
HAL Id: hal-00947972
https://hal.science/hal-00947972

Submitted on 17 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A syntactic congruence for languages of birooted trees
Achim Blumensath, David Janin

To cite this version:
Achim Blumensath, David Janin. A syntactic congruence for languages of birooted trees. Semigroup
Forum, 2014, 91 (3), pp.675-698. �10.1007/s00233-014-9677-x�. �hal-00947972�

https://hal.science/hal-00947972
https://hal.archives-ouvertes.fr

LaBRI, CNRS UMR 5800
Laboratoire Bordelais de Recherche en Informatique

Rapport de recherche RR-1478-14

A syntactic congruence for
languages of birooted trees

February 2014

Achim Blumensath David Janin
TU Darmstadt, Université de Bordeaux,

Mathematik, AG Logik, LaBRI UMR 5800,
D-64289 Darmstadt, GERMANY F-33405 Talence, FRANCE

blumensath@mathematik.tu-darmstadt.de janin@labri.fr

2

A syntactic congruence for
languages of birooted trees

Achim Blumensath1, David Janin2

1TU Darmstadt, 2Université de Bordeaux,
Mathematik, AG Logik, LaBRI UMR 5800,

D-64289 Darmstadt, GERMANY F-33405 Talence, FRANCE
blumensath@mathematik.tu-darmstadt.de janin@labri.fr

Abstract. The study of languages of labelled birooted trees, that is,
elements of the free inverse monoid enriched by a vertex labelling, has
led to the notion of quasi-recognisability. It generalises the usual notion
of recognisability by replacing homomorphisms by certain prehomomor-
phism into finite ordered monoids, called adequate, that only preserve
some products: the so-called disjoint ones. In this paper we study the
underlying partial algebra setting and we define a suitable notion of a
syntactic congruence such that (i) having a syntactic congruence of fi-
nite index captures MSO-definability; (ii) a certain order-bisimulation
refinement of the syntactic congruence captures quasi-recognisability in
the same way.

1 Introduction

When modelling systems and concepts, it is sometimes handy to consider objects
that are composed of overlapping parts. A formal framework for the composition
of such overlapping objects is given by the theory of inverse semigroups [19].
Recent applications of this theory include the modelling of music [8], interactive
music systems [1, 14], and distributed systems [6]. As already observed in [16,
17] and developed further in [13], inverse semigroup theory conveys a notion of a
higher dimensional string that seems particularly relevant in the context of such
applications. This is especially clear in view of Stephen’s representation theorem
for inverse semigroups [26] that allows us to define graphical representations of
elements of an inverse semigroup. These observations motivate the development
of a formal language theory based on the theory of inverse semigroups.

However, the tools of classical formal language theory are not easily applica-
ble for such a purpose. As already observed and studied in detail for languages
in the free inverse monoid [25], that is, languages of birooted trees, the notion
of algebraic recognisability by means of morphisms into finite monoids leads to
a notion with rather weak expressive power. Further study of these languages
in the context of tree walking automata has led to a strict hierarchy of classes
of languages [12] ranging from recognisable languages (definable by means of fi-
nite monoids) to logically definable languages (definable in monadic second-order

logic) and regular languages (definable with various notions of regular expres-
sions).

It is known that the homomorphic image of an inverse monoid is an inverse
monoid. When applied to inverse semigroups, the automata stemming from mor-
phisms into finite monoids are reversible in a certain sense [21, 25]. Although
leading to interesting studies of reversible computations (see [5] for instance),
morphisms of inverse monoids preserve far too much structure to be used as a
tool for language definability. The collapse of expressive power arises even in the
absence of inverses themselves as illustrated by languages of positive birooted
words [10] or languages of partially ordered graphs [4].

These observations lead us to the definition and the development of a more
expressive notion of language definability, called quasi-recognisability. This no-
tion is based on relaxing homomorphisms into adequate premorphisms. While a
homomorphism of monoids preserves products, i.e., ϕ(xy) = ϕ(x)ϕ(y), adequate
premorphisms of ordered monoids are only required to be monotonic and sub-
multiplicative, i.e., ϕ(xy) ≤ ϕ(x)ϕ(y), effectivity being ensured by additional
preservation properties.

Applied first to languages of birooted words [10, 7], that is, subsets of the
monoid of McAlister [22, 20], and then to languages of labelled birooted trees [9],
this emerging notion of a quasi-recognisable language has been successfully re-
lated to classical automata theory. It has also been shown to ‘essentially’ capture
definability by means of MSO-formulae [11, 9]. Hence, it provides new algebraic
tools for the study of MSO-definable languages of finite trees [27].

At the moment the theory of quasi-recognisable languages is far from being
fully understood. It turns out that the notion of an adequate premorphism is
related to two fields of algebra: the theory of partially ordered monoids (adequate
premorphisms are order preserving) and the theory of partial algebras (adequate
premorphisms preserves a partial operation called the disjoint product).

In this paper we continue the study of languages of birooted trees and we
make these connections with the theories of partial algebras and ordered monoids
explicit. In short, we show that the theory of partial algebra provides effec-
tive tools to characterise MSO-definable languages of birooted trees. Addition-
ally, the theory of partially ordered monoids provides, via the notion of quasi-
recognisability, a more subtle description of (a large subclass of) these languages.
This can be seen as a further example of the use of partially ordered monoids in
algebraic language theory [23].

The paper is organised as follows. In the next section, we recall the basic no-
tions from algebra we will need. We quickly review the definitions of a labelled
birooted tree, the corresponding monoid, the operations of left and right projec-
tion, and the natural order on birooted trees. These notions are taken from the
theory of inverse semigroups. We refer the reader to [9] for more details on the
inverse monoid of labelled birooted trees. A thorough introduction to the theory
of inverse semigroups can be found in [19].

The disjoint product of birooted trees – a notion that plays a key role in
quasi-recognisability [9] – is reviewed in Section 3. This operation provides a

4

link to the theory of partial algebras [2] which is exploited in this paper. In
particular, we consider the notion of a closed ∗-congruence (cf. Definition 3.3).
The closure property, which plays a central role in the theory of partial alge-
bras, is characterised over birooted trees by means of their so-called root type
(cf. Proposition 3.8).

In Section 4, we prove that every language of birooted trees admits a syntac-
tic congruence, that is, a greatest closed ∗-congruence saturating the language
(cf. Theorem 4.2). Then we prove that the syntactic congruence of a language
has finite index if, and only if, the language is definable in monadic second-order
logic (cf. Theorem 4.7). In this case we also obtain a linear time membership
algorithm (cf. Theorem 4.8).

Quasi-recognisable languages, which capture finite boolean combinations of
upward closed MSO-definable languages [9], are considered in Section 5. The
notion of a bisimulation refinement of a closed ∗-congruence (cf. Definition 5.2)
is defined and shown to exist. Quasi-recognisable languages are then charac-
terised by means of the bisimulation refinement of their syntactic congruence
(cf. Theorem 5.18).

2 Birooted labelled trees

Throughout the paper we fix two finite alphabets A = {a, b, c, . . . } of edge labels
and F = {f, g, h, . . . } of vertex labels. We assume that A is non-empty, while
F is allowed to be empty. Let Ā := {ā, b̄, c̄, . . . } be a disjoint copy of A and set
Ã = A + Ā. We define the syntactic inverse mapping x 7→ x−1 from Ã to itself
by a−1 = ā and ā−1 = a, for a ∈ A. This mapping is extended to Ã∗ by setting
1−1 := 1 and (au)−1 := u−1a−1 for a ∈ Ã and u ∈ Ã∗.

The free group FG(A) generated by A is the quotient of Ã∗ under the congru-
ence generated by the equations aā = 1 and āa = 1 for a ∈ A. Every equivalence
class [u] ∈ FG(A) is uniquely determined by the unique word red(u) obtained
from u by applying the rewriting rules aā → 1 and āa → 1 for a ∈ A. In
the sequel, we thus shall represent elements of FG(A) by their reduced form.
In that case, the group product u · v of two elements u, v ∈ FG(A) is defined
by u · v = red(uv), and elements of FG(A) are partially ordered by the prefix
order (defined over their reduced forms). Then, for every u ∈ FG(A), we have
u−1 ∈ FG(A) and u · u−1 = 1 = u−1 · u, that is, the syntactic inverse u−1 of u
coincides with its group inverse.

Definition 2.1 (Birooted labelled trees). A (vertex-labelled) birooted tree
is a pair x = 〈r, u〉 where r : FG(A) → F ∪ {>} is a partial mapping with a
prefix-closed domain dom(r) ⊆ FG(A) and u ∈ dom(r) is a distinguished vertex
called the output root. The unit vertex 1 ∈ dom(r) is called the input root.

In the case where the alphabet F contains at least two elements1, the set of
birooted trees is extended by a zero element 0. The set of all birooted trees is
denoted by B(F,A).
1 otherwise, there is no need of a zero

5

The product x · y of two non-zero birooted trees x = 〈r, u〉 and y = 〈s, v〉 is
the birooted tree 〈t, w〉 where

dom(t) = dom(r) ∪ u · dom(s)

and, for every z ∈ dom(t),

t(z) =


r(z) if z ∈ dom(r)− u · dom(s) ,
s(u−1 · z) if z ∈ u · dom(s)− dom(r) ,
r(z) ∧ s(u−1 · z) if z ∈ dom(r) ∩ u · dom(s) .

The meet in the last clause of the definition is computed with respect to the
trivial order on F∪ {>} where x ≤ y iff x = y or y = >. The product is set to 0
if, for some z, the above meet does not exists, i.e., the labels of r and s at the
respective places disagree. We extend the product to 0 by defining x·0 = 0 = 0·x
for all x ∈ B(F,A). As usual, we may omit the dot and simply write xy instead
of x · y.

An example of labelled birooted trees and products is depicted Figure 1. The
input/output roots are marked by dangling incoming/outgoing arrows. Directed
edges are only labelled by letters of A, letters of Ā implicitly labelling the reverse
of these edges. Observe that, when both x = 〈r, u〉 and y = 〈s, v〉 are non-zero

(x)

>
f g

h

a b

a

(y)

>
f

h

>b

b

a

(x · y)

f
f g

h

a b

a

g
f

h

>
b

b

a

Fig. 1. Two compatible labelled birooted trees and their non-zero product.

birooted trees, the necessary and sufficient condition for the product x · y to
be non-zero is that for every v′ ∈ dom(s), if uv′ ∈ dom(s) then we have either
t(uv′) = >, or s(v′) = >, or r(uv′) = s(v′).

As special cases of birooted trees there are elementary birooted trees that are
either 0 or consist of a single vertex or a single edge. For all f ∈ F and a ∈ Ã, there
are elementary birooted trees f and a that are defined as follows. The former have
a single vertex labelled f , while the latter consist of a single edge labelled a that
connects two vertices with label >. The formal definitions are f := 〈{1 7→ f}, 1〉
and a := 〈{1 7→ >, a 7→ >}, a〉. The neutral element of B(F,A) is the one vertex
birooted tree with label > formally defined by 1 := 〈{1 7→ >}, 1〉.

Most of the properties of birooted trees and their product follows from the
following theorem. For the sake of completeness, let us recall that a monoidM is
an inverse monoid when, for each x ∈M , there exists a unique element x−1 ∈M ,
called the semigroup inverse of x, such that xx−1x = x and x−1xx−1 = x−1.

6

Theorem 2.2 ([9], [19]). The set B(F,A) equipped with the above product is
an inverse monoid. It is the quotient of the free inverse monoid FIM(F + A) by
the identities ff = f and fg = 0, for f, g ∈ F with f 6= g, and it is generated
by the elementary birooted trees. For F = ∅, the monoid B(∅,A) is just the free
inverse monoid FIM(A) itself.

As both alphabets are fixed throughout the paper, we shall simply write B for
the set of birooted trees over F and A.

Below we review some basic notions and properties of the monoid B that
follow from its definition and the fact that it is an inverse monoid. A detailed
presentations of inverse semigroup theory can be found in [19].

First, note that 0−1 = 0. The case of non-zero birooted trees is described in
the following lemma.
Lemma 2.3 (Inverses and idempotent). The inverse of a non-zero birooted
tree x = 〈r, u〉 is x−1 = 〈ru, u−1〉 where

dom(ru) = u−1 · dom(r) and ru(v) = r(u · v) , for v ∈ dom(ru) .

Moreover, x is idempotent if, and only if, u = 1.
The next definition plays a fundamental role in our approach.

Definition 2.4 (Resets and co-resets). The right projection, or reset, of an
element x ∈ B is the element xR := x · x−1. Its left projection, or co-reset, is
xL := x−1 · x.

We easily check that xRx = x = xxL, xRxR = xR, and xLxL = xL. Since
idempotents are self inverse, this implies that the reset mapping x 7→ xR and
the co-reset mapping x 7→ xL are both projections from the set of birooted trees
into the set of idempotents.

As is well known in inverse semigroup theory, these projections are related
to Green’s relations as follows: for x, y ∈ B, we have xL = yL if, and only if,
x and y are L-equivalent, and xR = yR if, and only if, they are R-equivalent.

Definition 2.5 (Natural order). The natural order ≤ on B is defined by

x ≤ y :iff x = xR · y (equivalently x = y · xL).

It can be shown that, as in any inverse monoid, a birooted tree x ∈ B is
idempotent if, and only if, x ≤ 1, that is, the idempotents are exactly the
subunits. The set of idempotent elements of B is thus denoted by U(B) := {x ∈
B : x ≤ 1}. In adequately ordered monoids, which we will introduce below, this
is no longer the case, as there may be idempotents that are not subunits.

Every non-zero birooted tree x = 〈s, u〉 can be seen, as depicted in Figure 1, as
a relational structureMx with domain dom(s) over the signature A+F+{in, out},
where the symbols in A are interpreted as binary relations, those in F are in-
terpreted as disjoint unary relations, and there are two distinguished vertices
in, out ∈ dom(x) representing the input and output root. Encoding zero by the
one vertex structure M0 with non-empty interpretations of every symbol of F or
A, the natural ordered can then be characterised as follows.

7

Lemma 2.6. Let x and y be two birooted trees. Then x ≤ y if and only if there
is a morphism ϕ : My → Mx that preserves input and output root. For x 6= 0,
this morphism is injective.

Remark 2.7. Using such a representation of all birooted trees as structures, we
can consider subsets of B that are definable in a given logic, say, in monadic
second-order logic. The study of MSO-definable languages of birooted trees by
means of algebraic methods is one of the main purpose of this paper.

3 The disjoint product

The disjoint product, introduced in [9], turns the algebra of birooted trees into a
(finitely generated) partial algebra [2] over the signature consisting of the partial
disjoint product, the total reset and co-reset operations, and (if necessary) the
constant 0.

The associated notion of a congruence of partial algebras [2], called a ∗-
congruence in this paper, will lead us in the next section to the syntactic con-
gruence of a language.

Definition 3.1 (Disjoint product). The partial disjoint product x ∗ y of two
elements x, y ∈ B is equal to their usual product x · y if the following two
conditions are satisfied:

(D1) x · y 6= 0,
(D2) x = 〈r, u〉, y = 〈s, v〉, and dom(r) ∩ u · dom(s) = {u}.

Otherwise, the disjoint product is left undefined. We shall write ∃x∗ y to denote
both the existence of such a partial product and its value.

It is straightforward to check that the disjoint product is associative in the
following sense: the disjoint product x∗ (y ∗z) is defined if, and only if, (x∗y)∗z
is defined and, if this is the case, both products are equal.

The following lemma shows that the set of birooted trees is a finitely gener-
ated partial algebra [2].

Lemma 3.2 (Strong decomposition [9]). Every birooted tree x ∈ B can be
written as a combination of elementary birooted trees by disjoint products, reset
and co-reset projections. This combination can be chosen to be of linear size in
the number of vertices of x.

The following definition is adapted from the theory of partial algebras (see [2]
Sections 2.4–2.6) albeit with different terminology.

Definition 3.3. (a) A ∗-congruence over B is an equivalence relation ' that is
compatible with the disjoint product ∗ and the two projection operations L and R

in the sense that

(P1) x ' x′ , y ' y′ , ∃x ∗ y , ∃x′ ∗ y′ implies x ∗ y ' x′ ∗ y′ ,

8

(P2) x ' y implies xL ' yL and xR ' yR ,

A ∗-congruence ' is closed when it also satisfies the following property:

(P3) x ' x′ and y ' y′ implies ∃x ∗ y ⇔ ∃x′ ∗ y′ .

(b) We call an equivalence relation on B idempotent pure if it does not identify
an idempotent with a non-idempotent.

Proposition 3.4 (Lattice property [2]). The set of ∗-congruences ordered
by inclusion is a meet semi-lattice with intersection as meet. The set of closed
∗-congruences ordered by inclusion is a lattice with intersection as meet and the
transitive closure of union as join.

Proof. This essentially follows from standard results for partial algebras [2]. We
present the proof for the sake of completeness.

Let R1 and R2 be two ∗-congruences. Clearly, the intersection R1∩R2 is also
a ∗-congruence. Furthermore, if both R1 and R2 are closed, then so is R1 ∩R2.

Let R1 t R2 := (R1 ∪ R2)+ be the transitive closure of the union R1 ∪ R2.
Since both R1 and R2 are reflexive, we have

R1 tR2 = (R1 ∪R2)∗ =
⋃
{(R1 ∪R2)n : 0 ≤ n < ω} .

It suffices to check that the relationR1tR2 is a closed ∗-congruence. By definition
it then follows that it is the least closed ∗-congruence containing both R1 and
R2.

Let (x, x′), (y, y′) ∈ R1 t R2. Since R1 ∪ R2 is reflexive, we can find a num-
ber n such that (x, x′), (y, y′) ∈ (R1 ∪ R2)n. We check Properties (P1)–(P3) by
induction on n.

We start with (P1) and (P3). Assume that ∃x ∗ y. If n = 0, then x = x′ and
y = y′. Consequently, ∃x′ ∗ y′ and (x ∗ y, x′ ∗ y′) ∈ R1 tR2. Hence, suppose that
n = m+1, for some m. Then there exists x′′ ∈ B such that (x, x′′) ∈ (R1∪R2)m
and (x′′, x′) ∈ Ri for some i ∈ {1, 2}. By inductive hypothesis, ∃x ∗ y implies
∃x′′∗y′ and (x∗y, x′′∗y′) ∈ R1tR2. But since Ri satisfies (P3) with (x′′, x′) ∈ Ri
we also have ∃x′ ∗ y′. Hence, (P1) implies that (x′′ ∗ y′, x′ ∗ y′) ∈ Ri ⊆ R1 tR2.
It follows, by transitivity of the relation R1 tR2, that (x ∗ y, x′ ∗ y′) ∈ R1 tR2.

The case of Property (P2) is treated similarly. We want to prove that we both
have (xL, x′L) ∈ R1 t R2 and (xR, x′R) ∈ R1 t R2. If n = 0, then x′ = x and
we are done. Hence, suppose that n = m+ 1. Then there exists z ∈ B such that
(x, z) ∈ (R1∪R2)m and (z, x′) ∈ Ri for some i ∈ {1, 2}. By inductive hypothesis,
this implies that (xL, zL) ∈ R1 t R2 and (xR, zR) ∈ R1 t R2. Since Ri satisfies
(P2) it also follows that (zL, x′L) ∈ Ri ⊆ R1tR2 and (zR, x′R) ∈ Ri ⊆ R1tR2.
We conclude by transitivity. ut

This proposition guarantees the existence of syntactic congruences, which
will be defined and studied in the next section. We spend the rest of this section
showing that there is a greatest idempotent-pure, closed ∗-congruence of finite
index.

9

Definition 3.5 (Root types). The root type of a subunit z ∈ U(B) is the set

rtp(z) := {f ∈ F : zf = z} ∪ {a ∈ Ã : zaR = z}

where we omit the elements of F in the case that |F| ≤ 1.

Clearly, we have rtp(0) = F ∪ Ã when |F| ≥ 2 (resp. rtp(0) = Ã when
|F| ≤ 1) and, for every non-zero idempotent birooted tree z = 〈t, 1〉, we have
rtp(z) = {t(1)} ∪ dom(t) ∩ Ã when |F| ≥ 2 (resp. rtp(z) = dom(t) ∩ Ã). In all
cases, if z1 ≤ z2 ≤ 1 then we have rtp(z1) ⊇ rtp(z2).

Lemma 3.6. For all x, y ∈ B, we have

rtp(xL) = rtp(yL) iff ∃x ∗ z ⇔ ∃y ∗ z , for all z ∈ B ,
rtp(xR) = rtp(yR) iff ∃z ∗ x⇔ ∃z ∗ y , for all z ∈ B .

Proof. (⇐) Assume that, for every z ∈ B, we have ∃z ∗ x if, and only if, ∃z ∗ y.
In the case where x = 0, the disjoint product x ∗ 1 is undefined. Hence, y ∗ 1

is also undefined. This implies that y = 0 and rtp(xR) = rtp(yR).
In the remaining cases we may assume, by symmetry, that neither x nor

y equals 0. Hence, x = 〈r, u〉 and y = 〈s, v〉. From the fact that ∃a ∗ x ⇔ a /∈
dom(s)∩Ã for all a ∈ Ã, we immediately deduce that rtp(xR)∩Ã = rtp(yR)∩Ã.

In the case where |F| ≥ 2, we also have ∃f ∗ x ⇔ f ≤ r(1) for all f ∈ F.
Hence, it follows that rtp(xR)∩ F̃ = rtp(yR)∩ F̃. Observe that, in the case where
|F| ≤ 1, the vertex labelling plays no role in the definition of the disjoint product.

(⇒) Suppose that rtp(xR) = rtp(yR). A similar case study shows that for all
z ∈ B we indeed have ∃x ∗ z if, and only if, ∃y ∗ z.

Symmetrical arguments show that the statement rtp(xR) = rtp(yR) is equiv-
alent to the fact that, for every z ∈ B, we have ∃z ∗ x if and only if ∃z ∗ y. ut

Definition 3.7 (Root equivalence). The root equivalence is defined by

x ≈rt y :iff rtp(xL) = rtp(yL) and rtp(xR) = rtp(yR) .

The strong root equivalence ≈srt is defined by

x ≈srt y :iff x ≈rt y and x ∈ U(B)⇔ y ∈ U(B) .

Proposition 3.8. The relation ≈rt is the greatest closed equivalence. The rela-
tion ≈srt is the greatest idempotent-pure closed ∗-congruence. Both equivalences
have finite index.

Proof. Clearly, ≈rt is an equivalence and it satisfies (P3), by Lemma 3.6. Hence,
it is closed. It follows by Lemma 3.6 that it is the greatest such relation.

It is easy to see that ≈srt is the greatest idempotent-pure closed equivalence.
It therefore remains to show that it is a ∗-congruence.

Property (P2) easily follows from the observation that, for all idempotents
x, y ∈ B, we have x ≈srt y if, and only if, rtp(x) = rtp(y). Indeed, suppose that

10

x ≈srt y. Since ≈srt ⊆ ≈rt, this means in particular that rtp(xR) = rtp(yR).
Hence xR ≈srt yR as both xR and yR are idempotent and idempotents are
invariant under projections.

Property (P1) can be proved by a case distinction. Suppose that x ∗ y is
defined.

• If both x and y are idempotent then

rtp((x ∗ y)L) = rtp((x ∗ y)R) = rtp(x) ∪ rtp(y) .

• If x is idempotent and y is not idempotent then

rtp((x ∗ y)L = rtp(yL) and rtp((x ∗ y)R) = rtp(x) ∪ rtp(yR) .

• Similarly, if x is not idempotent and y is idempotent then

rtp((x ∗ y)L) = rtp(xL) ∪ rtp(y) and rtp((x ∗ y)R) = rtp(xR) .

• If neither x nor y is idempotent then

rtp((x ∗ y)L) = rtp(yL) and rtp((x ∗ y)R) = rtp(xR) .

To see that (P1) holds, consider elements x ≈srt x
′ and y ≈srt y

′ such that
x ∗ y and x′ ∗ y′ are defined. By definition of ≈rt, we have rtp(xL) = rtp(x′L),
rtp(xR) = rtp(x′R), rtp(yL) = rtp(y′L) and rtp(yR) = rtp(y′R). As ≈srt is
idempotent pure, it follows in all of the above cases that rtp((x∗y)L) = rtp((x′ ∗
y′)L), rtp((x ∗ y)R) = rtp((x′ ∗ y′)R), and x ∗ y ∈ U(B) ⇔ x′ ∗ y′ ∈ U(B). In
other words, x ∗ y ≈srt x

′ ∗ y′. ut

Remark 3.9. (a) Note that, as soon as A is not a singleton, the relation ≈rt
is not a ∗-congruence. Although it satisfies axiom (P2), it does not satisfies
axiom (P1). Indeed, given x = aLaR and y = aLaaR, we have x ≈rt y since
rtp(xL), rtp(xR), rtp(yL) and rtp(yR) are all equal to {a, ā}. However, we have
rtp((x ∗ b)R) = {a, ā, b} while rtp((y ∗ b)R) = {a, ā}.

(b) Note that a ∗-congruence needs not to be idempotent pure. An example is
the relation R defined from the relation ≈srt by adding all pairs of birooted trees
x, y ∈ B such that rtp(xL), rtp(xR), rtp(yL) and rtp(yR) contains Ã. Clearly,
the relation R satisfies axiom (P2). Moreover, we do have ≈srt ⊂ R ⊂ ≈rt.
But no trees in these newly added pairs can be used in a disjoint product. The
relation R thus satisfies Properties (P1) and (P3) just for the same reasons the
relation ≈srt satisfies them.

4 The syntactic congruence

In this section, we show that our framework induces a notion of a syntactic con-
gruence that captures MSO-definability and that has a linear time membership
algorithm.

11

Definition 4.1. A ∗-congruence ' saturates a set X ⊆ B if

x ' y implies x ∈ X ⇔ y ∈ X , for all x, y ∈ B .

Theorem 4.2. For every language X ⊆ B of birooted trees, there exists a great-
est closed ∗-congruence 'X saturating X.

Proof. By Proposition 3.4, the supremum of all closed ∗-congruences saturat-
ing X exists. This supremum still saturates X. ut

Definition 4.3. We call the relation 'X of the previous lemma the syntactic
congruence of X.

If the syntactic congruence has finite index, we obtain an effective mem-
bership algorithm in the same way as for languages of words. To present this
algorithm we need to define quotients of partial algebras.

Definition 4.4 (Quotient algebra). Let ' be a ∗-congruence over B.
(a) The quotient B/' is the partial algebra whose elements are the congru-

ence classes of elements of B and whose operations are as follows: forX,Y ∈ B/',
we define

XL := {xL ∈ B : x ∈ X} ,
XR := {xR ∈ B : x ∈ X} ,

X ∗ Y := {z ∈ B : z ' ∃x ∗ y, x ∈ X, y ∈ Y } ,

where X ∗ Y is only defined if the above set is nonempty.
(b) A morphism of partial algebras is a function ϕ : A→ B between partial

algebras A and B such that, for all x, y ∈ A,

ϕ(xL) = (ϕ(x))L ,
ϕ(xR) = (ϕ(x))R ,

∃x ∗ y implies ϕ(x ∗ y) = ∃ϕ(x) ∗ ϕ(y) .

(c) The canonical surjection θ' : B → B/' is the function mapping every
element of B to its congruence class.

Lemma 4.5. Let ' be a ∗-congruence. The quotient algebra B/' is well-defined
and the canonical surjection θ' : B → B/' is a morphism of partial algebras.

Proof. Essentially follows from standard results for partial algebras [2]. ut

The relationship between the syntactic congruence and definability in monadic
second-order logic [27] is as follows. Recall that Mx denotes the structure en-
coding a birooted tree x.

Lemma 4.6. Let ' be a ∗-congruence of finite index. For every class X ∈ B/',
there exists an MSO-formula ϕX such that

Mx |= ϕX iff x ∈ X , for all x ∈ B .

12

Proof (Sketch). The claim follows from Lemma 3.2 and the fact that B/' is
finite: for every birooted tree x ∈ B, the value θ'(x) can be defined in MSO by
guessing a strong decomposition of x and a corresponding labelling in B/', in
almost the same way as the behaviour of a bottom up tree automaton over a
finite tree can be described in MSO. ut

Theorem 4.7. A language X ⊆ B of birooted trees is definable in MSO if, and
only if, its syntactic congruence 'X has finite index.

Proof (Sketch). (⇐) As 'X saturates X, we can write X =
⋃
x∈X [x]'X

. When
the syntactic congruence has finite index, this union is finite. Consequently,
the formula ψX =

∨
x∈X ϕ[x]' defines X, where ϕ[x]' are the formulae from

Lemma 4.6.
(⇒) If X is definable in MSO, we can use decomposition arguments (see

[24] and [28]) to prove that 'X has finite index. Two trees with the same MSO-
theory (up to a given quantifier rank) cannot be distinguished by X; hence
they must be 'X -equivalent. Since there are only finitely many such theories, it
follows that 'X has only finitely many classes. ut

In the simpler setting of birooted words, that is, elements of the monoid of
McAlister [20], a similar characterisation has already been achieved in [10].

Another consequence of Lemma 4.5 worth being mentioned concerns a mem-
bership decision algorithm.

Theorem 4.8. Let X ⊆ B be a language whose syntactic congruence 'X has
finite index. Given B/'X one can decide whether x ∈ X in time linear in the
size of the input x ∈ B.

Proof. By Lemma 3.2, the set of birooted trees is finitely generated as a par-
tial algebra. It follows that, starting from the elementary birooted trees we can
inductively compute the image θX(x) of a birooted tree x ∈ B under the canon-
ical surjection θX : B → B/'X . The number of steps is linear in the size of x.
This proves the claim under the usual assumption that every projection, disjoint
product, or equality test in the partial algebra B/'X takes constant time. ut

We provide here a strengthening of Lemma 4.2 that states the existence
of the syntactic congruence in an arbitrary partial algebra over the signature
of B. Furthermore, it shows that the syntactic congruence can be computed as
the greatest fixed point of a certain mapping. For finite partial algebras, this
provides an effective algorithm to compute the syntactic congruence of X from
any given closed ∗-congruence of finite index saturating X.

Lemma 4.9. Let C be a partial algebra with disjoint product and left and right
projection. Assume that there is a greatest closed equivalence ≈ over C. For every
closed relation R ⊆ ≈, let F (R) be the relation consisting of all pairs (x, y) ∈ R
such that, for every z1, z2, z3 ∈ C, the following properties are satisfied:

(a) (xL, yL) ∈ R and (xR, yR) ∈ R,

13

(b) ∃x ∗ z ∈ R⇔ ∃y ∗ z ∈ R and ∃z ∗ x ∈ R⇔ ∃z ∗ y ∈ R, for every z ∈ C.

The function F is monotonic with respect to the inclusion order. Further-
more, for every X ⊆ C, there is the greatest closed ∗-equivalence 'X saturating
X given by the transfinite equation:

'X =
⋂
α

Fα(≈X)

where

x ≈X y :iff x ≈ y and x ∈ X ⇔ y ∈ X ,

and F 0(R) = id, Fα+1(R) = F (Fα(R)) and, F δ(R) =
⋂
α<δ F

α(R), for limit
ordinals δ.

Proof. We first check that, if R is an equivalence relation then so is F (R). If R is
closed, monotonicity of F then implies that F (R) is also closed. The fixed-point
theorem of Tarski thus ensures that F has a greatest fixed point ∼ which is given
by the above formula.

By monotonicity, we have ∼ ⊆ ≈X . Hence, the relation ∼ saturates X. It
remains to show that ∼ is a closed ∗-congruence. Indeed, given any closed ∗-
congruence ∼′ saturating X, we can prove by induction on α that ∼′ ⊆ Fα(≈).
Hence ∼′ ⊆ ∼.

Since it is included in ≈, ∼ is a closed equivalence relation. It thus remains to
show that ∼ is a ∗-congruence. It is straightforward to that Property (a) implies
(P2) and Property (b) implies (P1). ut

Applied to the partial algebra B of birooted trees, this provides an alternative
proof of Theorem 4.2. It also provides an effective way to compute the syntactic
congruence of a recognisable language.

Corollary 4.10. Let ' be a closed ∗-congruence of saturating a language X ⊆
B. Let B/' be the quotient and let ϕ : B → B/' be the corresponding projection.
Then we can compute the syntactic congruence 'X in time O(n3) where n is
the index of '.

Proof. Let ≈ be the relation over B/' defined by

Y ≈ Z :iff y ≈rt z for some2 y ∈ Y and z ∈ Z .

This relation is obviously the greatest closed equivalence over B/'. Therefore,
we can use Lemma 4.9 to obtain the greatest closed ∗-congruence ∼ϕ(X) over
B/' that saturates ϕ(X). For every x, y ∈ B, it follows that x 'X y if and only
ϕ(x) ∼ϕ(X) ϕ(y). Since every equivalence relation over B/' has index at most n,
this relation can be computed in at most O(n) iteration steps (the depth of the
lattice of equivalence relation ordered by inclusion) and each step is taking time
at most O(n2) (the size of the current relation times the number of possible
applications of the separation rules (a) and (b)). ut

14

5 Application to quasi-recognisability

We aim now at a characterisation of quasi-recognisable languages via their syn-
tactic congruence. We start by recalling the definition of quasi-recognisability.

Definition 5.1 (Quasi-recognisable languages [9]). (a) A function ϕ : B →
M from B into an ordered monoid M is an adequate premorphism if it satisfies
the following conditions:

(M1) x ≤ y implies ϕ(x) ≤ ϕ(y),
(M2) ϕ(xy) ≤ ϕ(x)ϕ(y),
(M3) ϕ(xL) = (ϕ(x))L and ϕ(xR) = (ϕ(x))R,
(M4) ∃x ∗ y implies ϕ(x ∗ y) = ϕ(x)ϕ(y).

(b) An ordered monoid M is adequately ordered if all subunits of M are
idempotent and both xR = min{z ≤ 1 : zx = x} and xL = min{z ≤ 1 : x = xz}
exist for every x ∈ B.

(c) A language X ⊆ B is quasi-recognisable if there exists an adequate
function ϕ : B → M into a finite adequately ordered monoid M such that
X = ϕ−1(ϕ(X)).

It is proved in [9] that quasi-recognisable languages corresponds to finite
Boolean combinations of upward closed (in the natural order) MSO-definable
languages. We now aim at characterising quasi-recognisable languages by means
of their syntactic congruence. We need two new notions for this characterisation:
that a of ∗-bisimulation and that of an alternating chain.

The kernel of an adequate premorphism into a finite ordered monoid is clearly
a ∗-congruence of finite index. However, it does not need to be closed. Moreover,
since the class of these languages is known to be strictly included into the class
of MSO-definable languages3, we will need additional requirements on the syn-
tactic congruence to characterise such languages. The connections between the
syntactic congruence and quasi-recognisability can be done as follows.

Definition 5.2 (∗-bisimulation). A closed ∗-congruence ' is a ∗-bisimulation
if it is idempotent pure and satisfies the property:

(P4) if x ≤ y ' z then there exists x′ ' x such that x′ ≤ z.

It is a strong ∗-bisimulation when, additionally, each '-class is convex, i.e.,

(P5) if x ≤ y ≤ z and x ' z then x ' y ' z.

Lemma 5.3 (Lattice property). The set of ∗-bisimulations ordered by inclu-
sion forms a complete lattice with transitive closure of the union as join.
3 The left (or right) projection of a quasi-recognisable language may not be quasi-
recognisable,

15

Proof. Let R1 and R2 be two ∗-bisimulations over the set of birooted trees. By
Proposition 3.4, we already know that the relation R1 t R2 = (R1 ∪ R2)∗ is a
closed ∗-congruence. Since R1 and R2 are idempotent pure, so is R1 t R2. Let
us prove that the relation R1 tR2 is a ∗-bisimulation.

Consider elements x, y, y′ ∈ B with x ≤ y and (y, y′) ∈ R1 t R2. Then there
is a number n < ω such that (y, y′) ∈ (R1 ∪ R2)n. If n = 0, then y′ = y and we
can take x′ = x. Otherwise, there exists m < ω and y′′ ∈ B such that n = m+ 1
with (y, y′′) ∈ (R1 ∪ R2)m and (y′′, y′) ∈ Ri for some i ∈ {1, 2}. By inductive
hypothesis, there exists x′′ ∈ B such that (x, x′′) ∈ R1 tR2 and x′′ ≤ y′′. As Ri
satisfies Property (P4), we can find an element x′ ∈ B such that (x′′, x′) ∈ Ri ⊆
R1 tR2 and x′ ≤ y′. By transitivity, it follows that (x, x′) ∈ R1 tR2.

We have shown that the set of ∗-bisimulations forms a semi-lattice with t as
join. Since our proof clearly extends to an arbitrary number of ∗-bisimulations,
this shows that the underlying semi-lattice is actually complete.

Since ≈srt is the maximum idempotent-pure closed ∗-congruence and also a ∗-
bisimulation, there is a greatest ∗-bisimulation. Consequently, the ∗-bisimulations
ordered by inclusion form a complete lattice. ut

Remark 5.4. (a) Note that the meet of two ∗-bisimulations is not necessarily
their intersection.

(b) In general, the lattice property does not seems to hold for strong ∗-
bisimulations.

Corollary 5.5. Every closed ∗-congruence ' contains a greatest ∗-bisimula-
tion 'B.

Proof. The relation 'm := ' ∩ ≈srt is the greatest idempotent-pure closed ∗-
congruence included in '. We can define 'B as the transitive closure of the union
of all ∗-bisimulations included in 'm. By Lemma 5.3, this is a ∗-bisimulation. ut

Definition 5.6. We call the ∗-bisimulation'B the bisimulation refinement of'.

We give here a fixed point characterisation of the ∗-bisimulation refinement
of a closed ∗-congruence. Before giving that characterisation, let us first note
that the natural order is well-behaved in some sense with respect to projections
and the disjoint product.
Lemma 5.7. Let x, y, z ∈ B.

(a) For every z ≤ xR, there exists x′ ≤ x such that z = x′R.
(b) For every z ≤ xL, there exists x′ ≤ x such that z = x′L.
(c) For every z ≤ x ∗ y, there exist x′ ≤ x and y′ ≤ y′ such that z = x′ ∗ y′.

Proof. This easily follows from the embedding characterisation of the natural
order stated in Lemma 2.6. ut

We consider the following function F on binary relations:

F (R) :=
{

(x, y) ∈ R : for every x′ ≤ x there exists y′ ≤ y with (x′, y′) ∈ R ,
for every y′ ≤ y there exists x′ ≤ x with (x′, y′) ∈ R

}
.

16

Lemma 5.8. If R is an (idempotent-pure) closed ∗-congruence, then so is F (R).

Proof. Let R be a closed ∗-congruence. Clearly, F (R) is a closed equivalence. To
prove that is a ∗-congruence we have to check two properties.

For (P1), let (x1, y1), (x2, y2) ∈ R and suppose that both x1∗x2 and y1∗y2 are
defined. We have to show that (x1∗x2, y1∗y2) ∈ F (R). Clearly, (x1∗x2, y1∗y2) ∈
R as R satisfies (P1). Let z ≤ x1∗x2. By Lemma 5.7, there exists x′1, x′2 ∈ B such
that z = x′1 ∗x′2, x′1 ≤ x1, and x′2 ≤ x2. But since (x1, y1) ∈ F (R), by definition,
there exists y′1 ∈ B such that (x′1, y′1) ∈ R and y′1 ≤ y1. Similarly, there exists
y′2 ∈ B such that (x′2, y′2) ∈ R and y′2 ≤ y2. Since R satisfies (P1) and it is closed,
we have (x′1 ∗ x′2, y′1 ∗ y′2) ∈ R. By monotonicity of the order, we have therefore
found z′ = y′1 ∗ y′2 ≤ y1 ∗ y2 such that (z, z′) ∈ R. By a symmetrical argument, if
we assume that z ≤ y1 ∗ y2 then there exists z′ ≤ x1 ∗ x2 such that (z′, z) ∈ R.
In other words, (x1 ∗ x2, y1 ∗ y2) ∈ F (R). Hence, Property (P1) is satisfied.

For (P2), let (x, y) ∈ F (R). We have to show that (xR, yR) ∈ F (R). Clearly,
(xR, yR) ∈ R since R satisfies (P2). Let z ≤ xR. By Lemma 5.7, there exists
x′ ∈ B such that x′ ≤ x and z = x′R. By definition of F (R), there exists
y′ ∈ B such that y′ ≤ y with (x′, y′) ∈ R. But since R is a ∗-congruence, by
(P2), it follows that (x′R, y′R) ∈ R. By monotonicity of the right projection,
there therefore exists z′ = y′R ≤ yR such that (z, z′) ∈ R. By applying a
symmetrical argument, if we assume that z ≤ yR then there exists z′ ≤ xR such
that (z′, z) ∈ R. In other words, (xR, yR) ∈ F (R). A similar argument shows
that (xL, yR) ∈ F (R). Hence, Property (P2) is satisfied.

Obviously, if R is idempotent pure then so is F (R).

Lemma 5.9 (Fixed point characterisation). The bisimulation refinement
'B of a closed ∗-congruence ' can be computed as the greatest fixed point

'B =
⋂
α

Fα(∼)

of F that is included in the relation ∼ := ' ∩≈srt.

Proof. It is straightforward to check that, if R is a ∗-bisimulation, then R =
F (R). Note that 'B is the greatest ∗-bisimulation included in ' and, therefore,
the greatest ∗-bisimulation included in ∼. As F is monotonic, the claim therefore
follows by the fixed point theorem of Knaster–Tarski. ut

The interest in (strong) ∗-bisimulations is that they provide a (partial or-
der) preorder relation on the quotient. Strong ∗-bisimulations are order congru-
ences [18].

Lemma 5.10 (Induced preorder and order). Let ' be a ∗-bisimulation.
Then the relation

X �' Y :iff x ≤ y , for some x ∈ X and y ∈ Y

is a preorder on B/'. If ' is strong, �' is a partial order.

17

Proof. Reflexivity of �' is immediate. For transitivity, we first show that X �'
Y implies that, for every y ∈ Y , there is some x ∈ X such that x ≤ y. From
this, transitivity follows easily.

Let X,Y ∈ B/' with X �' Y and let y ∈ Y . By definition, there exists x0 ∈
X and y0 ∈ Y such that x0 ≤ y0. As y, y0 ∈ Y , we have y0 ' y. Consequently,
x0 ≤ y0 ' y implies, by (P4), that there is some x ∈ X with x ≤ y.

We have shown that � is a preorder. Assume now that the ∗-bisimulation '
is strong. We have to prove that �X is antisymmetric.

Let X,Y ∈ B/' such that X �' Y �' X. Let y ∈ Y . Since X �' Y , we can
use the above claim to find some x ∈ X with x ≤ y. Similarly, Y �' X implies
that there exists y′ ∈ Y such that y′ ≤ x. But this means that x ≤ y ' y′ ≤ x.
Hence, we have x ' y by Property (P5). By definition of B/', this implies that
X = Y . ut

The order of the quotient induced by a strong ∗-bisimulation allows us to
prove that strong ∗-bisimulations are kernels of adequate premorphisms.

Definition 5.11. Let' be a strong ∗-bisimulation. We define the quasi-quotientM'
induced by ' as follows.

Let S := B/' be the quotient of B under '. For x ∈ B, let [x] := {y ∈ B :
x ' y} be the equivalence class of x. For [x], [y] ∈ S, we define

[x] � [y] :iff x′ ≤ y′ for some x′ ∈ [x] and y′ ∈ [y] .

The domain ofM' consists of all anti-chains of S, that is, all non-empty sets
X ⊆ P(S) whose elements are pairwise incomparable with respect to �. The
product X · Y of two anti-chains X ,Y ∈M' is defined by

X · Y := µ
(
(
⋃
X) · (

⋃
Y)
)
,

where µ : P(B)→M' is defined by

µ(X) := {[z] ∈ S : z a maximal element of X} .

Elements of M' are ordered by the relation

X ≤ Y :iff (∀X ∈ X)(∃Y ∈ Y)[X � Y] .

Theorem 5.12 (Induced premorphism). Let ' be a strong ∗-bisimulation
with index κ. The quasi-quotient M' induced by ' is an adequately ordered
monoid of size |M'| ≤ 2κ. There exists an adequate premorphism ϕ' : B →M'
such that

x ' y iff ϕ'(x) = ϕ'(y) , for all x, y ∈ B .

Proof. We start by noting that we have seen in Lemma 5.10 that the relation �
is a partial order. This implies that the relation ≤ of M' is indeed a partial
order.

18

Furthermore, it is easy to check that the function µ in the definition of M'
is a well-defined mapping P(B)→ M' and that it is surjective and monotonic.
Moreover, we also have

µ(
⋃
X) = X , for all X ∈M' .

Since the natural order on birooted trees is stable under products and since
µ(
⋃
X) = X , it is routine to check that this product is associative. Hence, it

turns M' into a semigroup.
Since ' is idempotent pure, this means that 1 is the maximal element of its

class [1]. Therefore,

X · [1] = X = [1] · X , for every X ∈M' .

Consequently, M' is a monoid.
We observe that the partial order ≤ is stable under product. Moreover, for

every subunit X ≤ [1] we haveM((
⋃
X) · (

⋃
X)) = M(

⋃
X) since xy = x∧y for

every x, y ≤ 1. Hence X ·X = X . In other words, subunits ofM' are idempotents.
It follows that the product of subunits is the meet and, since M' is finite, it is
therefore an adequately ordered monoid with XL =

∏
{Z ≤ 1 : X · Z = X} and

XR =
∏
{Z ≤ 1 : Z · X = X}.

To conclude the proof, we define ϕ' : B → M' by ϕ'(x) := {[x]} for every
x ∈ B. By definition, the kernel of ϕ' equals '. It remains to show that ϕ' is
an adequate premorphism. Clearly, it is monotonic (M1).

For (M2), let x, y ∈ B. Then [xy] ∈ ϕ'(x) · ϕ'(y). Hence ϕ' is submulti-
plicative.

For (M3), let x ∈ B. By definition, ϕ(xR) ≤ [1]. Moreover, we easily check
that all maximal elements of [xR] · [x] belong to [x]. Hence ϕ([xR]) ·ϕ(x) = ϕ(x).
Assume now that there is a subunit Z ≤ [1] such that Z · ϕ(x) = ϕ(x). This
means that M((

⋃
Z) · [x]) ⊆ M([x]). Take x′ ∈ [x] maximal. This means that

there exists z ∈
⋃
Z such that zx′ = x′. By definition of right projections in B,

it follows that x′R ≤ z. Therefore, [xR] � [z] and, thus, {[xR]} ≤ {[z]} ≤ Z. In
other words,

ϕ'(xR) = {[xR]} = (ϕ'(x))R

A symmetrical argument shows that ϕ' also preserves left projections, that is,
the mapping ϕ' satisfies Property (M3).

For (M4), since ' is a closed ∗-congruence we have [x] ∗ [y] = [x] · [y] = [xy],
for all x, y ∈ B such that x ∗ y is defined. Hence ϕ'(x ∗ y) = ϕ'(x)ϕ'(y), that
is, the mapping ϕ' satisfies Property (M4). ut

The second new notion for our characterisation is that of an alternating chain.

Definition 5.13. Let ' be an equivalence relation on an ordered set M . An
alternating '-chain is an increasing sequence x0 ≤ · · · ≤ xn such that xi 6' xi+1,
for all i < n. The number n is called the length of the chain.

19

The following definition and the lemma that follows give a rather simple char-
acterisation of those ∗-congruences whose bisimulation refinements are strong
and of finite index.

Definition 5.14 (Equivalence alternating depth). Let ' be an equivalence
relation on birooted trees.

(a) The '-depth of a birooted tree x ∈ B is the least ordinal d'(x) ≤ ω
such that every alternating '-chain x0 ≤ · · · ≤ xn = x ending in x has length
n ≤ d'(x).

(b) The alternation depth d(') of the relation ' is defined by

d(') := sup
x∈B

d'(x)

The link between the alternation depth of (syntactic) closed ∗-congruences
and bisimulation refinements is stated in the following lemma.

Lemma 5.15. A closed ∗-congruence ' has finite index and alternating depth
if, and only if, its bisimulation refinement 'B is strong and has a finite index.

Proof. (⇒) Assume that ' has finite index and finite alternating depth. By
Lemma 5.9, we know that 'B =

⋂
Fn(∼) where ∼ := '∩≈srt. Let x, y ∈ B and

let n := d'(x)∨ d'(y) be the supremum of the '-alternating depths of x and y.
By induction on n one can show that,

(x, y) ∈ Fn(∼) iff (x, y) ∈ Fm(∼) , for all m ≥ n .

It follows that 'B = FN (∼) where N := d(') is the alternation depth of '.
Since |Fn+1(∼)| ≤ 2|Fn+1(∼)|, for all n < ω, this shows that 'B has finite index.

Moreover, it follows by a straightforward induction on N that x 'B y implies
d'(x) = d'(y), for all x, y ∈ B. Suppose that x ≤ y 'B z ≤ x. By (P4), there
exists x′ ≤ z such that x′ 'B x. We therefore have x′ 'n x for some n ≤ N .
Since d'(x′) = d'(x) this implies that x′ ' z. We claim that z 'n+1 x. Indeed,
for every z′ ≤ z we have z′ ≤ x since z ≤ x. Conversely, for every z′ ≤ x, there
exists z′′ ≤ x′ with z′′ 'n z′. But, x′ ≤ z implies that z′′ ≤ z. Hence, z 'B x. It
follows that 'B satisfies Property (P5). That is, 'B is a strong ∗-bisimulation.

(⇐) Conversely, assume that 'B is a strong ∗-bisimulation with finite index.
Since 'B ⊆ ', this implies that ' has finite index. Let x0 ≤ · · · ≤ xn−1 be an
alternating '-chain We claim that n is necessarily bounded by the index of 'B .
Otherwise, there are indices i < j such that xi 'B xj . Hence, xi ≤ xi+1 ≤ xj
implies that xi 'B xi+1. Consequently, we also have xi ' xi+1 since 'B ⊆ '.
This contradicts the fact that the chain is alternating. We have shown that the
alternation depth of ' is bounded by the index of 'B . ut

Remark 5.16. It could be the case that for every closed ∗-congruence ', the
relation ' has finite index if, and only if, its bisimulation refinement 'B has
finite index. Of course, this does not hold for arbitrary equivalence relations on
ordered sets. consider the set ω with the standard order and the relation ' of
having the same parity. But we suspect that this could be true in the meet-lattice
structure of B with the natural order.

20

Lemma 5.17. The syntactic congruence 'X of a quasi-recognisable language X
of birooted trees has finite index and alternation depth.

Proof. Suppose that X is quasi-recognisable. Let ϕ : B → M be an adequate
premorphisms into a finite adequately ordered monoid M recognising X and let
'ϕ be the kernel of ϕ. Clearly, the relation ∼ := 'ϕ∩≈rt is a closed ∗-congruence
of finite index saturating X. Consequently, ∼ ⊆ 'X .

For a contradiction, suppose that the relation 'X does not have finite alter-
nation depth. Then there exist alternating 'X -chains of arbitrary length. As the
relation ≈rt has finite index, this also means that there are such chains whose
elements are ≈rt-equivalent, i.e., with the same root types. Fix an alternating
'X -chain x0 ≤ · · · ≤ xn where all xi are ≈rt-equivalent and n is greater than
the index of ∼. Then there are indices i < j such that xi ∼ xj . In particular, we
have xi 'ϕ xj . By monotonicity of ϕ, it follows that xi 'ϕ xi+1. As all elements
have the same root type, this implies that xi ∼ xi+1. Since ∼ is included in 'X ,
it follows that xi 'X xi+1. This contradicts the assumption that x0, . . . , xn is
alternating. ut

We conclude by proving our main characterization of quasi-recognizable lan-
guages.

Theorem 5.18. Let X ⊆ B. The following properties are equivalent:

(1) The language X is quasi-recognisable.
(2) The bisimulation refinement 'BX of the syntactic congruence 'X is a strong
∗-bisimulation of finite index.

(3) The syntactic congruence 'X has finite index and the length of alternating
'X-chains is bounded.

Proof. (3) ⇒ (2) follows by Lemma 5.15 and (2) ⇒ (1) was proved in Theo-
rem 5.12. (1) ⇒ (3) follows by Lemma 5.17

6 Strong recognisability and minimal recognisers

All the material developed above also leads us to the notion of a strongly quasi-
recognisable language that, although equi-expressive, admits minimal recognis-
ers.

A priori, the disjoint product is only defined over B. Hence there is not a de-
fined notion of an adequate premorphism between arbitrary adequately ordered
monoids. A simple remedy is to enrich the notion of an adequately ordered
monoid by a given disjoint product operation.

Definition 6.1 (Enriched adequately ordered monoid). An enriched ad-
equately ordered monoid is an adequately ordered monoid M equipped with a
partial product ∗ that is compatible with the usual product in the sense that, if
x ∗ y is defined, then x ∗ y = xy.

The notion of an adequate premorphism can be extended as follows:

21

Definition 6.2 (Adequate premorphism). An adequate premorphism is a
mapping ϕ : M → N between two enriched adequately ordered monoids M and
N such that

(M1) x ≤ y implies ϕ(x) ≤ ϕ(y),
(M2) ϕ(xy) ≤ ϕ(x)ϕ(y),
(M3) ϕ(xL) = (ϕ(x))L and ϕ(xR) = (ϕ(x))R,
(M4) ∃x ∗ y implies ∃ϕ(x) ∗ ϕ(y) and ϕ(x ∗ y) = ϕ(x) ∗ ϕ(y).

Remark 6.3. By default, for every adequate premorphism ϕ : B → M , the
disjoint product in M is defined as follows: the product xy of two elements
x, y ∈ M is disjoint, which is denoted by x ∗ y when there exists x′ ∈ ϕ−1(x)
and y′ ∈ ϕ−1(x) such that ∃x′ ∗ y′ ∈ B.

Lemma 6.4. The identity id : M → M is an adequate premorphism for every
adequately ordered monoid M . The composition ϕ2 ◦ ϕ1 : M1 → M3 of two
adequate premorphisms ϕ1 : M1 →M2 and ϕ2 : M2 →M3 is again an adequate
premorphism. Consequently, we obtain a category AdP of adequately ordered
monoids with adequate premorphisms.

The question of finding a syntactic adequately ordered monoid recognising a
given language X ⊆ B amounts to finding a terminal object in the subcategory
of AdP that is induced by the adequately ordered monoids that recognise X.

However, it seems that such a terminal object does not exist. Indeed, the
kernel 'ϕ defined by an adequate premorphism ϕ is a convex ∗-congruence, i.e.,
x ≤ y ≤ z and x 'ϕ z implies x 'ϕ y. In general, there may not exist a greatest
convex relation saturating a language as illustrated, for instance, by the language
X = {a, c, d} on the four element set S = {a, b, c, d} where the order is defined
by a < b < c while d is incomparable.

The techniques developed in the proof of Theorem 5.12 lead us to the fol-
lowing strengthening of the notion of quasi-recognisability and a corresponding
refinement of the category AdP where syntactic recognisers exist.

Definition 6.5 (Strongly adequate premorphisms). An adequate premor-
phism ϕ : B → M is strongly adequate if, additionally, its satisfies the following
properties.

(M5) ϕ(x) ≤ 1 implies x ≤ 1.
(M6) ∃x ∗ y implies ∃x′ ∗ y′, for all x′ ∈ [x]ϕ and y′ ∈ [y]ϕ.
(M7) ϕ(x) ≤ ϕ(y) implies x′ ≤ y, for some x′ ∈ [x]ϕ.
(M8) ϕ(x) ≤ ϕ(y)ϕ(z) implies ϕ(x) ≤ ϕ(y′z′), for some y′ ∈ [y]ϕ and z′ ∈ [z]ϕ.

Remark 6.6. Property (M5) ensures that the kernel of ϕ is idempotent pure.
Property (M6) ensures that it is closed. Property (M7) ensures that ϕ is strongly
monotonic in the sense of [15]. Property (M8) ensures that every element in the
submonoid 〈ϕ(B)〉 ofM generated by the image of ϕ is compatible in some sense
with the ordered monoid structure of B. This last axiom, slightly technical, seems
crucial for the normalisation Lemma 6.8 below.

22

Lemma 6.7. Strongly adequate premorphisms and adequately ordered monoids
(with given disjoint products) form a subcategory StAdP of the category AdP
of adequately ordered monoids and adequate premorphisms.

Lemma 6.8. Let ϕ : B → M be a strongly adequate morphism with finite
codomain M , let 'ϕ be its kernel, and let M'ϕ be the quasi-quotient induced
by 'ϕ. Then 'ϕ is a strong ∗-bisimulation and there is a strongly adequate pre-
morphism ι : M → M'ϕ

such that ϕ' = ι ◦ ϕ where, for every a, b ∈ M , the
disjoint product a∗b := ab is defined inM by ∃a∗b if ∃x∗y for some4 x ∈ ϕ−1(a)
and y ∈ ϕ−1(b).

Proof. The fact that ϕ is an adequate premorphism guarantees that its kernel 'ϕ
is a ∗-congruence. Property (M5) ensures that it is idempotent pure. Property
(M6) ensures it is closed, and Property (M7) ensures (P4). Consequently, it is a
∗-bisimulation. Property (P5) is immediate from the fact that ϕ is monotonic.
Indeed, given elements x, y, z ∈ B with x ≤ y 'ϕ z ≤ x, we have ϕ(x) ≤ ϕ(y),
ϕ(y) = ϕ(z) and ϕ(z) ≤ ϕ(x). By transitivity, it follows that ϕ(x) ≤ ϕ(y) ≤
ϕ(x). Thus, x 'ϕ y. Therefore, 'ϕ is a strong ∗-bisimulation. Hence we can use
Theorem 5.12 to obtain the desired premorphism ϕ'ϕ

: B →M'ϕ
.

For x ∈ B, set [x] := ϕ−1(ϕ(x)) ∈ B/'ϕ. Let ι : M →M'ϕ be defined by

ι(a) := µ(ϕ−1(a↓))

where a↓ := {b ∈M : b ≤ a} and µ is the function from Definition 5.11.
The monotonicity of µ implies (M1), i.e., the monotonicity of ι. Property

(M8) of ϕ ensures that ι is submultiplicative (M2). Since the mapping ι is clearly
idempotent pure (M5) and closed (M6) arguments similar to the ones in the proof
of Theorem 5.12 ensure that Properties (M3) and (M4) are satisfied. Properties
(M7) and (M8) for ι are inherited from the same properties of ϕ.

In other words, ι is a strongly adequate premorphism from M into M'ϕ
.

Moreover, for every x ∈ B, by definition of ϕ'ϕ
, we have ι(ϕ(x)) = ϕ'ϕ

(x).
Hence, ϕ'ϕ = ι ◦ ϕ. ut

We obtain the following characterisation of quasi-recognisable languages.

Theorem 6.9. A language X ⊆ B of birooted trees is quasi-recognisable if, and
only if, it is quasi-recognisable by a strongly adequate premorphism.

Proof. Assume that X is a quasi-recognisable language. By Theorem 5.18, it is
recognised by the strongly adequate premorphism ϕ'B

X
. As strongly adequate

premorphisms are restrictions of adequate premorphisms, the claim follows.

Theorem 6.10. Let X ⊆ B be a quasi-recognisable language. The strongly ade-
quate premorphism ϕ'B

X
: B →M'B

X
of Theorem 5.12 is weakly terminal in the

category of all strongly adequate premorphisms recognising X (considered as a
subcategory of the comma category (B,StAdP)).
4 or, by (M6), for all

23

Proof. Let ϕ : B → M be a strongly adequate premorphism recognising X. We
have to prove that there is a strongly adequate premorphism ψ : M → M'B

X

such that ϕ'B
X

= ψ ◦ ϕ.
Let ' be the kernel of ϕ and let ϕ' : B → M' and ι : M → M' be

the strongly adequate premorphisms given by Lemma 6.8. As ' is a strong ∗-
bisimulation included in the syntactic congruence 'X of the language X, we
have ' ⊆ 'BX . Hence, we can define a map η : M' →M'X

by

η(X) := µ'X
(
⋃
X)

that lifts the inclusion surjective mapping B/'ϕ → B'B
X

to a strongly adequate
premorphism M' → M'B

X
. The composition ψ := η ◦ ι is the desired premor-

phism (see Figure 2). ut

B

M M'

M'B
X

ϕ
ϕ'

ϕ'B
X

ι

η

Fig. 2. Minimal strong recogniser.

When X is quasi-recognisable, the monoid M'B
X
can therefore be considered

as the syntactic adequately ordered monoid of X.

Remark 6.11. Note that we only prove thatM'B
X
is weakly terminal in the sense

that the strongly adequate premorphism ψ = η ◦ ι found in the above proof
may not be unique. This comes from the fact that, in general, the adequate
premorphism ϕ may not be surjective.

However, in the category of the partial algebras of the form ϕ/ ' ordered by
�' as in Lemma 5.10 for every kernel ' of a strongly adequate premorphism
ϕ : B →M recognizingX, and the related (monotonic) partial algebra morphism
that becomes surjective, we easily check that the object B/ 'BX is terminal in
the usual sense.

7 Conclusion

We have characterised both recognisable and quasi-recognisable languages in
terms of their syntactic congruences. We have shown that the notion of strong ∗-
bisimulation induces a refinement of quasi-recognisability: strong recognisability,
which admits minimal recognisers.

As far as the membership problem is concerned, syntactic congruences and
the corresponding quotients can be used, whether or not the considered language
is quasi-recognisable.

24

Note that the bisimulation refinement may induce a non-elementary blowup
in the index of the congruence. In return we hope that this refinement encodes
more subtle properties of a language. We note however that we provide no effec-
tive algorithm to compute the bisimulation refinement of a closed ∗-congruence
of finite index.

Although out of the scope of our presentation, it can also be shown that the
class of MSO-definable languages is quite robust in the sense that it is closed
under (non-zero) products, iterated products, inverses, upward and downward
closures, reset and co-reset projections. How do these operations act on the
syntactic algebras? An answer might lead to a better understanding of some
subclasses of MSO-definable languages.

Last but not least, the monoid of labelled birooted trees studied here is a
special case of so-called 0-E-unitary inverse monoids [19]. These monoids enjoy
a similar graphical representation [26] with, especially, a natural order between
non-zero elements characterised by means of injective morphisms. We suspect
that the algebraic tools developed here could partially be adapted to this more
general setting, perhaps in connection with languages of graphs as studied in [3].

References

1. F. Berthaut, D. Janin, and B. Martin. Advanced synchronization of audio or sym-
bolic musical patterns: an algebraic approach. International Journal of Semantic
Computing, 6(4):409–427, 2012.

2. P. Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.
Akademie-Verlag, 1986.

3. B. Courcelle and J. Engelfriet. Graph structure and monadic second-order logic,
a language theoretic approach, volume 138 of Encyclopedia of mathematics and its
applications. Cambridge University Press, 2012.

4. B. Courcelle and P. Weil. The recognizability of sets of graphs is a robust property.
Theoretical Comp. Science, 342:173–228, 2005.

5. V. Danos and L. Regnier. Reversible, irreversible and optimal lambda-machines.
Theoretical Comp. Science, 227(1-2):79–97, 1999.

6. A. Dicky and D. Janin. Modélisation algébrique du diner des philosophes. In
Modélisation des Systèmes Réactifs (MSR), in Journal Européen des Systèmes Au-
tomatisés (JESA Volume 47 - no 1-2-3/2013), Rennes, France, 2013.

7. D. Janin. Quasi-recognizable vs MSO definable languages of one-dimensional over-
lapping tiles. In Mathematical Found. of Comp. Science (MFCS), volume 7464 of
LNCS, pages 516–528, Bratislava, Slovakia, 2012.

8. D. Janin. Vers une modélisation combinatoire des structures rythmiques simples
de la musique. Revue Francophone d’Informatique Musicale (RFIM), 2, 2012.

9. D. Janin. Algebras, automata and logic for languages of labeled birooted trees. In
Int. Col. on Aut., Lang. and Programming (ICALP), volume 7966 of LNCS, pages
318–329, Riga, Latvia, 2013. Springer.

10. D. Janin. On languages of one-dimensional overlapping tiles. In Int. Conf. on
Current Thrends in Theo. and Prac. of Comp. Science (SOFSEM), volume 7741
of LNCS, pages 244–256, Spindlerûv Mlýn, Czech Republic, 2013. Springer.

25

11. D. Janin. Overlaping tile automata. In 8th International Computer Science Sym-
posium in Russia (CSR), volume 7913 of LNCS, pages 431–443, Ekaterinburg,
Russia, 2013. Springer.

12. D. Janin. Walking automata in the free inverse monoid. Research report RR-1464-
12, LaBRI, Université de Bordeaux, 2013. (revised May 2013).

13. D. Janin. Towards a higher dimensional string theory for the modeling of com-
puterized systems, volume 8327 of LNCS, pages 7–20. Springer, Novy Smokovec,
Slovaquia, 2014.

14. D. Janin, F. Berthaut, and M. DeSainteCatherine. Multi-scale design of interactive
music systems : the libTuiles experiment. In 10th Conference on Sound and Music
Computing (SMC), Stockholm, Sweden, 2013.

15. D. Jongh and A. Troelstra. On the connection of partially ordered sets with some
pseudo-boolean algebras. Indagationes Mathematica, 28:317–329, 1966.

16. J. Kellendonk. The local structure of tilings and their integer group of coinvariants.
Comm. Math. Phys., 187:115–157, 1997.

17. J. Kellendonk and M. V. Lawson. Tiling semigroups. Journal of Algebra, 224(1):140
– 150, 2000.

18. P. Körtesi, S. Radeleczki, and S. Szilágyi. Congruences and isotone maps on par-
tially ordered sets. Mathematica Pannonica, 16(1):39–55, 2005.

19. M. V. Lawson. Inverse Semigroups : The theory of partial symmetries. World
Scientific, 1998.

20. M. V. Lawson. McAlister semigroups. Journal of Algebra, 202(1):276 – 294, 1998.
21. S. W. Margolis and J.-E. Pin. Languages and inverse semigroups. In Int. Col.

on Aut., Lang. and Programming (ICALP), volume 172 of LNCS, pages 337–346.
Springer, 1984.

22. D.B. McAlister. Inverse semigroups which are separated over a subsemigroups.
Trans. Amer. Math. Soc., 182:85–117, 1973.

23. J.-E. Pin. Algebraic tools for the concatenation product. Theoretical Comp. Sci-
ence, 292(1):317–342, 2003.

24. S. Shelah. The monadic theory of order. Annals of Mathematics, 102:379–419,
1975.

25. P. V. Silva. On free inverse monoid languages. ITA, 30(4):349–378, 1996.
26. J.B. Stephen. Presentations of inverse monoids. Journal of Pure and Applied

Algebra, 63:81–112, 1990.
27. W. Thomas. Chap. 7. Languages, automata, and logic. In Handbook of Formal

Languages, Vol. III, pages 389–455. Springer-Verlag, Berlin Heidelberg, 1997.
28. W. Thomas. Ehrenfeucht games, the composition method, and the monadic theory

of ordinal words. In Structures in Logic and Computer Science, volume 1261 of
LNCS, pages 118–143. Springer, 1997.

26

