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ABSTRACT:

This paper deals with dense 3D point cloud computation of urban environments around a vehicle. The idea is to use two fisheye views

to get 3D coordinates of the surrounding scene’s points. The first contribution of this paper is the adaptation of an omnidirectional

stereovision self-calibration algorithm to an equisolid fisheye projection model. The second contribution is the description of a new

epipolar matching based on a scan-circle principle and a dynamic programming technique adapted for fisheye images. The method is

validated using both synthetic images for which ground truth is available and real images of an urban scene.

1 INTRODUCTION

3D reconstruction of urban scenes has been highly investigated

in the last few years. Different devices can be used in order to

achieve this goal. It exists vision systems, based on one or two

cameras.

In (Früh and Zakhor, 2004), the authors use a system combining

one video camera and laser scanners. A laser scanner is used for

geometrical reconstruction and the images’ content is exploited

for texture mapping. Other researchers address the 3D recon-

struction problem from only image point of view. Some studies

use multiple views acquired simultaneously by two cameras. 3D

structure is computed by matching the images’ content. Stereovi-

sion systems are often based on pinhole cameras, with a reduced

field of view. In this case, the number of cameras have to be suf-

ficient to cover all the area to be reconstructed. To reduce the

number of needed cameras, some authors propose to use diop-

tric or catadioptric video sensors that offer a 360° × 180° field of

view. Main steps for omnidirectional stereovision are the calibra-

tion, rectification (if any), and matching process.

Ragot (Ragot, 2009) uses a stereovision sensor based on two hy-

perbolic catadioptric cameras. Spherical model can be used for

catadioptric and for dioptric omnidirectional sensors. He pro-

poses to use a specific pattern made of a cylinder with lights as

the pattern’s features in order to strongly calibrate his sensor. He

computes reconstruction with a volumetric method based on the

photoconsistency of voxels. This method does not need a recti-

fication. The difficulty with catadioptric sensors is to correctly

place the mirror in the front of the lens. A fisheye lens is easier

to work with. For this reason, our works are focusing on fisheye

cameras.

Mičušı̀k in (Mičušı̀k and Pajdla, 2003) and (Mičušı̀k, 2004) is

able to reconstruct some scenes in 3D with omnidirectional views.

He proposes a unified self-calibration method for both catadiop-

tric and fisheye omnidirectional system. He propose a new 9-

points RANSAC based algorithm to compute the fundamental ma-

trix. He takes into account only the equidistant projection model

of the fisheye lens. He does not rectify images, and he shows the

effectiveness of his calibration method by reconstructing a 3D

scene with manually matched points between images in order to

compute planar rectangles.

Abraham and Forstner (Abraham and Forstner, 2005) calibrate

the fisheye stereo sensor with an half-box pattern. They propose

an all-in-one epipolar rectification in order to compute virtual

pinhole cameras, where epipolar lines are horizontal and corre-

sponds line per line. Results are illustrated by sparse 3D point

cloud.

Gehrig et al. (Gehrig et al., 2008) calibrate stereo fisheye sensor

with a planar pattern and a method developed for standard cam-

eras with strong distortions (Krüger et al., 2004). They use only

the middle part of the image in order to get a 25° by 150° field

of view, and propose a cylindrical stereo rectification of the im-

ages. 3D point clouds are computed using a classical matching

method.

Li (Li, 2008) defines spherical disparity as an angle difference

instead of a pixels’ position difference between left and right im-

ages as it is used for pinhole cameras’ images. He calibrates the

sensor with an half-box pattern. Epipolar curves are transformed

to horizontal lines, in order to use standard matching points algo-

rithms.

All reconstruction methods require a calibration step that consists

in estimating the transformation between the views.

The aim of the calibration is to determine a matrix of parameters

linking the content of two images, acquired from a stereoscopic

device or from a single moving camera. The best model for

omnidirectional images is the unit sphere model, and as we

use complete circular images, we have no reason to apply a

method developed for highly distorted pinhole cameras. In the

case of a stereoscope with a tiny baseline, we can use an half-box

pattern to compute the fundamental matrix as described in (Li,

2008). For urban scene reconstruction with fisheye cameras, the

baseline has to be large to compute an accurate 3D point cloud.

In this configuration, half-box pattern based calibration process

is not sufficient. In (Cannelle et al., 2012)), Cannelle proposes to

place markers on well-known buildings and to compute the fun-

damental matrix exploiting the known geometrical and metric re-

lation between corresponding extracted points. Some other stud-

ies propose to extract a set of unknown points in both views, then

match them in order to finally estimate parameters. In (Mičušı̀k

and Pajdla, 2003) and (Mičušı̀k, 2004), Mičušı̀k proposes an ef-

fective self-calibration solution. He proposes to adapt the 8-point

algorithm presented by Hartley and Zisserman in (Hartley and

Zisserman, 2004) to the case of a spherical cameras pair. His

algorithm is based on a 9-point RANSAC in order to find the best

matrix solution for fisheye lenses fitting the equidistant projection

model.
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In this paper, we propose to adapt Mičušı̀k’s automatic funda-

mental matrix estimation to lenses fitting the equisolid angle mo-

del (including utilized fisheye lenses). In addition, we present a

graph-based matching algorithm based on spherical epipolar ge-

ometry in order to build a dense 3D point cloud of the scene.

Our method does not require rectification. The matching process

is applied by estimating and sampling epipolar curves. Firstly,

the proposed method is evaluated on synthetic images in order to

objectively measure the quality of calibration step and 3D point

cloud estimation. Secondly, we apply our method on images ac-

quired in a real urban scene.

The experiments are done using a stereoscope system based on

Sigma fisheye lenses (Nikon F Mount, 180° and equisolid angle

projection according to manufacturer’s specifications). Acquired

image disc is about 2350 pixels diameter. Unlike the most of

studies in literature, the cameras of the system are looking at the

zenith point in order to see the buildings all around the car. 3D

structure is estimated by matching information from both images.

2 SPHERICAL MODEL

2.1 Generalities
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Figure 1: Spherical representation of a Fisheye lens mo-

del (Mičušı̀k, 2004).

Fisheye projection can be efficiently described by projecting 3D

points onto a unit sphere. The top part of the figure 1 represents

the circular section of the sphere representing the lens. If we

denote u2D

(

u

v

)

the projection on the sensor of a real 3D point

P then the coordinates u and v are linked to the angle θ of the

incidence ray CP where C is the optical center of the lens. This

relation is given by :

r =
√

u2 + v2 = g(r) tan(θ). (1)

The second part of the figure 1 is a nice illustration of this mathe-

matical relation proposed by Mičušı̀k. In this figure, p(u, v, w =
g(r)) (in fact p(r, w = g(r))) is the intersection of a 3D optical

ray CP, which incidence angle is θ, with the curve described by

the projection function g(r).

As said by Hughes (Hughes et al., 2010), in reality, the lenses

never exactly reach linear models, but they are designed to ap-

proach closely these theoretical models. He shows that linear

models are not the most accurate, but may be good enough when

appropriately used with a lens.

According to the used projection model, parameters are different.

Complex models need more parameters. In our experiments, a

simple linear model is exploited. It has only one parameter called

a, and corresponds to one of the most common types of fisheye

projection: the equisolid angle projection.

2.2 Equisolid Angle Model

Presented lens is the Sigma 4.5mm F2.8 EX HSM IF. According

to manufacturer’s specifications, it reaches equisolid angle pro-

jection.

In this paper, we propose to write the equisolid angle projection

model as a linear model with one parameter a.

The equisolid angle projection is defined by the relation (Hughes

et al., 2010):

r = 2f sin(
θ

2
), (2)

that can be written as θ = 2arcsin(a.r) with a = 1
2f

where f is

the lens’ focal length.

From this relation, the projection function (see eq. (1)) becomes:

g(r, a) =
r

tan(2 arcsin(a.r))
(3)

3 CALIBRATION

3.1 9-Point Algorithm for the Equisolid Angle Projection

Fundamental matrix is computed with the Mičušı̀k’s 9-point al-

gorithm, initially proposed for the equidistant model in (Mičušı̀k,

2004). This algorithm takes into account a set of nine matched

points in the left and right images to estimate an epipolar geome-

try. The final solution is obtained thanks to a RANSAC framework

to guarantee the robustness of the results when outliers appear.

RANSAC is a very popular technique to reach robust performance

and information can be found in (Hartley, 1997)). We have ap-

plied the 9-point algorithm to the equisolid angle model. The

degree 1 Taylor series g̃(r, a) of g(r, a) for a near a0 is given by:

g̃(r, a) = g(r, a0) +
∂g(r, a0)

∂a
(a− a0)

with

∂g(r, a0)

∂a
=

−2r2[tan2(2 arcsin(a0r)) + 1]

tan2(2 arcsin(a0r))
√

1− a2
0r

2

For the equisolid angle model, a good initial value a0 of the pa-

rameter a is a0 = 1
2f

where f is the lens focal length given

in the manufacturer’s specifications. From equation (2) and the

knowledge of the maximal radius rmax in the image, we get

1
2f

=
sin( θmax

2
)

rmax
. An approximate value of θmax is the half of the

specified field of view given by the lens’ manufacturer. For work-

ing in the unit sphere, we choose to scale u2D distances in order

to normalize rmax. In this case, we obtain a0 = sin( θmax

2
).

We add a refinement estimation step based on he Levenberg-

Marquardt algorithm, as it is done for pinhole cameras in (Hart-

ley, 1997). Initial values for the Levenberg-Marquardt algorithm

are issued from the best estimation in the RANSAC. Accuracy can

be improved by taking into account all the inliers instead of using

an estimation based only of a set of 9 points.
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3.2 Epipoles position estimation

This section deals with epipoles position estimation. The epipoles

of the stereovision system are the intersection points of all epipo-

lar circles defined on each sphere surface. Four epipoles exist:

two for each sphere. As presented in figures 1 and 2, in spherical

context, epipolar constraint is verified in the plane π. An epipo-

lar circle is the projection of an epipolar line of π onto the unit

sphere.

Figure 2: An epipolar circle is the projection of an epipolar line

onto the unit sphere. An epipolar circle is inside the plane defined

by the epipolar line and the sphere’s center.

Let be x a point of the plane πl of the left camera. The equation

of its conjugate line in the plane πr of the right camera is given

by: l′(a b c)T = Fx where F is the fundamental matrix and

ax + by + c = 0. Epipoles computation is done thanks to the

relations Fe = 0 and FT e′ = 0 where F is the fundamental

matrix, e is an epipole from image 1 and e′ an epipole from image

2.

3.3 Epipolar curves estimation

In the fisheye case, one needs arcs’ equations onto the unit sphere,

for projecting them into the image plane by taking into account

the adapted projection function. In order to do this, the need is

to project the computed lines on the unit sphere’s surface, and to

determine points’ positions in the image plane by using the cho-

sen spherical projection function.

To perform that, a simple way is to start from the well-known

equation of an arc of a circle in the (Oxy) plane, as described in

figure 2. This trick allows getting projections of infinite points of

the epipolar line on the sphere. It is possible to write each orig-

inal arc’s point by (cos(γ) sin(γ) 0)T , with γ ∈ [0; 2π[. The

difficulty is to find the good 3D rotation that adjusts the arc with

the line’s projection on the sphere’s surface. This rotation can be

interpreted as the rotation that places the arc inside the plane de-

fined by the epipolar line and the sphere’s center.

The camera frame (O, x, y, z) can be represented by the matrix

Moriginal. One needs the normal vector n of the plane defined

by the epipolar line and the sphere’s center O, and the direction

vector u of the line, with an orientation such as it forms an acute

angle with y, where its cosine is positive: cos(y,u) > 0 (to

do that, dot product can be easily used and computed from vec-

tors’ matrices). Vectors n and u must be normalized, in order to

compute the cross product for getting v = n ∧ u and a direct

orthonormal frame (u, v, n), that can be represented by Mfinal.

It is known that Mfinal = R.Moriginal, where R is the rotation

matrix from the original frame to the final frame. Then, one gets

R = Mfinal, that can be used on the original arc of a circle in

order to define the rotated arc corresponding to the epipolar curve

Arcsphere = R.(cos(γ) sin(γ) 0). with γ varying to browse

the lens’ field of view.

4 EPIPOLAR CURVES COMPUTATION BY

CONJUGATE CIRCLES SCANNING

Π 1

Π 2

Π 3

el1 er1 er2el2O l Or
Epipolar axis

Figure 3: The intersection of the epipolar plane Πi with each unit

sphere results in two epipolar circles.

The Figure 3 shows both cameras in 3D, the lenses represented by

unit spheres. An epipolar plane Πi contains the epipolar axis and

intersects the unit spheres by forming great circles. These circles

are the conjugate epipolar circles. They are projected as epipolar

curves onto the images. A 3D point cloud is estimated thanks to

a matching process applied along the conjugate epipolar circles

as it is done along the epipolar lines for a pinhole stereovision

system.

Two conjugate circles of a plane Πi are defined by the unit ra-

dius vector resulting from the intersection of the three following

geometrical objects: the plane Πi, two parallel planes contain-

ing respectively the left and the right sphere center and the unit

sphere. A simple solution is to choose two parallel planes per-

pendicular to the epipolar axis and to scan the unit radius vector

inside both planes.

el1 er1 er2el2Ol Or
Epipolar axisxl-epip

yl-epip

zl-epip

xr-epip

yr-epip

zr-epipyl-camera

zl-camera

xl-camera yr-camera

zr-camera

xr-camera

Rl-epip Rr-epip

Figure 4: Illustration of epipolar and camera reference frames in

both cameras.

This operation is done in the epipolar reference frame of each

camera. Both epipolar reference frame are differing from a trans-

lation along the Xepip axis and can be estimated by applying ro-

tations to left and right camera reference frame (cf. Figure 4).

These rotations are calculated from the epipolar axes Xl−epip and

Xr−epip and from Fundamental matrix by following these steps:

• Define the circle Cl of the unit left sphere, orthogonal to

Xl-epip.

• Let be ql the intersection between Cl and the arc of unit cir-

cle in the plane (Olxy) of the camera reference frame and

centered in Ol.

• Compute the projection ul of ql onto the plan πl (cf. Fig-

ure 1).

• Apply the mathematical relation lr
′ = Ful to calculate the

epipolar line of the point ul in the plane πr (cf. Figure 1).

• Project lr
′ on the right unit sphere.
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• Define the circle Cr of the unit right sphere, orthogonal to

Xr-epip.

• Let be Zr-epip defined by the point Or and the intersection

between the Cr and the projection of lr
′.

• Compute Yl-epip and Yr−epip by applying the cross product to

their respective epipolar X and Z axis.

Let be Πi a set of epipolar plane obtained by moving along the

circles Cl and Cr . Each plan Πi intersects both unit sphere to

produce two conjugate circles that are finally mapped into two

conjugate image curve. A 3D point cloud is computed by apply-

ing a matching process along each conjugate curves. In the the

following section, we show some results of the calibration steps

and of 2D point clouds obtained thanks to an algorithm similar

from (Forstmann et al., 2004) and that we adapt to the typology of

our conjugate curves. More information can be found in (Moreau

et al., 2012).

5 EXPERIMENTAL RESULTS

5.1 Calibration results on synthetic images

(a) Left calibration image

(b) Right calibration image

Figure 5: Illustration of the calibration result for a couple of syn-

thetic fisheye images. Red large circle represents the limit field

of view of the lens. The red point in the middle is its center. Op-

posite red points in left and right sides are the epipoles’ projec-

tions on the image. Blue line passing through the image’s center

and both epipoles is the epipolar axis. Green and magenta points

are fitting the model (inliers). 9 magenta points are those used

to reach the better estimation with RANSAC. Yellow curves are

epipolar curves. Perpendicular blue arc represents the scan-arc.

Synthetic images are produced through a lens that fits the eq-

uisolid angle model. For the calibration, we consider it has a

180° field of view, but in reality we generated images with a

181.8° field of view to get a 10% difference. Left and right cam-

eras look at the Z direction, but right camera has some additional

rotations along X (-8°), Y (-6°) and Z (-7°) axes to simulate the

placement inaccuracy of a real case. We propose to measure the

estimated field of view and parameter a, and the camera’s rota-

tion estimation. To do this, results are evaluated for 200 itera-

tions. Figure 5 presents an example of calibration images.

The field of view and the parameter a are linked by the rela-

tion a = sin( θ
2
). For θ = 180°, a0 = a180 = 0.7071. For

θ = 181.5°, a181.5 = 0.7126. The average value of the a values

is â = 0.7130. The difference with ground truth is 3.268×10−4.

The variance of the a estimations is 4.442× 10−6.

The average value of each rotation estimation are respectively

R̂X = −7.986°, R̂Y = −6.034° and R̂Z = −7.0047°. The

difference between the averages values and the ground truths are

respectively ˆerrX = 0.0138°, ˆerrY = 0.0343° and ˆerrZ =
0.0047°. The variance of each rotation estimations are respec-

tively varX = 0.0700, varY = 0.0182 and varZ = 0.0402.

(a) Left calibration image.

(b) Right calibration image.

Figure 6: Illustration of the calibration for a couple of real images

taken with the Sigma lens.

The figure 6 presents an example of calibration images for a real

scene. The results are obtained for 200 iterations of the calibra-

tion process for a couple of real images (cf. figure 6). The vari-

ance of a estimation is 1.138 × 10−5. The average of the esti-

mated a value is â = 0.7309 and initial a0 value is 0.7071. The

difference between â and a0 is 0.0238. According to the â value

and the equisolid angle projection model, we can conclude that

the real sigma’s lens field of view is about 188°.
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(a) Textured fisheye views.

(b) Colored fisheye views.

(c) Distances map.

(d) Point cloud.

Figure 7: Fisheye images inside the cube for evaluation. 3D re-

construction of the cube. Distances in distances map are shown

for a limit of 5 units (white). Dark points in distance maps are

non-matched points. They are numerous because of the large dif-

ference of the area taken by the faces from an image to the other

one. The cube’s point cloud has not been filtered.

5.2 Reconstruction Evaluation

We propose to evaluate the reconstruction with a couple of com-

puted images of a textured cube. Images size is of 2000 × 2000

in order to approach real images’ dimensions. The images con-

tain a cube of 5 × 5 faces, an edge at the origin and the opposite

one at the position (5,5,5). Faces are textured in order to be able

to find feature points for the calibration and to apply the match-

ing point process. Three different textures are used, the same on

each opposite face. A second couple of synthetic images is used,

with the same cube and textures replaced by colors red, green and

blue. Red faces are located across X axis, green faces across Y

axis and blue faces across Z axis. By using these color informa-

tion in the computed point cloud, we can know for each point to

which face it belongs. We can compute a distance error for each

point to its face.

Left camera is at the position (1,1,1), oriented in the direction

of the Z axis. Right camera is at the position (1,3,1), oriented

the same way but with an additional rotation in order to simu-

late the position error we would get in a real case. For this test,

we do not add a random translation in order to compute an ex-

act metric reconstruction of the cube and to measure efficiently

error distances. These cameras respect the equisolid angle mo-

del and have a field of view near but not equal to 180° in order

to simulate real cameras with not very accurate manufacturer’s

specifications.

Textured fisheye images, distances map and 3D reconstruction

are shown in figure 7. Calibration images are given in figure 5.

Cameras’ location near one of the corners adds a difficulty to the

matching process, especially for the face drawn in the top of fish-

eye images that is very close to the sensors. Cloud point is made

of 2.134.143 points. Point’s error is defined as the distance be-

tween the point and its parent face. Average error of cube’s points

is of 0.016 units and standard deviation is of 0.290 units. Stan-

dard deviation is not so good because of the set of bad points

mostly located far along the epipolar axis.

(a) Fisheye views.

(b) Distances map.

(c) Point cloud.

Figure 8: 3D reconstruction of a real scene. Matching process

took 183 seconds. Distances in distances map are shown for a

limit of 75 meters (white). Point cloud has been filtered to reduce

noise.

Presented real scene is the same as for the calibration in figure

6. In figure 8, distances map shows near points in dark gray and

far ones in light gray. The top part of the images is well recon-
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structed. The bottom part presents holes and bad matched points.

This is due to the lack of textures on bottom building. Some

transition areas between buildings and sky show disparity propa-

gation in the sky. This is an effect of the continuity constraint in

the dynamic programming graph.

6 CONCLUSIONS

We have shown that it is possible to automatically calibrate fish-

eye lenses with regards to different fisheye projection models by

using linear models. We propose to exploit fisheye epipolar ge-

ometry for matching by scanning corresponding epipolar arcs.

Fundamental matrix estimation shows a high stability, that means

automatic estimation gives good results. Reconstruction process,

i.e. calibration and 3D point cloud computation, is validated by

the cube’s test. In future works, we plan to improve the matching

process by taking into account textureless areas in the images. In

addition, we will mesh and merge models in order to reconstruct

whole streets.
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Université de Rouen, Institut de Recherche en Systèmes Elec-
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