a non-negative measure supported in [0,7] x
R x ]—o00, 1] (respectively, [0,T] x R x [0, +00[ ). Consequently, up to a modification

of the kinetic measure m., we obtain that f is indeed a generalized solution to
(3.2), (3.3). The rest of the proof is similar.
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