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We study a class of mean curvature equations −Mu = H + λup

where M denotes the mean curvature operator and for p � 1.
We show that there exists an extremal parameter λ∗ such that
this equation admits a minimal weak solutions for all λ ∈ [0, λ∗],
while no weak solutions exists for λ > λ∗ (weak solutions will be
defined as critical points of a suitable functional). In the radially
symmetric case, we then show that minimal weak solutions are
classical solutions for all λ ∈ [0, λ∗] and that another branch of
classical solutions exists in a neighborhood (λ∗ − η,λ∗) of λ∗.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a bounded open subset of R
n with smooth boundary ∂Ω . The aim of this paper is to

study the existence and regularity of non-negative solutions for the following mean-curvature prob-
lem: {−div(T u) = H + λ f (u) in Ω,

u = 0 on ∂Ω,
(Pλ)
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where

T u := ∇u√
1 + |∇u|2

and

f (u) = |u|p−1u, p � 1.

Formally, Eq. (Pλ) is the Euler–Lagrange equation for the minimization of the functional

Fλ(u) :=
∫
Ω

√
1 + |∇u|2 −

∫
Ω

Hu + λF (u)dx +
∫

∂Ω

|u|dH n−1(x) (1)

with F (u) = 1
p+1 |u|p+1 (convex function).

When λ = 0, Problem (Pλ) reduces to a prescribed mean-curvature equation, which has been
extensively studied (see for instance Bernstein [2], Finn [13], Giaquinta [18], Massari [30] or Giusti
[19,20]). In particular, it is well known that a necessary condition for the existence of a classical
solution of (Pλ) when λ = 0 (or the existence of a minimizer of Fλ=0) is

∣∣∣∣
∫
A

H dx

∣∣∣∣ < P (A), for all proper subset A of Ω, (2)

where P (A) is the perimeter of A (see (5) for the definition of the perimeter). It is also known that
the following is a sufficient condition (see Giaquinta [18]):

∣∣∣∣
∫
A

H dx

∣∣∣∣ � (1 − ε0)P (A), for all measurable set A ⊂ Ω, (3)

for some ε0 > 0.
Eq. (Pλ) has also been studied for λ < 0 and p = 1 ( f (u) = u), in particular in the framework of

capillary surfaces (in that case, the Dirichlet boundary condition is often replaced by a contact angle
condition. We refer the reader to the excellent book of Finn [14] for more details on this topic). The
existence of minimizers of (1) when λ < 0 is proved, for instance, by Giusti [19] and Miranda [31].

In this paper, we are interested in the case λ > 0. In that case, the functional Fλ is not convex,
and the existence and regularity results that hold when λ � 0 no longer apply. The particular case
p = 1 corresponds to the classical pendent drop problem (with the gravity pointing upward in our
model). The pendent drop in a capillary tube (Eq. (Pλ) in a fixed domain but with contact angle
condition rather than Dirichlet condition) has been studied in particular by Huisken [25,26], while the
corresponding free boundary problem, which describes a pendent drop hanging from a flat surface has
been studied by Gonzalez, Massari and Tamanini [24] and Giusti [21]. In [26], Huisken also studies the
Dirichlet boundary problem (Pλ) when p = 1 (with possibly non-homogeneous boundary condition).
This problem models a pendent drops hanging from a fixed boundary, such as the end of a pipette.
Establishing suitable gradient estimates, Huisken proves the existence of a solution for small λ (see
also Stone [38] for a proof by convergence of a suitable evolution process). In [9], Concus and Finn
characterize the profile of the radially symmetric pendent drops, thus finding explicit solutions for
this mean curvature problem. Finally, in the case H = 0, other power like functions f (u) have been
considered, in particular by Pucci and Serrin [35] and Bidaut-Véron [4]. In that case, non-existence
results can be obtained for f (u) = up if p � N+2

N−2 . Note however that in our paper, we will always
assume that H > 0 (see condition (16)), and we will in particular show that a solution exists for all
values of p, at least for small λ > 0.
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1.1. Branches of minimal and non-minimal weak solutions

Through most of the paper, we will study weak solutions of (Pλ), which we will define as critical
points of a suitable functional in BV(Ω)∩ L p+1(Ω) (see Definition 2.2). In the radially symmetric case,
we will see that those weak solutions are actually classical solutions (see Section 2.2) in C 2,α(Ω)

of (Pλ).
As noted above, a first difficulty when λ > 0 is that the functional Fλ is not convex and not

bounded below. So global minimizers clearly do not exist. However, under certain assumptions on H
(which guarantee the existence of a solution for λ = 0), it is still possible to show that solutions of
(Pλ) exist for small values of λ (this is proved in particular by Huisken [26] in the case p = 1). The
goal of this paper is to show, under appropriate assumptions on H and for p � 1 that

1. there exists an extremal parameter λ∗ > 0 such that (Pλ) admits a minimal non-negative weak
solutions uλ for all λ ∈ [0, λ∗], while no weak solutions exists for λ > λ∗ (weak solutions will
be defined as critical points of the energy functional that satisfy the boundary condition (see
Definition 2.2), and by minimal solution, we mean the smallest non-negative solution),

2. minimal weak solutions are uniformly bounded in L∞ by a constant depending only on Ω and
the dimension.

We then investigate the regularity of the minimal weak solutions, and prove that

3. in the radially symmetric case, the set {uλ; 0 � λ � λ∗} is a branch of classical solutions (see
Section 2.2 for a precise definition of classical solution). In particular, we will show that the
extremal solution uλ∗ , which is the increasing limit of uλ as λ → λ∗ , is itself a classical solution,

4. it follows that in the radially symmetric case, there exists another branch of (non-minimal) solu-
tions for λ in a neighborhood [λ∗ − η,λ∗] of λ∗ .

Those results will be stated more precisely in Section 2.3, after we introduce some notations in
Sections 2.1 and 2.2. The rest of the paper will be devoted to the proofs of those results.

1.2. Semi-linear elliptic equations

These results and our analysis of Problem (Pλ) are guided by the study of the following classical
problem:

{−�u = gλ(u) in Ω,

u = 0 on ∂Ω.
(4)

It is well known that if gλ(u) = λ f (u), with f superlinear and f (0) > 0, then there exists a critical
value λ∗ ∈ (0,∞) for the parameter λ such that one (or more) solution exists for λ < λ∗ , a unique
weak solution u∗ exists for λ = λ∗ and there is no solution for λ > λ∗ (see [10]). And one of the key
issue in the study of (4) is whether the extremal solution u∗ is a classical solution or uλ blows up
when λ → λ∗ (see [28,1,33,29]).

Classical examples that have been extensively studied include power growth gλ(u) = λ(1 + u)p

(p > 1) and the celebrated Gelfand problem gλ(u) = λeu (see [27,32,5]). For such non-linearities, the
minimal solutions, including the extremal solution u∗ can be proved to be classical, at least in low
dimension. In particular, for gλ(u) = λ(1 + u)p , u∗ is a classical solution if

n − 2 < F (p) := 4p

p − 1
+ 4

√
p

p − 1

(see Mignot and Puel [32]) while when Ω = B1 and n − 2 � F (p), it can be proved that u∗ ∼ Cr−2

(see Brezis and Vázquez [5]). For very general non-linearities of the form gλ(u) = λ f (u) with f su-
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perlinear, Nedev [34] proves the regularity of u∗ in low dimension while Cabré [6] and Cabré and
Capella [7,8] obtain optimal regularity results for u∗ in the radially symmetric case.

Other examples of non-linearity have been studied, such as gλ(x, u) = f0(x, u)+λϕ(x)+ f1(x) (see
Berestycki and Lions [3]) or gλ(x, u) = λ f (x)/(1 − u)2 (see Ghoussoub et al. [16,12,17]).

Our goal is to study similar behavior for the mean-curvature operator. In the present paper, we
only consider functions gλ(u) = H +λup , but the techniques introduced here can and will be extended
to more general non-linearities in a forthcoming paper.

2. Definitions and main theorems

2.1. Weak solutions

We recall that BV(Ω) denotes the set of functions in L1(Ω) with bounded total variation over Ω ,
that is:

∫
Ω

|Du| := sup

{∫
Ω

u(x)div(g)(x)dx; g ∈ C 1
c (Ω)n,

∣∣g(x)
∣∣ � 1

}
< +∞.

The space BV(Ω) is equipped with the norm

‖u‖BV(Ω) = ‖u‖L1(Ω) +
∫
Ω

|Du|.

If A is a Lebesgue subset of R
n , its perimeter P (A) is defined as the total variation of its characteristic

function ϕA :

P (A) :=
∫
Rn

|DϕA |, ϕA(x) =
{

1 if x ∈ A,

0 otherwise.
(5)

For u ∈ BV(Ω), we define the “area” of the graph of u by

A (u) :=
∫
Ω

√
1 + |∇u|2 = sup

{∫
Ω

g0(x) + u(x)div(g)(x)dx

}
, (6)

where the supremum is taken over all functions g0 ∈ C 1
c (Ω), g ∈ C 1

c (Ω)n such that |g0|+|g| � 1 in Ω .
An alternative definition is A (u) = ∫

Ω×R
|DϕU | where U is the subgraph of u. We have, in particular

∫
Ω

|Du| �
∫
Ω

√
1 + |∇u|2 � |Ω| +

∫
Ω

|Du|. (7)

A major difficulty, when developing a variational approach to (Pλ), is to deal with the boundary
condition. It is well known that even when λ = 0, minimizers of Fλ may not satisfy the homoge-
neous Dirichlet condition (we need an additional condition on H and the curvature of ∂Ω , see below
condition (13)). Furthermore, the usual techniques used to handle this issue, which work when λ � 0
do not seem to generalize easily to the case λ > 0. For this reason, we will not use the functional Fλ

in our analysis. Instead, we will define the solutions of (Pλ) as the “critical points” (the definition is
made precise below, see Definition 2.2 and Remark 2.3) of the functional
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Jλ(u) :=
∫
Ω

√
1 + |∇u|2 −

∫
Ω

H(x)u + λF (u)dx (8)

which satisfy the boundary condition u = 0 on ∂Ω .

Proposition 2.1 (Directional derivative of the area functional). For any u,ϕ ∈ BV(Ω) the limit

L(u)(ϕ) := lim
t↓0

1

t

(
A (u + tϕ) − A (u)

)
(9)

exists and, for all u, v ∈ BV(Ω)

A (u) + L(u)(v − u) � A (v). (10)

Proof. The existence of the limit in (9) follows from the convexity of the application t �→ A (u + tϕ).
By convexity also, we have

A
(
u + t(v − u)

)
� (1 − t)A (u) + tA (v), 0 � t � 1,

whence

A (u) + 1

t

(
A

(
u + t(v − u)

) − A (u)
)
� A (v), 0 < t � 1,

which gives (10) at the limit t → 0. �
We stress out the fact L(u) is not linear, since we might not have

L(u)(−ϕ) = −L(u)(ϕ)

for all ϕ (for instance if ϕ is the characteristic function of a set A).
With the definition of L(u) given by Proposition 2.1, it is readily seen that local minimizers of

J0 : u �→ A (u) − ∫
Ω

Hu dx in BV(Ω) satisfy

L(u)(ϕ) �
∫
Ω

Hϕ for all ϕ ∈ BV(Ω). (11)

There is equality in (11) if u and ϕ are smooth enough, but strict inequality if, for instance, ϕ = ϕA

and J0(u) < J0(u + tϕA) for a t > 0 since

1

t

(
A (u + tϕA) − A (u)

) = P (A), ∀t > 0.

We thus consider the following definition:

Definition 2.2 (Weak solution). A function u ∈ L p+1 ∩ BV(Ω) is said to be a weak solution of (Pλ) if it
satisfies
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L(u)(ϕ) �
∫
Ω

[
H + λ f (u)

]
ϕ dx, ∀ϕ ∈ Lp+1 ∩ BV(Ω) with ϕ = 0 on ∂Ω,

u � 0 in Ω,

u = 0 on ∂Ω.

(12)

Furthermore, a weak solution will be said to be minimal if it is the smallest among all non-negative
weak solutions.

Remark 2.3 (Local minimizer and weak solution). With this definition, it is readily seen that a local
minimizer u of Jλ in L p+1 ∩ BV(Ω) satisfying u = 0 on ∂Ω and u � 0 in Ω is a weak solution
of (Pλ).

Note that the boundary condition in Definition 2.2 makes sense because functions in BV(Ω) have
a unique trace in L1(∂Ω) if ∂Ω is Lipschitz (see [22]).

2.2. Classical solutions

A classical solution of (Pλ) is a function u ∈ C 2(Ω) which satisfies Eq. (Pλ) pointwise.
In the case of the semi-linear Eq. (4), it is well known that it is enough to show that a weak

solution u is in L∞(Ω), to deduce that it is a classical solution of (4) (using, for instance, Calderon–
Zygmund inequality and a bootstrap argument).

Because of the degenerate nature of the mean curvature operator, an L∞ bound on u is not enough
to show that it is a classical solution of (Pλ). When H + λ f (u) is bounded in L∞ , classical results of
the calculus of variation (see [30] for instance), imply that for n � 6, the surface (x, u(x)), the graph
of u, is C∞ (analytic if H is analytic) and that u is continuous almost everywhere in Ω . However, to
get further regularity on u itself, we need to show that u is Lipschitz continuous on Ω , as shown by
the following proposition. In the rest of our paper we will thus focus in particular on the Lipschitz
regularity of weak solutions.

Proposition 2.4. Assume that H satisfies the conditions of Theorem 2.7, and let u ∈ L p+1 ∩ BV(Ω) be a weak
solution of (Pλ) for some λ > 0. If u ∈ Lip(Ω), then u is a classical solution of (Pλ). In particular, u ∈ C 2,α(Ω)

for all α ∈ (0,1) and u satisfies −div(T u) = H + λ f (u) in Ω , u = 0 on ∂Ω .

Proof. This result follows from fairly classical arguments of the theory of prescribed mean curvature
surfaces and elliptic equations (see for instance [23]). Anticipating a little bit, we can also notice that
(modulo the regularity up to the boundary) it will be a consequence of Theorem 2.5(ii) below (with
H = H + λ f (u) instead of H), using the characterization of weak solutions given in Lemma 3.1(ii). �
2.3. Main results

Before we state our main results, we recall the following theorem concerning the case λ = 0, which
plays an important role in the sequel:

Theorem 2.5. (See Giaquinta [18].)

(i) Let Ω be a bounded domain with Lipschitz boundary and assume that H(x) is a measurable function such
that (3) holds for some ε0 > 0. Then the functional

F0(u) := A (u) −
∫
Ω

H(x)u(x)dx +
∫

∂Ω

|u|dH n−1

has a minimizer u in BV(Ω).
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(ii) Furthermore, if ∂Ω is C 1 , H(x) ∈ Lip(Ω) and

∣∣H(y)
∣∣ � (n − 1)Γ (y) for all y ∈ ∂Ω (13)

where Γ (y) denotes the mean curvature of ∂Ω (with respect to the inner normal), then the unique mini-
mizer of F0 belongs to C 2,α(Ω) ∩ C 0(Ω) for all α ∈ [0,1) and is solution to

{−div(T u) = H in Ω,

u = 0 on ∂Ω.
(14)

(iii) Finally, if ∂Ω is C 3 and the hypotheses of (ii) hold, then u ∈ Lip(Ω).

The key in the proof of (i) is the fact that (3) and the coarea formula for BV functions yield

ε0

∫
Ω

|Du| �
∫
Ω

|Du| −
∫
Ω

H(x)u(x)dx

for all u ∈ BV(Ω). This is enough to guarantee the existence of a minimizer. The condition (13) is a
sufficient condition for the minimizer to satisfy u = 0 on ∂Ω . In the sequel, we assume that Ω is
such that (3) holds, as well as the following strong version of (13):

∣∣H(y)
∣∣ � (1 − ε0)(n − 1)Γ (y) for all y ∈ ∂Ω. (15)

Remark 2.6. When H(x) = H0 is constant, Serrin proves in [36] that (13) is necessary for the equation
−div(T u) = H to have a solution for any smooth boundary data. However, it is easy to see that (13)
is not always necessary for (14) to have a solution: when Ω = B R and H = n

R , (14) has an obvious
solution given by an upper half sphere, even though (13) does not hold since (n − 1)Λ = (n − 1)/R <

H = n/R .
Several results in this paper only require Eq. (14) to have a solution with (1 + δ)H in the right-

hand side instead of H . In particular, this is enough to guarantee the existence of a minimal branch
of solutions and the existence of an extremal solution. When Ω = B R , we can thus replace (15) with

∣∣H(y)
∣∣ � (1 − ε0)nΓ (y) for all y ∈ ∂ B R .

However, the regularity theory for the extremal solution will require the stronger assumption (15).

Finally, we assume that there exists a constant H0 > 0 such that:

H ∈ Lip(Ω) and H(x) � H0 > 0 for all x ∈ Ω. (16)

This last condition will be crucial in the proof of Lemma 4.2 to prove the existence of a non-negative
solution for small values of λ. Note that Pucci and Serrin [35] proved, using a generalization of Po-
hozaev’s Identity, that if H = 0 and p � (n + 2)/(n − 2), then (Pλ) has no non-trivial solutions for any
values of λ > 0 when Ω is star-shaped (see also Bidaut-Véron [4]).

Our main theorem is the following:

Theorem 2.7. Let Ω be a bounded subset of R
n such that ∂Ω is C 3 . Assume that H(x) satisfies conditions (3),

(15) and (16). Then, there exists λ∗ > 0 such that:

(i) For all λ ∈ [0, λ∗], (Pλ) has one minimal weak solution uλ .
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(ii) For λ > λ∗ , (Pλ) has no weak solution.
(iii) The application λ �→ uλ is non-decreasing.

The proof of Theorem 2.7 is done in two steps: First we show that the set of λ for which a
weak solution exists is a non-empty bounded interval (see Section 4). Then we prove the existence of
the extremal solution for λ = λ∗ (see Section 6). The key result in this second step is the following
uniform L∞ estimate:

Proposition 2.8. There exists a constant C depending only on Ω and H, such that the minimal weak solu-
tion uλ of (Pλ) satisfies

‖uλ‖L∞(Ω) � C for all λ ∈ [
0, λ∗].

Next we investigate the regularity of minimal weak solutions: We want to show that minimal
weak solutions are classical solutions of (Pλ) (in view of Proposition 2.4, we need to obtain a Lipschitz
estimate). This, it seems, is a much more challenging problem and we obtain some results only in the
radially symmetric case. More precisely, we show the following:

Theorem 2.9. Assume that Ω = B R ⊂ R
n (n � 1), H = H(r), and that the conditions of Theorem 2.7 hold.

Then the minimal weak solution of (Pλ) is radially symmetric and lies in Lip(Ω). In particular there exists a
constant C such that

∣∣∇uλ(x)
∣∣ � C

λ∗ − λ
a.e. in Ω, ∀λ ∈ [

0, λ∗). (17)

In particular uλ is a classical solution of (Pλ), and if H(x) is analytic in Ω , then uλ is analytic in Ω for all
λ < λ∗ .

Note that the Lipschitz constant in (17) blows up as λ → λ∗ . However, we are then able to show
the following:

Theorem 2.10. Assume that the conditions of Theorem 2.9 hold. Then there exists a constant C such that for
any λ ∈ [0, λ∗], the minimal weak solution uλ ∈ Lip(Ω) and satisfies

∣∣∇uλ(x)
∣∣ � C a.e. in Ω.

In particular the extremal solution u∗ is a classical solution of (Pλ).

The classical tools of continuation theory developed for example in [28,10] can be modified in our
context (non-linear leading order differential operator, radial case) to show that there exists a second
branch of solution in the neighborhood of λ∗:

Theorem 2.11. Assume that the conditions of Theorem 2.9 hold. Then there exists δ > 0 such that for λ∗ − δ <

λ < λ∗ there are at least two classical solutions to (Pλ).

To prove this result, we will need to consider the linearized operator

Lλ(v) = −∂i
(
aij(∇uλ)∂ j v

) − λ f ′(uλ)v

where
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aij(p) = 1

(1 + |p|2)1/2

(
δi j − pip j

1 + |p|2
)

, p ∈ R
n.

If we denote by μ1(λ) the first eigenvalue of Lλ , we will prove in particular:

Lemma 2.12. Assume that the conditions of Theorem 2.9 hold. Then the linearized operator Lλ has positive
first eigenvalue μ1(λ) > 0 for all λ ∈ [0, λ∗). Furthermore, the linearized operator Lλ∗ corresponding to the
extremal solution has zero first eigenvalue μ1(λ

∗) = 0, and λ∗ corresponds to a turning point for the (λ, uλ)

diagram.

A turning point means that there exists a parametrized family of classical solutions

s �→ (
λ(s), u(s)

)
, s ∈ (−ε, ε)

with λ(0) = λ∗ and λ(s) < λ∗ both for s < 0 and s > 0. In particular we will prove that λ′(0) = 0 and
λ′′(0) < 0.

In the radially symmetric case, we can thus summarize our results in the following corollary:

Corollary 2.13. Assume that Ω = B R ⊂ R
n (n � 1), H = H(r), and that the conditions of Theorem 2.7 hold.

Then there exists λ∗ > 0, δ > 0 such that

1. if λ > λ∗ , there is no weak solution of (Pλ),
2. if λ � λ∗ , there is a minimal classical solution of (Pλ).
3. if λ∗ − δ < λ < λ∗ , there are at least two classical solutions of (Pλ).

Finally, we point out that numerical computation suggest that for some values of n and H , a third
branch of solutions may arise (and possibly more).

The paper is organized as follows: In Section 3, we give some a priori properties of weak solutions.
In Section 4 we show the existence of a branch of minimal weak solutions for λ ∈ [0, λ∗). We then
establish, in Section 5, a uniform L∞ bound for these minimal weak solutions (Proposition 2.8), which
we use, in Section 6, to show the existence of an extremal solution as λ → λ∗ (thus completing the
proof of Theorem 2.7). In the last Section 7 we prove the regularity of the minimal weak solutions, in-
cluding that of uλ∗ , in the radial case (Theorems 2.9 and 2.10) and we give the proof of Theorem 2.11.
In Appendix A, we prove a comparison lemma that is used several times in the paper.

Remark 2.14. One might want to generalize those results to other non-linearity f (u): In fact, all the
results presented here holds (with the same proofs) if f is a C 2 function satisfying:

(H1) f (0) = 0, f ′(u) � 0 for all u � 0.
(H2) There exists C and α > 0 such that f ′(u) � α for all u � C .
(H3) If u ∈ Lq(Ω) for all q ∈ [0,∞) then f (u) ∈ Ln(Ω).

The last condition, which is used to prove the L∞ bound (and the Lipschitz regularity near r = 0)
of the extremal solution uλ∗ is the most restrictive. It excludes in particular non-linearities of the
form f (u) = eu − 1. However, similar results hold also for such non-linearities, though the proof of
Proposition 2.8 has to be modified in that case. This will be developed in a forthcoming paper.

We can also consider right-hand sides of the form λ(1 + u)p (or λeu). In that case, Theorem 2.7,
Proposition 2.8 and Theorem 2.9 are still valid (but require different proofs), but Theorem 2.10 is not.
Indeed, our proof of the boundary regularity of the extremal solution uλ∗ (Lemma 7.3) relies heavily
on condition (15), which should be replaced here by the condition

λ∗ < (n − 1)Γ (y) for all y ∈ ∂Ω. (18)

However, it is not clear that λ∗ should satisfy (18).
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3. Properties of weak solutions

3.1. Weak solutions as global minimizers

Non-negative minimizers of Jλ that satisfy u = 0 on ∂Ω are in particular critical points of Jλ ,
and thus weak solutions of (Pλ). But not all critical points are minimizers. However, the convexity of
the perimeter yields the following result:

Lemma 3.1. Assume that ∂Ω is C 1 and let u be a non-negative function in L p+1 ∩ BV(Ω). The following
propositions are equivalent:

(i) u is a weak solution of (Pλ),
(ii) u = 0 on ∂Ω and for every v ∈ L p+1 ∩ BV(Ω), we have

A (u) −
∫
Ω

(
H + λ f (u)

)
u dx � A (v) −

∫
Ω

(
H + λ f (u)

)
v dx +

∫
∂Ω

|v|dH N−1, (19)

(iii) u = 0 on ∂Ω and for every v ∈ L p+1 ∩ BV(Ω), we have

Jλ(u) � Jλ(v) +
∫
Ω

λG(u, v)dx +
∫

∂Ω

|v|dH N−1 (20)

where

G(u, v) = F (v) − F (u) − f (u)(v − u) � 0.

In particular, (ii) implies that any weak solution u of (Pλ) is a global minimizer in L p+1 ∩ BV(Ω)

of the functional (which depends on u)

F [u]
λ (v) := A (v) −

∫
Ω

(
H + λ f (u)

)
v dx +

∫
∂Ω

|v|dH N−1.

Furthermore, since G(u, u) = 0, (iii) implies that any weak solution u of (Pλ) is also a global mini-
mizer in L p+1 ∩ BV(Ω) of the functional

G [u]
λ (v) := A (v) −

∫
Ω

H v + λF (v)dx +
∫

∂Ω

|v|dH N−1 +
∫
Ω

λG(u, v)dx

= Jλ(v) +
∫

∂Ω

|v|dH N−1 +
∫
Ω

λG(u, v)dx.

Proof of Lemma 3.1. The last two statements (ii) and (iii) are clearly equivalent (this follows from a
simple computation using the definition of G).

Next, we notice that if (ii) holds, then taking v = u + tϕ in (19), where ϕ ∈ L p+1 ∩ BV(Ω) with
ϕ = 0 on ∂Ω , we get

1 (
A (u + tϕ) − A (u)

)
�

∫ (
H + λ f (u)

)
ϕ dx.
t
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Passing to the limit t → 0, we deduce L(u)(ϕ) �
∫
Ω

(H + f (u))ϕ dx, i.e. u is a solution of (12). In view
of Definition 2.2, we thus have (ii) ⇒ (i).

So it only remains to prove that (i) implies (ii), that is

F [u]
λ (u) = min

v∈L p+1∩BV(Ω)
F [u]

λ (v).

By definition of weak solutions, we have

L(u)(ϕ) �
∫
Ω

(
H + λ f (u)

)
ϕ dx

for all ϕ ∈ L p+1 ∩ BV(Ω) with ϕ = 0 on ∂Ω . Furthermore, by (10), we have

A (u) + L(u)(v − u) � A (v),

for every v ∈ L p+1 ∩ BV(Ω) with v = 0 on ∂Ω . We deduce (taking ϕ = v − u):

A (u) +
∫
Ω

(
H + λ f (u)

)
(v − u)dx � A (v),

which implies

F [u]
λ (u) � F [u]

λ (v) (21)

for all v ∈ L p+1 ∩ BV(Ω) satisfying v = 0 on ∂Ω .
It thus only remains to show that (21) holds even when v �= 0 on ∂Ω . For that, the idea is to

apply (21) to the function v − wε where (wε) is a sequence of functions in L p+1 ∩ BV(Ω) converging
to 0 in L p+1(Ω) such that wε = v on ∂Ω . Heuristically the mass of wε concentrates on the boundary
∂Ω as ε goes to zero, and so A (v − wε) converges to A (v)+ ∫

∂Ω
|v|dH N−1. This type of argument

is fairly classical, but we give a detailed proof below, in particular to show how one can pass to the
limit in the non-linear term.

First, we consider v ∈ L∞ ∩ BV(Ω). Then, for every ε > 0, there exists wε ∈ L∞ ∩ BV(Ω) such that
wε = v on ∂Ω satisfying the estimates:

∥∥wε
∥∥

L1(Ω)
� ε

∫
∂Ω

|v|dH N−1,

∫
Ω

∣∣D wε
∣∣ � (1 + ε)

∫
∂Ω

|v|dH N−1 (22)

and ‖wε‖L∞(Ω) � 2‖v‖L∞(Ω) (see Theorem 2.16 in [22]). In particular we note that

∥∥wε
∥∥p+1

Lp+1(Ω)
� 2p‖v‖p

L∞(Ω)

∥∥wε
∥∥

L1(Ω)
→ 0 (23)

when ε → 0. Using (21), (22) and the fact that A (v − wε) � A (v) + ∫
Ω

|D wε|, we deduce:

F [u]
λ (u) � F [u]

λ

(
v − wε

)
� A (v) −

∫ (
H + λ f (u)

)
v dx +

∫ ∣∣D wε
∣∣ +

∫ (
H + f (u)

)
wε dx
Ω Ω Ω
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� A (v) −
∫
Ω

(
H + λ f (u)

)
v dx + (1 + ε)

∫
∂Ω

|v|dH N−1

+ ∥∥wε
∥∥

L p+1

∥∥H + f (u)
∥∥

L
p+1

p

= F [u]
λ (v) + ε

∫
∂Ω

|v|dH N−1 + ∥∥wε
∥∥

L p+1

∥∥H + f (u)
∥∥

L
p+1

p
. (24)

(Note that f (u) ∈ L
p+1

p (Ω) since u ∈ L p+1(Ω).) Using (23) and taking the limit ε → 0 in (24), we
obtain (21) for any v ∈ L∞ ∩ BV(Ω).

We now take v ∈ L p+1 ∩ BV(Ω). Then, the computation above shows that for every M > 0 we
have:

F [u]
λ (u) � F [u]

λ

(
T M(v)

)
,

where T M is the truncation operator T M(s) := min(M,max(s,−M)). Clearly, we have T M(v) → v
in L p+1(Ω) as M → ∞. Furthermore, one can show that A (T M(v)) → A (v). As a matter of fact,
the lower semi-continuity of the perimeter gives A (v) � lim infM→+∞ A (T M(v)), and the coarea
formula implies:

A
(
T M(v)

)
� A (v) +

∫
Ω

∣∣D
(

v − T M(v)
)∣∣

= A (v) +
+∞∫
0

P
({

v − T M(v) > t
})

dt

= A (v) +
+∞∫
M

P
({v > t})dt

−→ A (v) when M → +∞.

We deduce that F [u]
λ (T M(v)) −→ F [u]

λ (v), and the proof is complete. �
3.2. A priori bounds

Next, we want to derive some a priori bounds satisfied by any weak solution u of (Pλ).
First, we have the following lemma:

Lemma 3.2. Let u be a weak solution of (Pλ), then

∫
A

H + λ f (u)dx � P (A)

for all measurable sets A ⊂ Ω .

Proof. When u is smooth, this lemma can be proved by integrating (Pλ) over the set A and noticing
that | ∇u·ν√

1+|∇u|2 | � 1 on ∂ A. If u is not smooth, we use Lemma 3.1(ii): for all A ⊂ Ω , we get (with

v = ϕA ):
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A (u) −
∫
Ω

[
H + λ f (u)

]
u � A (u + ϕA) −

∫
Ω

[
H + λ f (u)

]
(u + ϕA) + H n−1(∂Ω ∩ A).

We deduce

0 �
∫
Ω

|DϕA | + H n−1(∂Ω ∩ A) −
∫
A

H + λ f (u)dx,

and so

0 � P (A) −
∫
A

H + λ f (u)dx. �

Lemma 3.2 suggests that λ cannot be too large for (Pλ) to have a weak solution. In fact, it provides
an upper bound on λ, if we know that

∫
Ω

u dx is bounded from below. This is proved in the next
lemma:

Lemma 3.3 (Bound from below). Let u be a weak solution of (Pλ) for some λ � 0. Then

u � u in Ω

where u is the solution corresponding to λ = 0:{−div(T u) = H in Ω,

u = 0 on ∂Ω.
(P0)

Proof. For δ � 0, let uδ be the solution to the problem{−div(T u) = (1 − δ)H in Ω,

u = 0 on ∂Ω.
(Pδ)

Problem (Pδ) has a solution uδ ∈ Lip(Ω) (by Theorem 2.5) and (uδ) is increasing to u when δ ↓ 0. We
also recall [19] that the function uδ is the unique minimizer in L p+1 ∩ BV(Ω) of the functional

Fδ(u) =
∫
Ω

√
1 + |∇u|2 −

∫
Ω

(1 − δ)H(x)u(x)dx +
∫

∂Ω

|u|.

The lemma then follows easily from the comparison principle, Lemma A.1: Taking G−(x, s) = −(1 −
δ)H(x)s, G+(x, s) = −H(x)s − λF (s) + λG(u(x), s), K− = K+ = L p+1 ∩ BV(Ω), Lemma A.1 implies:

0 �
∫
Ω

−δH
(
max(uδ, u) − u

) + λ
[

F (u) − F
(
max(u, uδ)

) + G
(
u,max(u, uδ)

)]

= −
∫
Ω

(
δH + λ f (u)

)
(uδ − u)+,

where v+ = max(v,0). Since H > 0 and u � 0 in Ω , this implies uδ � u a.e. in Ω . Taking the limit
δ → 0, we obtain u � u a.e. in Ω . �

As a corollary to Lemmas 3.2 and 3.3, we have the following a priori bound on λ:



50 A. Mellet, J. Vovelle / J. Differential Equations 249 (2010) 37–75
Lemma 3.4 (A priori bound). If (Pλ) has a weak solution for some λ � 0, then

λ �
P (Ω) − ∫

Ω
H dx∫

Ω
u dx

with u solution of (P0).

4. Existence of minimal weak solutions for λ ∈ [0,λ∗)

In this section, we begin the proof of Theorem 2.7 by showing the following proposition:

Proposition 4.1. Let Ω be a bounded subset of R
n such that ∂Ω is C 3 . Assume that H(x) satisfies condi-

tions (3), (15) and (16). Then, there exists λ∗ > 0 such that:

(i) For all λ ∈ [0, λ∗), (Pλ) has one minimal weak solution uλ .
(ii) For λ > λ∗ , (Pλ) has no weak solution.

(iii) The application λ �→ uλ is non-decreasing.

To establish Theorem 2.7, it will thus only remain to show the existence of an extremal solution
for λ = λ∗ . This will be done in Section 6. To prove Proposition 4.1, we will first show that weak
solutions exist for small values of λ. Then, we will prove that the set of the values of λ for which
weak solutions exist is an interval.

4.1. Existence of weak solutions for small values of λ

We start with the following lemma:

Lemma 4.2. Suppose that (3), (15) and (16) hold. Then there exists λ0 > 0 such that (Pλ) has a weak solution
for all λ < λ0 .

Note that Lemma 4.2 is proved by Huisken in [26] (see also [38]) in the case p = 1. Our proof is
slightly different from those two references and relies on the fact that H > 0.

Proof. We will show that for small λ, the functional Jλ has a local minimizer in L p+1 ∩ BV(Ω) that
satisfies u = 0 on ∂Ω . Such a minimizer is a critical point for Jλ , and thus (see Remark 2.3) a weak
solution of (Pλ).

Let δ be a small parameter such that (1 + δ)(1 − ε0) < 1 where ε0 is defined by the conditions (3)
and (15). Then there exists ε′ > 0 such that

∣∣∣∣
∫
A

(1 + δ)H dx

∣∣∣∣ � (1 + δ)(1 − ε0)H
n−1(∂ A) �

(
1 − ε′)P (A),

and

∣∣(1 + δ)H(y)
∣∣ �

(
1 − ε′)(n − 1)Γ (y) ∀y ∈ ∂Ω.

Theorem 2.5 thus gives the existence of w � 0 local minimizer in BV(Ω) of

Gδ(u) = A (u) −
∫

(1 + δ)H(x)u dx +
∫

|u|dσ(x),
Ω ∂Ω
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with w ∈ C 2,α(Ω) and w = 0 on ∂Ω .
It is readily seen that the functional Jλ has a global minimizer u in

K = {
v ∈ Lp+1 ∩ BV(Ω); 0 � v � w + 1

}
.

We are now going to show that if λ is small enough, then u satisfies

u(x) � w(x) in Ω. (25)

For this, we use the comparison principle (Lemma A.1) with G−(x, s) = −H(x)s−λF (s) and G+(x, s) =
−(1 + δ)H(x)s (i.e. F− = Jλ and F+ = Gδ), and K− = L p+1 ∩ BV(Ω), K+ = K . Since max(u, w) ∈ K ,
we obtain

0 �
∫
Ω

−δH
(
max(u, w) − w

) + λ
(

F
(
max(u, w)

) − F (w)
)

dx

�
∫
Ω

−δH
(
max(u, w) − w

) + λ sup
s∈[0,‖w‖∞+1]

∣∣ f (s)
∣∣(max(u, w) − w

)
dx

�
∫
Ω

−(u − w)+
[
δH − λ f

(‖w‖∞ + 1
)]

dx.

Therefore, if we take λ small enough such that λ < δ inf H
f (‖w‖∞+1)

= δ
H0

f (‖w‖∞+1)
, we deduce (25).

Finally, (25) implies that u = 0 on ∂Ω and that u is a critical point of Jλ in L p+1 ∩ BV(Ω), which
completes the proof. �
4.2. Existence of uλ for λ < λ∗

We now define

λ∗ = sup
{
λ; (Pλ) has a weak solution

}
.

Lemmas 3.4 and 4.2 imply

0 < λ∗ < ∞.

In order to complete the proof of Proposition 4.1, we need to show:

Proposition 4.3. For all λ ∈ [0, λ∗) there exists a minimal weak solution uλ of (Pλ). Furthermore, the appli-
cation λ �→ uλ is non-decreasing.

Proof of Proposition 4.3. Let us fix λ1 ∈ [0, λ∗). By definition of λ∗ , there exists λ ∈ (λ1, λ
∗] such that

(Pλ) has a weak solution u ∈ L p+1 ∩ BV(Ω) for λ = λ.
We also recall that u denotes the solution to (P0). We then define the sequence un as follows: We

take

u0 = u

and for any n � 1, we set
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In(v) = A (v) −
∫
Ω

[
H + λ1 f (un−1)

]
v dx +

∫
∂Ω

|v|

and let un be the unique minimizer of In in BV(Ω). In order to prove Proposition 4.3, we will show
that this sequence (un) is well defined (i.e. that un exists for all n), and that it converges to a weak
solution of (Pλ1 ). This will be a consequence of the following lemma:

Lemma 4.4. For all n � 1, the functional In admits a global minimizer un on BV(Ω). Moreover, un ∈ Lip(Ω)

satisfies

u � un−1 < un � u in Ω. (26)

We can now complete the proof of Proposition 4.3: by Lebesgue’s monotone convergence theorem,
we get that (un) converges almost everywhere and in L p+1(Ω) to a function u∞ satisfying

0 � u∞ � u.

In particular, we have u∞ = 0 on ∂Ω . Furthermore, for every n � 0, we have

In(un) � In(0) = |Ω|

and so by (7),

∫
Ω

|Dun| � 2|Ω| + sup(H)‖u‖L1 + λ1‖u‖p+1
Lp+1(Ω)

,

hence, by lower semi-continuity of the total variation, u∞ ∈ L p+1 ∩ BV(Ω). Finally, for all v ∈ L p+1 ∩
BV(Ω) and for all n � 1, we have

In(un) � In(v)

and using the lower semi-continuity of the perimeter, and the strong L p+1 convergence, we deduce

A (u∞) −
∫

Hu∞ + λ1 f (u∞)u∞ dx � A (v) −
∫

H v + λ0 f (u∞)v dx.

We conclude, using Lemma 3.1(ii), that u∞ is a solution of (Pλ1 ). �
The rest of this section is devoted to the proof of Lemma 4.4:

Proof of Lemma 4.4. We recall that u denotes the unique minimizer of F0 in BV(Ω) and that, by
Lemma 3.3, we have the inequality u � u a.e. on Ω .

Assume now that we constructed un−1 satisfying un−1 ∈ Lip(Ω) and

u � un−1 � u.

We are going to show that un exists and satisfies (26) (this implies Lemma 4.4 by first applying the
result to n = 1 and proceeding from there by induction).

First of all, Lemma 3.2 implies
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∫
A

H + λ f (u)dx � P (A)

for all measurable sets A ⊂ Ω . Since un−1 � u and λ1 < λ, we deduce that

∫
A

H + λ1 f (un−1)dx < P (A) (27)

for all measurable sets A ⊂ Ω . Following Giusti [20], we can then prove (a proof of this lemma is
given at the end of this section):

Lemma 4.5. There exists ε > 0 such that∫
A

H + λ1 f (un−1)dx < (1 − ε)P (A)

for all measurable sets A ⊂ Ω . In particular (3) holds with H = H + λ1 f (un−1) instead of H.

This lemma easily implies the existence of a minimizer un of In in BV(Ω) (using Theorem 2.5
with H instead of H). Furthermore, since un−1 ∈ Lip(Ω) and un−1 = 0 on ∂Ω condition (13) is satis-
fied with H instead of H and so (by Theorem 2.5):

un = 0 on ∂Ω

and

un ∈ Lip(Ω).

Finally, we check that the minimizer un satisfies

u � un � u.

Indeed, the first inequality is a consequence of the comparison Lemma A.1 applied to F− = F0,
F+ = In , K+ = K− = BV(Ω), which gives

0 � −
∫
Ω

λ1 f (un−1)
(
max(u, un) − un

)
dx.

The second inequality is obtained by applying Lemma A.1 to F− = In , F+ = F [u]
λ

, K+ = K− = L p+1 ∩
BV(Ω):

0 �
∫
Ω

(
λ1 f (un−1) − λ f (u)

)(
max(u, un) − u

)
dx

and using the fact that un−1 � u and λ1 < λ.
Since un ∈ Lip(Ω), un satisfies the Euler–Lagrange equation associated to the minimization of In:

−div(T un) = H + λ1 f (un−1). If n � 2 and un−1 � un−2, we then obtain the inequality un > un−1 by
the strong maximum principle (54) for Lipschitz continuous functions. �
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Proof of Lemma 4.5. The proof of the lemma is similar to the proof of Lemma 1.1 in [20]: Assuming
that the conclusion is false, we deduce that there exists a sequence Ak of (non-empty) subsets of Ω

satisfying
∫

Ak
H � (1 − k−1)P (Ak), H := H + λ1 f (un−1). In particular P (Ak) = ∫

RN |DϕAk | is bounded,

so there exists a Borel subset A of Ω such that, up to a subsequence, ϕAk → ϕA in L1(Ω) and, by
lower semi-continuity of the perimeter,

∫
A H � P (A). This is a contradiction to the strict inequal-

ity (27) except if A is empty. But the isoperimetric inequality gives

|Ak| n
n−1 � P (Ak) �

(
1 − k−1)−1

∫
Ak

H �
(
1 − k−1)−1‖H‖Ln(Ak)|Ak| n

n−1

hence

(
1 − k−1) � ‖H‖Ln(Ak) for all k � 2.

Since H is bounded (remember that un−1 ∈ Lip(Ω)), we deduce

1

2
� C |Ak|1/n

and so |A| > 0 since ϕAk → ϕA in L1(Ω). Consequently, A cannot be empty and we have a contradic-
tion. �
5. Uniform L∞ bound for minimal weak solutions

The goal of this section is to establish the L∞ estimate (Proposition 2.8) for λ < λ∗ . More precisely,
we show:

Proposition 5.1. There exists a constant C depending only on Ω and H such that, for every 0 � λ < λ∗ , the
minimal weak solution uλ to (Pλ) satisfies

‖uλ‖L∞(Ω) � C .

This estimate will be used in the next section to show that uλ converges to a weak solution of
(Pλ) as λ → λ∗ .

The proof relies on an energy method à la DeGiorgi [11]. Note that, in general, weak solutions are
not minimizers (not even local ones) of the energy functional Jλ . But it is classical that the minimal
solutions uλ enjoy some semi-stability properties. More precisely, we will show that uλ is a global
minimizer of Jλ with respect to non-positive perturbations. We will then use classical calculus of
variation methods to prove Proposition 5.1.

5.1. Minimal solutions as one-sided global minimizers

We now show the following lemma:

Lemma 5.2. The minimal weak solution uλ of (Pλ) is a global minimizer of the functional Jλ over the set
Kλ = {v ∈ L p+1 ∩ BV(Ω); 0 � v � uλ}. Furthermore, uλ is a semi-stable solution in the sense that, if uλ ∈
Lip(Ω), then J ′′

λ (uλ) � 0: for all ϕ in C 1(Ω) satisfying ϕ = 0 on ∂Ω , we have:

Q λ(ϕ) :=
∫
Ω

|∇ϕ|2
(1 + |∇uλ|2)1/2

− |∇ϕ · ∇uλ|2
(1 + |∇uλ|2)3/2

− λ f ′(uλ)ϕ
2 dx � 0. (28)
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Proof. It is readily seen that the functional Jλ admits a global minimizer ũλ on Kλ . We are going to
show that ũλ = uλ by proving, by recursion on n, that ũλ � un for all n, where (un) is the sequence
used to construct the minimal weak solution uλ in the proof of Proposition 4.3, that is u0 = u and
In(un) = minv∈BV(Ω) In(v) with, we recall,

In(v) = A (v) −
∫
Ω

(
H + λ f (un−1)

)
v +

∫
∂Ω

|v|dH N−1.

Set u−1 = 0, so that u0 = u is the minimizer of I0. Let n � 0. Applying Lemma A.1 to F− = In ,
F+ = Jλ , K− = BV(Ω), K+ = Kλ , we obtain

0 � λ

∫
Ω

F (ũλ) − F
(
max(un, ũλ)

) + f (un−1)
(
max(un, ũλ) − ũλ

)
dx. (29)

For n = 0, (29) reduces to:

0 � −
∫
Ω

F
(
max(u, ũλ)

) − F (ũλ)dx,

which implies u � ũλ a.e. in Ω since F is increasing.
For n � 1, assuming that we have proved that un−1 � ũλ a.e. in Ω , we have f (un−1) � f (ũλ)

and (29) implies

0 � −
∫
Ω

F
(
max(un, ũλ)

) − F (ũλ) − f (ũλ)
(
max(un, ũλ) − ũλ

)
dx

= −
∫
Ω

G
(
ũλ,max(un, ũλ)

)
dx.

The strict convexity of F implies ũλ = max(un, ũλ) and thus un � ũλ a.e. in Ω .
Passing to the limit n → ∞, we deduce uλ � ũλ in Ω and thus uλ = ũλ , which completes the proof

that uλ is a one sided minimizer.
Next, we note that if ϕ is a non-positive smooth function satisfying ϕ = 0 on ∂Ω , then Jλ(uλ +

tϕ) � Jλ(uλ) for all t � 0. Letting t go to zero, and assuming that uλ ∈ Lip(Ω), we deduce that the
second variation Q λ(ϕ) is non-negative. Since Q λ(ϕ) = Q λ(−ϕ), it is readily seen that (28) holds true
for non-negative functions. Finally decomposing ϕ into its positive and negative part, we deduce (28)
for any ϕ . �
5.2. L∞ estimate

We now prove:

Proposition 5.3 (L∞ estimate). Let λ ∈ (0, λ∗). There exists a constant C1 depending on λ−1 and Ω such that
the minimal weak solution uλ satisfies ‖uλ‖L∞(Ω) � C1.

Note that this implies Proposition 5.1: Proposition 5.3 gives the existence of C depending only
on Ω such that ‖uλ‖L∞(Ω) � C for every min(1, λ∗/2) � λ < λ∗ . And since 0 � uλ � uλ′ if λ < λ′ , the
inequality is also satisfied when 0 � λ � min(1, λ∗/2).
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Proof. This proof is essentially a variation of the proof of Theorem 2.2 in Giusti [19]. We fix λ ∈ (0, λ∗)
and set u = uλ .

For some fixed k > 1, we set vk = min(u,k) and wk = u − vk = (u − k)+ . The difference between
the areas of the graphs of u and vk can be estimated by below as follows [15]:

∫
Ω

|D wk| −
∣∣{u > k}∣∣ � A (u) − A (vk).

On the other hand, since 0 � vk � u, Lemma 5.2 gives Jλ(u) � Jλ(vk), which implies

A (u) − A (vk) �
∫
Ω

H(u − vk) + λ
[

F (u) − F (vk)
]

dx.

Writing

F (u) − F (vk) =
1∫

0

f
(
su + (1 − s)vk

)
ds(u − vk),

we deduce the following inequality

∫
Ω

|D wk| �
∣∣{u > k}∣∣ +

∫
Ω

(
H + λ

1∫
0

f
(
su + (1 − s)vk

)
ds

)
wk dx. (30)

First, we will show that (30) implies the following estimate:

‖u‖Lq(Ω) � C1(q), (31)

for every q ∈ [1,+∞), where C1(q) depends on q,Ω,λ−1.
Indeed, by Lemma 3.2, we have

∫
A H + λ f (u)dx � P (A) for all finite perimeter subset A of Ω . We

deduce (using the coarea formula):

∫
Ω

(
H + λ f (u)

)
wk dx =

+∞∫
0

∫
{wk>t}

H + λ f (u)dx dt �
+∞∫
0

P (wk > t)dt �
∫
Ω

|D wλ|.

So (30) becomes

0 �
∣∣{u > k}∣∣ − λ

∫
{u�k}

[
f (u) −

1∫
0

f
(
su + (1 − s)vk

)
ds

]
wk dx.

Since u � 1 and vk � 1 on {u � k}, and since f ′(s) � 1 for s � 1, we have

f (u) � f
(
su + (1 − s)vk

) + (
u − su − (1 − s)vk

)
= f

(
su + (1 − s)vk

) + (1 − s)(u − vk)
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on {u � k}. We deduce (recall that wk = u − vk = (u − k)+):

∫
Ω

[
(u − k)+

]2
dx � 2

λ

∣∣{u > k}∣∣,
which implies, in particular, (31) for q = 2. Furthermore, integrating this inequality with respect to
k ∈ (k′,+∞), we get:

∫
Ω

[
(u − k)+

]3
dx � 3 · 2

λ

∫
Ω

(u − k)+ dx,

and by repeated integration we obtain:

∫
Ω

[
(u − k)+

]q
dx � q(q − 1)

1

λ

∫
Ω

[
(u − k)+

]q−2
dx

for every q � 3, which implies (31) by induction on q.
Note however, that the constant C1(q) blows up as q → ∞, and so we cannot obtain the L∞

estimate that way. We thus go back to (30): using Poincaré’s inequality for BV(Ω) functions which
vanish on ∂Ω and (30), we get

‖wk‖
L

n
n−1 (Ω)

� C(Ω)

∫
Ω

|D wk|

� C(Ω)

(∣∣{u > k}∣∣ +
∫
Ω

(
H + λ f (u)

)
wk

)

� C(Ω)
(∣∣{u > k}∣∣ + ∥∥H + λ f (u)

∥∥
Ln({wk>0})‖wk‖

L
n

n−1 (Ω)

)
.

Inequality (31) implies in particular that H + λ f (u) ∈ Ln(Ω) (with bound depending on Ω , λ−1),
so there exists ε > 0 such that C(Ω)‖H + λ f (u)‖Ln(A) � 1/2 for any subset A ⊂ Ω with |A| < ε.
Moreover, Lemma 3.2 gives ‖u‖L1(Ω) � P (Ω)/λ and therefore

∣∣{wk > 0}∣∣ = ∣∣{u > k}∣∣ � 1

k

P (Ω)

λ
.

It follows that there exists k0 depending on Ω,λ−1 such that

C(Ω)
∥∥H + λ f (u)

∥∥
Ln({wk>0}) � 1/2

for k � k0. For k � k0, we deduce

‖wk‖
L

n
n−1 (Ω)

= ∥∥(u − k)+
∥∥

L
n

n−1 (Ω)
� 2C(Ω)

∣∣{u > k}∣∣.
Finally, for k′ > k, we have 1|{u>k′} � (

(u−k)+
k′−k )

n
n−1 and so

∣∣{u > k′}∣∣ � 1
′ n

n−1

∥∥(u − k)+
∥∥ n

n−1

L
n

n−1 (Ω)
� 2C(Ω)

′ n
n−1

∣∣{u > k}∣∣ n
n−1
(k − k) (k − k)
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which implies, by classical arguments (see [37]) that |{uλ > k}| is zero for k large (depending on |Ω|
and λ−1). The proposition follows. �

As a consequence, we have:

Corollary 5.4. There exists a constant C depending only on Ω and H such that

∫
Ω

|Duλ| � C .

Proof. By Lemma 3.1(ii) and Proposition 5.3, we get:

A(uλ) � A(v) −
∫
Ω

(
H + λ f (uλ)

)
v dx +

∫
Ω

(
H + λ f (uλ)

)
uλ dx

� A(v) + C

∫
Ω

|v|dx + C

for any function v ∈ L p+1 ∩ BV(Ω) such that v = 0 on ∂Ω . Taking v = 0, the result follows immedi-
ately. �
6. Existence of the extremal solution

We can now complete the proof of Theorem 2.7. The only missing piece is the existence of a weak
solution for λ = λ∗ , which is given by the following proposition:

Proposition 6.1. There exists a function u∗ ∈ L p+1(Ω) ∩ BV(Ω) such that

uλ → u∗ in Lp+1(Ω) as λ → λ∗.

Furthermore, u∗ is a weak solution of (Pλ) for λ = λ∗ .

Proof. Recalling that the sequence uλ is non-decreasing with respect to λ, it is readily seen that
Proposition 5.1 implies the existence of a function u∗ ∈ L∞(Ω) such that

lim
λ→λ∗ uλ(x) = u∗(x).

Furthermore, by the Lebesgue dominated convergence theorem, uλ converges to u∗ strongly in Lq(Ω)

for all q ∈ [1,∞).
Next, by lower semi-continuity of the area functional A (u) and Corollary 5.4, we have

A
(
u∗) � lim inf

λ→λ∗ A (uλ) < ∞.

So, if we write

λ

∫
F (uλ)dx − λ∗

∫
F
(
u∗)dx = (

λ − λ∗)∫
F (uλ)dx + λ∗

∫
F (uλ) − F

(
u∗)dx,

it is readily seen that
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Jλ∗
(
u∗) � lim inf

λ→λ∗ Jλ(uλ).

Furthermore, Lemma 3.1 yields

Jλ(uλ) � Jλ

(
u∗) + λ

∫
Ω

G
(
uλ, u∗)dx

and so (using the strong L p+1 convergence of uλ):

lim sup
λ→λ∗

Jλ(uλ) � Jλ∗
(
u∗).

We deduce the convergence of the functionals:

Jλ∗
(
u∗) = lim

λ→λ∗ Jλ(uλ)

which implies in particular that

A (uλ) → A
(
u∗)

and so uλ → u∗ in L1(∂Ω). It follows that u∗ satisfies the boundary condition u∗ = 0 on Ω .
Finally, using Lemma 3.1 again, we have, for any v ∈ L p+1 ∩ BV(Ω) with v = 0 on ∂Ω:

Jλ(uλ) � Jλ(v) + λ

∫
Ω

G(uλ, v)dx

which yields, as λ → λ∗:

Jλ∗
(
u∗) � Jλ∗(v) + λ∗

∫
Ω

G
(
u∗, v

)
dx

for any v ∈ L p+1 ∩ BV(Ω) with v = 0 on ∂Ω . Lemma 3.1 implies that u∗ is a weak solution of (Pλ)

for λ = λ∗ . �
7. Regularity of the minimal solution in the radial case

7.1. Proof of Theorem 2.9

Throughout this section, we assume that Ω = B R and that H depends on r = |x| only. Then, for
any rotation T that leaves B R invariant, we see that the function uT

λ (x) = uλ(T x) is a weak solution
of (Pλ), and the minimality of uλ implies

uλ � uT
λ in Ω.

Taking the inverse rotation T −1, we get the opposite inequality and so uT
λ = uλ , i.e. uλ is radially (or

spherically) symmetric. Furthermore, Eq. (Pλ) reads:

− 1

rn−1

d

dr

(
rn−1ur

2 1/2

)
= H + λ f (u) (32)
(1 + ur )
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or

−
[

urr

(1 + u2
r )3/2

+ n − 1

r

ur

(1 + u2
r )1/2

]
= H + λ f (u) (33)

together with the boundary conditions

ur(0) = 0, u(R) = 0.

Note that, by integration of (32) over (0, r), 0 < r < R , we obtain

−rn−1ur(r)

(1 + ur(r)2)1/2
=

r∫
0

[
H + λ f (u)

]
rn−1 dr, (34)

which gives ur � 0, provided u is Lipschitz continuous in Ω at least.
It is classical that the solutions of (4) can blow up at r = 0. In our case however, the functions uλ

are bounded in L∞ . We deduce the following result:

Lemma 7.1 (Bound on the gradient near the origin). There exists r1 ∈ (0, R) and C1 > 0 such that for any
λ ∈ [0, λ∗], we have

∣∣∇uλ(x)
∣∣ � C1 for a.a. x such that |x| � r1.

Proof. First, we assume that uλ is smooth. Then, integrating (Pλ) over Br , we get:

∫
∂ Br

∇uλ · ν√
1 + |∇uλ|2

dx =
∫
Br

H + λ f (uλ)dx.

Since uλ is spherically symmetric, this implies:

|(uλ)r |√
1 + |(uλ)r |2

(r) = 1

P (Br)

∫
Br

H + λ f (uλ)dx (35)

and the L∞ bound on uλ yields:

|(uλ)r |√
1 + |(uλ)r |2

(r) � C
|Br |

P (Br)
� Cr.

In particular, there exists r1 such that Cr � 1/2 for r � r1 and so

∣∣(uλ)r
∣∣(r) � C1 for r � r1. (36)

Of course, these computations are only possible if we already know that uλ is a classical solution
of (Pλ). However, it is always possible to perform the above computations with the sequence (un)

used in the proof of Proposition 4.3 to construct uλ . In particular, we note that we have u � un � uλ

for all n and

−div(T un) = H + λ f (un−1) in Ω
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so the same proof as above implies that there exists a constant C independent of n or λ such that

|∇un| � C1 for all x such that |x| � r1.

The lemma follows by taking the limit n → ∞ (recall that the whole sequence un converges in a
monotone fashion to uλ). �
Proof of Theorem 2.9. We now want to prove the gradient estimate (17). Thanks to Lemma 7.1, we
only have to show the result for r ∈ [r1, R]. We denote u∗ = uλ∗ . Since u∗ is a weak solution of (Pλ),
Lemma 3.2 with A = Br (r ∈ [0, R]) implies

∫
Br

H + λ∗ f
(
u∗)dx � P (Br)

and so, using the fact that u∗ � uλ � u, we have

∫
Br

H + λ f (uλ)dx � P (Br) −
∫
Br

(
λ∗ − λ

)
f (uλ) � P (Br) − (

λ∗ − λ
)∫

Br

f (u)dx.

Hence (35) becomes:

|(uλ)r |√
1 + |(uλ)r |2

(r) � 1 − (λ∗ − λ)

P (Br)

∫
Br

f (u)dx.

For r ∈ (r1, R), we have

(λ∗ − λ)

rn−1

∫
Br

f (u)dx �
(
λ∗ − λ

)
δ > 0

for some universal δ and so

∣∣(uλ)r
∣∣(r) � C

λ∗ − λ
for r ∈ [r1, R].

Together with (36), this gives the result.
Note once again that these computations can only be performed rigorously on the functions (un),

which satisfy in particular u � un � u∗ for all n. So (17) holds for un instead of uλ . The result follows
by passing to the limit n → ∞. �
Remark 7.2. We point out that the Lipschitz regularity near the origin r = 0 is a consequence of
the L∞ estimate (it is in fact enough to have f (uλ) ∈ Ln), while the gradient estimate away from the
origin only requires f (uλ) to be integrable.

7.2. Regularity of the extremal solution

In this section, we prove Theorem 2.10, that is the regularity of the extremal solution u∗ . The proof
is divided in two parts: boundary regularity and interior regularity.
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7.2.1. Boundary regularity
We have the following a priori estimate:

Lemma 7.3 (Bound on the gradient at the boundary). Assume that Ω = B R , that H depends on r only and that
conditions (3), (15) and (16) are fulfilled. Let u be any classical solution of (Pλ). Then there exists a constant C
depending only on R, ε0 and n such that

∣∣ur(R)
∣∣ � C(1 + λ).

Since we know that uλ ∈ Lip(Ω) for λ < λ∗ , Proposition 2.4 implies that uλ is a classical solution,
so Lemma 7.3 yields

∣∣(uλ)r(R)
∣∣ � C(1 + λ) for all λ < λ∗.

Passing to the limit, we obtain:

∣∣u∗
r (R)

∣∣ � C
(
1 + λ∗). (37)

Proof of Lemma 7.3. In this proof, assumption (15) plays a crucial role. When Ω is a ball of radius R
and using the fact that H ∈ Lip(Ω), it implies:

H(r) � (1 − ε0)
n − 1

R
(38)

in a neighborhood of ∂Ω (with a slightly smaller ε0). The argument of our proof is similar to the proof
of Theorem 2.5(ii) (to show that u satisfies the Dirichlet condition), and relies on the construction of
an appropriate barrier. Actually, whenever we have H(y) � (n − 1)Γ (y), y ∈ ∂Ω , there is a natural
barrier at the boundary given by the cylinder generated by ∂ B R . Here, we modify this cylinder by
slightly bending it along its generating straight line. The generating straight line thus becomes a circle
of radius ε−1 and condition (38) implies that this hypersurface is a supersolution for (Pλ). By radial
symmetry, this amounts to consider a circle of radius ε−1 (ε to be determined) centered at (M, δ)

with δ small and M > R chosen such that the circle passes through the point (R,0) (see Fig. 1). We
define the function h(r) in [M − ε−1, R] such that (r,h(r)) lies on the circle (with h(r) < δ).

Then, we note that for r ∈ [M − ε−1, R] and εδ � 1, we have

h′(r)
(1 + h′(r)2)1/2

� h′(R)

(1 + h′(R)2)1/2
= −(

1 − (δε)2)1/2 � −1 + (δε)2

(this quantity can be interpreted as the horizontal component of the normal vector to the circle), and

d

dr

(
h′(r)

(1 + h′(r)2)1/2

)
= ε

(this quantity is actually the one-dimensional curvature of the curve r �→ h(r)). Hence we have:

1

rn−1

d

dr

(
rn−1h′(r)

(1 + h′(r)2)1/2

)
= d

dr

(
h′(r)

(1 + h′(r)2)1/2

)
+ n − 1

r

h′(r)
(1 + h′(r)2)1/2

� ε + n − 1

r

(−1 + (δε)2)
� ε + n − 1 (−1 + (δε)2).
R
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Fig. 1. Construction of a barrier.

We now use a classical sliding method: Let

η∗ = inf
{
η > 0; u(r) � h(r − η) for r ∈ [

M − ε−1 + η, R
]}

.

If η∗ > 0, then h(r + η∗) touches u from above at a point in (M − ε−1 + η, R) such that u < δ

(recall that u is Lipschitz continuous so it cannot touch h(r − η) at M − ε−1 + η since h = δ and
h′ = ∞ at that point). At that contact point, we must thus have

1

rn−1

d

dr

(
rn−1h′(r)

(1 + h′(r)2)1/2

)
� 1

rn−1

d

dr

(
rn−1ur(r)

(1 + ur(r)2)1/2

)

� −(
H + λ f (u)

)
� −(1 − ε0)

n − 1

R
− λδp .

We will get a contradiction if ε and δ are such that

ε + n − 1

R

(−1 + (δε)2) < −(1 − ε0)
n − 1

R
− λδp

which is equivalent to

ε + λδp + n − 1

R
(εδ)2 <

n − 1

R
ε0.

This can be achieved easily by choosing ε and δ small enough.
It follows that η∗ = 0 and so u � h in the neighborhood of R . Since u(R) = h(R) = 0, we deduce:

∣∣u′(R)
∣∣ �

∣∣h′(R)
∣∣ � C(R,n)(εδ)−1 � C(R,n)

1 + λ

ε2
0

. �

Corollary 7.4 (Bound on the gradient near the boundary). Under the hypotheses of Lemma 7.3, there exist
η ∈ (0, R) and C > 0 depending on R, ε0 and n only such that

∣∣ur(r)
∣∣ � C for all r ∈ [R − η, R].
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Proof. The same proof as that of Lemma 7.3 shows that there exists δ > 0 and C > 0 such that:

If u(r) � δ for all r ∈ [r0, R] with R − r0 � δ then
∣∣ur(r0)

∣∣ � C . (39)

Furthermore, the proof of Lemma 7.3 implies that u(r) � h(r) in a neighborhood of R , and so for some
small η we have:

u(r) � δ for all r ∈ [R − η, R].

The result follows. �
7.2.2. Interior regularity

We now show the following interior regularity result:

Proposition 7.5 (Interior bound on the gradient). Let η ∈ (0, R/2). There exists Cη > 0 depending only on η,
n and

∫
Ω

|Duλ| such that, for all 0 � λ < λ∗ ,

∣∣∇uλ(x)
∣∣ � Cη for all x in Ω with η < |x| < R − η.

Using Lemma 7.1 (regularity for r close to 0), Corollary 7.4 (regularity for r close to R), and Propo-
sition 7.5 (together with Corollary 5.4 which give the BV estimate uniformly with respect to λ), we
deduce that there exists C depending only on H and n such that

∣∣∇uλ(x)
∣∣ � C for all x in Ω,

for all λ ∈ [0, λ∗). Theorem 2.10 then follows by passing to the limit λ → λ∗ .

Proof of Proposition 7.5. It is sufficient to prove the result for λ∗
2 < λ < λ∗ . Throughout the proof, we

fix λ ∈ ( λ∗
2 , λ∗), r0 ∈ (η, R − η) and we denote

u = uλ and v =
√

1 + u2
r .

Idea of the proof: Let ϕ0 = ϕBr0
(the characteristic function of the set Br0 ). Then by definition of Jλ ,

we have for all t � 0:

Jλ(u + tϕ0) � Jλ(u) + t

∫
Ω

|Dϕ0| − t

∫
Ω

Hϕ0 dx − λ

∫
Ω

F (u + tϕ0) − F (u)dx.

Furthermore, since u � u, we have u � μ > 0 in Br0 and so

F (u + tϕ0) − F (u) � f (u)tϕ0 + α

2
t2ϕ2

0 for all x ∈ Ω

(with α such that f ′(s) � α for all s � μ). It follows:
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Jλ(u + tϕ0) � Jλ(u) + t

∫
Ω

|Dϕ0| − t

∫
Ω

(
H + λ f (u)

)
ϕ0 dx − t2 αλ

2

∫
Ω

ϕ2
0 dx

= Jλ(u) + t P (Br0) − t

∫
Br0

H + λ f (u)dx − t2 αλ

2
|Br0 |

= Jλ(u) + t P (Br0)

(
1 − |ur(r0)|

v(r0)

)
− t2 αλ

2
|Br0 |,

where we used the following equality, obtained by integration of (Pλ) over Br0 :

−P (Br0)
ur(r0)

v(r0)
=

∫
Br0

H + λ f (u)dx.

This would imply |ur |
v � 1 − δ and yield Proposition 7.5 if we had Jλ(u) � Jλ(u + tϕ0) for some

t > 0. Unfortunately, u = uλ is only a minimizer with respect to negative perturbations. The proof of
Proposition 7.5 thus consists in using the semi-stability to show that u is almost a minimizer (up to
some term of order 3) with respect to some positive perturbations.

Step 1: First of all, the function ϕ0 above is not smooth, so we need to consider the following piece-
wise linear approximation of ϕ0:

ϕε =
⎧⎨
⎩

1 if r � r0 − ε,

ε−1(r0 − r) if r0 − ε � r � r0,

0 if r � r0.

We then have (using Eq. (Pλ) and denoting by ωn the volume of the unit ball in R
n):

Jλ(u + tϕε) � Jλ(u) + t

∫
Ω

|∇ϕε|dx − t

∫
Ω

(
H + λ f (u)

)
ϕε dx − t2 αλ

2

∫
Ω

ϕ2
ε dx

= Jλ(u) + t

∫
Ω

|∇ϕε|dx − t

∫
Ω

(u)r(ϕε)r

v
dx − t2 αλ

2

∫
Ω

ϕ2
ε dx

= Jλ(u) + t

∫
Ω

(
1 − |ur |

v

)
|∇ϕε|dx − t2 αλ

2

∫
Ω

ϕ2
ε dx

= Jλ(u) + tωn

r0∫
r0−ε

(
1 − |ur |

v

)
ε−1rn−1 dr − t2 αλ

2

∫
Ω

ϕ2
ε dx

� Jλ(u) + tωnε
−1

r0∫
r0−ε

1

v2
rn−1 dr − t2 αλ

2

∫
Ω

ϕ2
ε dx

and so if we denote ρ(ε) = supr∈(r0−ε,r0)
1

v2 , we deduce:

Jλ(u + tϕε) � J (u)λ + tωnrn−1
0 ρ(ε) − t2 αλ

2
ωn

(
r0

2

)n

(40)

for all ε < r0/2.
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Step 2: Since our goal is to show that ρ(ε) cannot be too small, we need to control J (u + tϕε) from
below: for a smooth radial function ϕ , we denote

θ(t) = A(u + tϕ) =
∫
Ω

L(ur + tϕr),

where L(s) = (1 + s2)1/2. Then

θ(3)(t) =
∫
Ω

L(3)(ur + tϕr)ϕ
3
r dx

where

L(3) : s �→ −3s

(1 + s2)5/2

satisfies

∣∣L(3)(s)
∣∣ � 3

(1 + s2)2
, ∀s � 0.

When ϕ = ϕε , we have |ur + tϕr | � |ur | for all t � 0 and therefore:

∣∣θ(3)(t)
∣∣ �

∫
Ω

3

v4

∣∣(ϕε)r
∣∣3

dx � ε−3ωn

r0∫
r0−ε

3

v4
rn−1 dr � ε−2ωn ρ(ε)2 rn−1

0

for all t � 0.
Since the second variation Q λ(ϕε) is non-negative by Lemma 5.2 (recall that uλ is a semi-stable

solution), we deduce that for some t0 ∈ (0, t) we have:

Jλ(u + tϕε) = Jλ(u) + t2

2
Q λ(ϕε) + θ(3)(t0)

t3

6
− λ

∫
Ω

f ′′(u + t0ϕε)

6
t3ϕ3 dx

� Jλ(u) − t3

2

∣∣θ(3)(t0)
∣∣ − ∥∥ f ′′(u + t0ϕε)

∥∥
L∞(Br0 )

λt3ωnrn
0

� Jλ(u) − t3

2
ε−2ωnρ(ε)2rn−1

0 − Cλt3ωnrn
0, (41)

where we used the fact that f ′′(u + t0ϕε) ∈ L∞(Br0) (if p � 2, this is a consequence of the L∞ bound
on u, if p ∈ (1,2), then this follows from the fact that u + t0ϕε � u > 0 in Br0 ).

Step 3: Inequalities (40) and (41) yield:

λ
t2

2
ωnrn

0 � tωnrn−1
0 ρ(ε) + t3

2
ε−2ωn ρ(ε)2 rn−1

0 + Cλt3ωnrn
0

and so

λr0
(1 − 2Ct)t � ρ(ε) + ε−2t2

ρ(ε)2
2 2
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for all t � 0. If t � 1/(4C), we deduce

μt � ρ(ε) + ε−2t2

2
ρ(ε)2

with μ = λr1/4 (recall that r0 > r1).
Let now t = Mε (M to be chosen later), then we get

μMε � ρ(ε) + M2

2
ρ(ε)2.

If ρ(ε) � μMε
2 , then

ρ(ε) + M2

2
ρ(ε)2 � μMε

2
+ μ2M4ε2

8

and we get a contradiction if μ2 M4ε2

8 <
μMε

2 . It follows that

ρ(ε) � μMε

2
for all ε <

4

μM3
. (42)

Step 4: Since ρ(ε) = supr∈(r0−ε,r0)
1
v2 , (42) yields

inf
r∈(r0−ε,r0)

v2 � 2

μMε
for all ε <

4

μM3
.

In order to conclude, we need to use some type of Harnack inequality to control supr∈(r0−ε,r0) v2. This
will follow from the following lemma:

Lemma 7.6. Let v =
√

1 + u2
r . Then v solves the following equation in (0, R):

− 1

rn−1

(
rn−1 vr

v3

)
r
+ c2 = Hr

ur

v
+ λ f ′(u)

u2
r

v
, (43)

where

c2 = n − 1

r2

u2
r

v2
+ u2

rr

v6

is the sum of the square of the curvatures of the graph of u.

We postpone the proof of this lemma to the end of this section. Clearly, Eq. (43) is degenerate el-
liptic. In order to write a Harnack inequality, we introduce w = 1

v2 , solution of the following equation

1

rn−1

(
rn−1 wr

)
r = 2Hr

ur

v
+ 2λ f ′(u)

u2
r

v
− 2c2

which is a nice uniformly elliptic equation in a neighborhood of r0 ∈ (0, R). In particular, if ε � R − r0,
Harnack’s inequality [23] yields:



68 A. Mellet, J. Vovelle / J. Differential Equations 249 (2010) 37–75
sup
r∈(r0−ε,r0)

w � C inf
r∈(r0−ε,r0)

w + Cε‖g‖L1(r0−2ε,r0+ε) (44)

where

g = 2Hr
ur

v
+ 2λ f ′(u)

u2
r

v
− 2c2.

Next, we note that

|g| � 2|Hr | + Cλ|ur | + 2c2.

It is readily seen that the first (n − 1) curvatures 1
r

ur
v are bounded in a neighborhood of r0 �= 0.

Furthermore, since the mean curvature is in L∞ , it is easy to check that the last curvature is also
bounded: more precisely, (33) gives

urr

v3
= −H − λ f (u) − n − 1

r

ur

v
∈ L∞.

We deduce that c2 ∈ L∞ and since u ∈ BV(Ω), we get

‖g‖L1(r0−2ε,r0+ε) � C

∫
Ω

|Du| + C .

Together with (44) and (42) (and recalling that ρ(ε) = supr∈(r0−ε,r0) w2), we deduce:

μMε

2
� C inf

r∈(r0−ε,r0)
w + C

( ∫
Ω

|Du| + 1

)
ε for all ε <

4

μM3
.

With M large enough (M � 4C
μ (

∫
Ω

|Du| + 1)), it follows that

μMε

4
� C inf

r∈(r0−ε,r0)
w for all ε <

4

μM3

and thus (with ε = min( 2
μM3 , (R − r0)/4, 1

4MC )):

v(r0)
2 � sup

r∈(r0−ε,r0)

v2 � C

(
(λr0)

−1, (R − r0)
−1,

∫
Ω

|Du|,‖u‖L∞(Ω)

)
,

which completes the proof. �
Proof of Lemma 7.6. Taking the derivative of (32) with respect to r and multiplying by ur , we get:

n − 1

rn

(
rn−1ur

v

)
r
ur − 1

rn−1

(
rn−1ur

v

)
rr

ur = Hrur + λ f ′(u)u2
r .

Using the fact that
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(
ur

v

)
r
= urr

v3
and vr = ururr

v
,

we deduce:

(n − 1)2

rn

rn−2u2
r

v
+ n − 1

r

ururr

v3
− n − 1

rn−1

(
rn−2ur

v

)
r
ur − 1

rn−1

(
rn−1urr

v3

)
r
ur = Hrur + λ f ′(u)u2

r

and so (simplifying and dividing by v):

(n − 1)2

r2

u2
r

v2
− (n − 1)(n − 2)

rn−1

rn−3u2
r

v2
− 1

rn−1

(
rn−1urr

v3

)
r

ur

v
= Hr

ur

v
+ λ f ′(u)

u2
r

v
.

This yields

(n − 1)

r2

u2
r

v2
− 1

rn−1

(
rn−1urrur

v4

)
r
+ 1

rn−1

rn−1urr

v3

(
ur

v

)
r
= Hr

ur

v
+ λ f ′(u)

u2
r

v

hence

(n − 1)

r2

u2
r

v2
− 1

rn−1

(
rn−1 vr

v3

)
r
+ u2

rr

v6
= Hr

ur

v
+ λ f ′(u)

u2
r

v

which is the desired equation. �
7.2.3. Proof of Theorem 2.11

In this section, we adapt the continuation method of [10] to prove Theorem 2.11.
First, we need to introduce some notations: Let α ∈ (0,1) and, for k ∈ N, let Ck,α

0 (Ω) be the set of

functions u ∈ Ck,α(Ω) that satisfy u = 0 on ∂Ω . Let T : C 2,α
0 (Ω) × R → Cα

0 (Ω) be defined by

T (u, λ) = −div(T u) − H − λ f (u).

The function T is twice continuously differentiable and, at any point (u, λ) ∈ C 2,α
0 (Ω) × R, has first

derivatives

Tu(u, λ) : v �→ −∂i
(
aij(∇u)∂ j v

) − λ f ′(u)v, Tλ(u, λ) = − f (u),

where we use the convention of summation over repeated indices and set, for p ∈ R
n ,

ai(p) = pi

(1 + |p|2)1/2
, aij(p) = ∂ai

∂p j
(p) = 1

(1 + |p|2)1/2

(
δi j − pip j

1 + |p|2
)

.

The second derivatives of T at any point (u, λ) ∈ C 2,α
0 (Ω) × R are

Tuu(u, λ)(v, w) = −∂i
(
aijk(∇u)∂ j v∂k w

) − λ f ′′(u)v w

and Tuλ(u, λ)(v,μ) = −μ f ′(u)v , Tλλ(u, λ) = 0, where

aijk(p) = ∂aij

(p) = 3
pip jpk

2 5/2
− 1

2 3/2
(δi jpk + δikp j + δkjpi).
∂pk (1 + |p| ) (1 + |p| )
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We note for further use that, given p,q ∈ R
n ,

aijk(p)qiq jqk = 3
p · q

(1 + |p|2)5/2

(
(p · q)2 − |q|2(1 + |p|2)),

and thus, in particular,

p · q � 0 �⇒ aijk(p)qiq jqk � 0. (45)

Next, we note that for any u, v, w radially symmetric function, non-increasing with respect to r,
we have

[
ai(∇u) − ai(∇v) − aij(∇u)∂ j(u − v)

]
∂i w � 0, (46)

or, equivalently, setting A(∇u) := (aij(∇u))i j :

(
T u − T v − A(∇u)∇(u − v)

) · ∇w � 0. (47)

Indeed, the left-hand side of (46) rewrites

(
h(p) − h(q) − h′(p)(p − q)

)
s, where h(p) = p

(1 + p2)1/2
,

where p = ∂ru � 0, q = ∂r v � 0, s = ∂r w � 0 and h is convex on R− .
Recall that u ∈ C 2,α

0 (Ω) is the solution to T (u,0) = 0. In particular u is radially symmetric and

non-increasing with respect to r. At λ = 0, the map Tu(u,0) : C 2,α
0 (Ω) → Cα

0 (Ω) is invertible since it
defines a uniformly elliptic operator with no zero-th order terms. By the Implicit Function Theorem,
we obtain the existence of a > 0 and of a C 2 curve λ �→ u(λ) from [0,a] to C 2,α

0 (Ω) of solutions to
T (u(λ), λ) = 0 such that u(0) = u.

Let now λ ∈ (0, λ∗] be the largest b > 0 such that this curve can be continued to [0,b) under
the additional constraint that for all λ ∈ [0,b), Tu(u(λ), λ) is invertible. We denote by Lλ the elliptic
operator Lλ = Tu(u(λ), λ) and by

μ1(λ) < μ2(λ) � μ3(λ) � · · ·
its eigenvalues. It is readily seen that μ1(0) > 0 (since there are no zero-th order terms in L0). Since
λ �→ μ1(λ) is continuous2 and μ1(λ) �= 0 on [0, λ), we see that μ1(λ) > 0 for all λ ∈ [0, λ).

Note also that the function u(λ) is a radially symmetric,3 and that Lλ therefore admits a first
eigenvector w1

λ > 0 associated to the eigenvalue μ1(λ) which is also a radially symmetric function.
Furthermore, one can check that w1

λ is non-increasing with respect to r: As in (32)–(34), this follows
directly from the equation Lλw1

λ = μ1(λ)w1
λ written in terms of the r-variable, i.e.

− 1

rn−1
∂r

(
rn−1

(1 + |∂ru(λ)|2)3/2
∂r w1

λ

)
= λ f ′(u(λ)

)
w1

λ + μ1(λ)w1
λ � 0.

We can now prove that u(λ) and uλ coincide.

2 This follows from the continuity of the map λ �→ u(λ) valued in C 2,α(Ω) and from the characterization of μ1(λ) as the
supremum over non-trivial ϕ ∈ C 2(Ω) of the Rayleigh quotients (Lλϕ,ϕ)

(ϕ,ϕ)
where (·,·) is the canonical scalar product over L2(Ω).

3 This is the case of every terms in the iterative sequence un(λ) converging to u(λ) that is constructed by application of the
Implicit Function Theorem.



A. Mellet, J. Vovelle / J. Differential Equations 249 (2010) 37–75 71
Lemma 7.7. We have λ = λ∗ , u(λ) = uλ (the minimal solution), μ1(λ) > 0 for all λ ∈ [0, λ∗) and μ1(λ
∗) = 0.

Proof. We adapt the proof of Theorem 3.2 in [28]. Let λ ∈ [0, λ), ν ∈ [0, λ∗]. Using the fact that u(λ)

and uν are solutions to (Pλ), we get:

Lλ

(
u(λ) − uν

) = −div
(

A
(∇u(λ)

)∇(
u(λ) − uν

)) − λ f ′(u(λ)
)(

u(λ) − uν

)
= λ f

(
u(λ)

) − ν f (uν) − λ f ′(u(λ)
)(

u(λ) − uν

)
+ div

[
T u(λ) − T uν − A

(∇u(λ)
)∇(

u(λ) − uν

)]
.

Since f is convex, we have

λ f
(
u(λ)

) − ν f (uν) − λ f ′(u(λ)
)(

u(λ) − uν

)
� (λ − ν) f (uν)

and it follows from (46) that

∫
Ω

Lλ

(
u(λ) − uν

)
w dx � (λ − ν)

∫
Ω

f (uν)w dx (48)

for any radially symmetric non-negative non-increasing function w ∈ C 2,α(Ω). Taking ν = λ and w =
w1

λ , the positive eigenvector corresponding to the first eigenvalue μ1(λ), we deduce:

μ1(λ)

∫
Ω

(
u(λ) − uλ

)
w1

λ dx � 0.

We have u(λ) − uλ � 0 since uλ is the minimal solution to (Pλ) and μ1(λ) > 0, w1
λ > 0 in Ω , hence

u(λ) = uλ in Ω .
We now extend the definition of Lλ to the whole interval [0, λ∗] by setting Lλ = Tu(uλ, λ). In

particular, μ1(λ) = 0 and (48) is valid for λ in the whole range [0, λ∗]. To prove the second part of
Lemma 7.7, assume by contradiction λ < ν < λ∗ . Taking λ = λ and w = w1

λ
in (48), we obtain

0 � (λ − ν)

∫
Ω

f (uν)w1
λ

dx.

This is impossible since λ < ν and
∫
Ω

f (uν)w1
λ

dx > 0. �
We can now complete the proof of Theorem 2.11. Let w∗ ∈ C 2,α

0 (Ω) be the first eigenvector of Lλ∗ :

Lλ∗ w∗ = 0, w∗ > 0 in Ω , w∗ is radial non-increasing with respect to r. Let Z ⊂ C 2,α
0 (Ω) be the closed

subspace of elements z ∈ C 2,α
0 (Ω) orthogonal (for the L2(Ω) scalar product) to w∗ . Let T ∗ be the C 2

map R × Z × R → Cα
0 (Ω) defined by

T ∗(s, z, λ) = T (u∗ + sw∗ + z, λ).

The derivative T ∗
z,λ(0,0, λ∗) is invertible. Indeed, given v ∈ Cα

0 (Ω), (ζ,μ) ∈ Z × R is solution to

T ∗
z,λ(0,0, λ∗) · (ζ,μ) = v
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if

Lλ∗ζ + μ f (u∗) = v. (49)

By the Fredholm alternative (and the Schauder regularity theory for elliptic PDEs), (49) has a unique
solution ζ ∈ Z provided

μ

∫
Ω

f (u∗)w∗ dx =
∫
Ω

v w∗ dx.

This condition uniquely determines μ since f (u∗), w∗ > 0 in Ω and, in particular,
∫
Ω

f (u∗)w∗ dx > 0.
By the Implicit Function Theorem, it follows that there is an ε > 0 and a C 2-curve (−ε, ε) → Z × R,
s �→ (z(s), λ(s)) such that

(z, λ)(0) = (
0, λ∗), T ∗(s, z(s), λ(s)

) = 0, ∀|s| < ε. (50)

By derivating once with respect to s in (50), we obtain

Lλ∗ w∗ + T ∗
z,λ

(
0,0, λ∗) · (z′(0), λ′(0)

) = 0, (51)

hence z′(0) = 0, λ′(0) = 0. We set u(s) = u∗ + sw∗ + z(s). Then u′(0) = w∗ > 0 in Ω . To show the
effective bending of the curve s �→ (u(s), λ(s)), there remains to prove that λ′′(0) < 0. Let us differen-
tiate twice with respect to s in (50): we obtain

−∂i
(
aij(∇u)∂ ju

′′) − λ f ′(u)u′′ − ∂i
(
aijk(∇u)∂ku′∂ ju

′) = λ′′ f (u) + 2λ′ f ′(u)u′ + λ f ′′(u)
∣∣u′∣∣2

.

At s = 0, this gives

Lλ∗ u′′(0) − ∂i
(
aijk(∇u)∂k w∗∂ j w∗

) = λ′′(0) f (u∗) + λ∗ f ′′(u∗)|w∗|2.

Integrating the result against w∗ over Ω , we deduce that

∫
Ω

aijk(∇u)∂k w∗∂ j w∗∂i w∗ dx = λ′′(0)

∫
Ω

f (u∗)w∗ dx + λ∗
∫
Ω

f ′′(u∗)w3∗ dx. (52)

Since ∇u ·∇w∗ = ∂ru∂r w∗ � 0, (45) shows that the left-hand side in (52) is non-positive. Finally, since
f (u∗), f ′′(u∗), w∗ > 0, we get λ′′(0) < 0.

Appendix A. Comparison principles

It is well known that classical solutions of (Pλ) satisfy a strong comparison principle, namely, if
u, v ∈ Lip(Ω) satisfy

−div(T u) � −div(T v) in Ω, u � v on ∂Ω (53)

with u �= v , then

u < v in Ω. (54)
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If u, v are in W 1,1(Ω) and satisfy (53), then we still have a weak comparison principle, i.e. u � v
a.e. in Ω (see [22]). But no such principle holds for functions that are only in BV(Ω) (even if one
of the function is smooth). This is due to the lack of strict convexity of the functional A on BV(Ω)

that is affine on any interval [0,ϕA] (in particular, we have L(ϕA) = L(−ϕA) = L(0) = 0 for any finite
perimeter set A).

Throughout the paper, we consider weak solutions to (Pλ) which are, a priori, not better (with
respect to integrability properties of the gradient) than BV(Ω). In order to derive comparison results,
we use Lemma 3.1, which allows us to interpret weak solutions as global minimizers of an accurate
functional and the following lemma.

Lemma A.1 (Comparison principle). Let q � 1. Let G± : Ω ×R → R satisfy the growth condition |G±(x, s)| �
C1(x)|s|q + C2(x) where C1 ∈ L∞(Ω) and C2 ∈ L1(Ω). Let F± be the functional defined on Lq ∩ BV(Ω) by

F±(v) = A (v) +
∫

∂Ω

|v|dH N−1 +
∫
Ω

G±(x, v)dx.

Suppose that u± is a global minimizer of F± on a set K± and suppose that

min(u+, u−) ∈ K−, max(u+, u−) ∈ K+,

then we have

0 � �
(
max(u+, u−)

) − �(u+), �(v) :=
∫
Ω

G+(x, v) − G−(x, v)dx.

Proof of Lemma A.1. We need to recall the inequality

∫
Q

|DϕE∪F | +
∫
Q

|DϕE∩F | �
∫
Q

|DϕE | +
∫
Q

|DϕF |, (55)

which holds for any open set Q ⊂ R
m (m � 1) and any sets E, F with locally finite perimeter in R

m .
Applied to Q = Ω ×R and to the characteristic functions of the subgraphs of u and v , Inequality (55)
gives:

A
(
max(u, v)

) + A
(
min(u, v)

)
� A (u) + A (v), u, v ∈ BV(Ω). (56)

Since
∫
Ω

|Du| � A (u), this shows in particular that max(u, v), min(u, v) and (u − v)+ = max(u, v) −
v = u − min(u, v) ∈ BV(Ω) whenever u and v ∈ BV(Ω).

Since u �→ ∫
Ω

G±(u) is invariant by rearrangement, we deduce:

F−
(
max(u+, u−)

) + F−
(
min(u+, u−)

)
� F−(u+) + F−(u−). (57)

Furthermore, we have min(u+, u−) ∈ K− , and so F−(u−) � F−(min(u+, u−)). Therefore, (57) im-
plies that F−(max(u+, u−)) � F−(u+), which, by definition of � also reads:

F+
(
max(u+, u−)

) − �
(
max(u+, u−)

)
� F+(u+) − �(u+).

Finally, we recall that u+ is the global minimizer of F+ on K+ and that max(u+, u−) ∈ K+ , and so
F+(u+) � F+(max(u+, u−)). We conclude that �(max(u+, u−)) − �(u+) � 0. �
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