
HAL Id: hal-00907776
https://hal.science/hal-00907776

Submitted on 21 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Highlighting Stakeholder Communities to Support
Requirements Decision-Making

Zeina Azmeh, Isabelle Mirbel, Pierre Crescenzo

To cite this version:
Zeina Azmeh, Isabelle Mirbel, Pierre Crescenzo. Highlighting Stakeholder Communities to Support
Requirements Decision-Making. 19th International Working Conference on Requirements Engineer-
ing: Foundation for Software Quality (REFSQ 2013), Apr 2013, Essen, Germany. pp.190-205. �hal-
00907776�

https://hal.science/hal-00907776
https://hal.archives-ouvertes.fr


Highlighting Stakeholder Communities

to Support Requirements Decision-Making

Zeina Azmeh, Isabelle Mirbel, and Pierre Crescenzo

I3S Laboratory, CNRS UMR 7271

University of Nice Sophia Antipolis, France

{firstname.lastname}@unice.fr

Abstract. [Context & motivation] Stakeholders participation is recognized as

a key issue in the development of useful and usable systems. The Web has given

rise to a growing number of collaborative working tools that facilitated the partic-

ipation of stakeholders (and especially end-users). These tools create new oppor-

tunities of practice regarding requirement elicitation. [Question/problem] Nev-

ertheless, they result in an information overload lacking structure and semantics.

Consequently, requirements analysis and selection becomes more challenging.

[Principal ideas/results] In this paper, we propose an approach based on se-

mantic web languages as well as concept lattices to identify relevant groups of

stakeholders depending on their past participation. [Contribution] These groups

can be used to enable facilitated decision-making and handling of requirements.

We detail the different steps and the possible configurations, using an example

inspired by a collaborative software development environment.

Keywords: Stakeholder communities, concept lattices, requirements elicitation.

1 Introduction

Requirements engineering is an essential process of software engineering, during which,

the complete behavior of a software system can be defined. The success of this process

plays a crucial role in the success of the whole software project. A part of this suc-

cess is achieved by the good selection of pertinent stakeholders, and by the proper un-

derstanding of their particular needs, in a core activity called requirements elicitation.

Stakeholders participation is thus recognized as a key issue in the development of useful

and usable systems, which can be hard to attain efficiently. The Web has given rise to

several platforms serving the purpose of collaborative software development [3]. These

online platforms enable the covering of a larger number of stakeholders that are able to

express their needs freely online. The problem lies in the large number of requirements

that need to be handled. Deciding on these requirements can not be done in a straight-

forward manner, especially with the poor stakeholder profiles that are not helpful for

evaluating neither the stakeholders nor their requirements. This in addition to the fact

that there is an overload of data generated by these stakeholders that is quite hard to

process or to share, since it lacks structure and semantics. There is a need for a mecha-

nism able to facilitate the selection of requirements to be analyzed, by knowing the past

activity of stakeholders who are involved in them. Stakeholders who were previously



2 Zeina Azmeh, Isabelle Mirbel, and Pierre Crescenzo

involved in accepted requirements, must be judged to have a higher priority over other

stakeholders. They are intuitively more important than stakeholders who proposed only

refused requirements, or proposed nothing at all.

We propose an approach for discovering communities of stakeholders to support

requirements management (classification for instance) and decision-making (prioritiza-

tion and potentiality of being accepted for instance). The approach works on deriving

profiles for representing evaluated requirements, according to some values like prior-

ity and status. Then, it clusters stakeholders into communities according to their par-

ticipation in requirements belonging to these profiles. This results in having a better

overview of stakeholders and knowing in what profile of requirements they participated

previously. Consequently, this helps to better evaluate their new requirements. The ap-

proach is based on semantic Web languages and concept lattices. We propose an on-

tology to represent the different actors and activities that are involved in collaborative

software development environments. The objective of using semantic web languages

is to annotate the user-generated data to enable a better understanding and sharing of

knowledge [13], as well as the ability to reason about the data. Concept lattices are

data structures that reveal the hidden relationships between the different entities of the

contained data. They can be constructed using a method called Formal Concept Anal-

ysis (FCA) [10], which clusters a set of given objects into concepts, according to the

attributes they share. The set of derived concepts are ordered into a lattice afterwards.

We explain our approach using an example inspired by a collaborative software de-

velopment environment. We show how to analyze annotated data using concept lattices

to extract stakeholder communities and we interpret the obtained results.

The paper is organized as follows: in the next section, we give an overview about

concept lattices using Formal and Relational Concept Analysis (FCA, RCA). In Sec-

tion 3, we present our approach and detail its different steps. In Section 4, we present a

conducted experiment. In Section 5, we discuss the related work. Finally, in Section 6,

we conclude the paper and describe our future work.

2 Background

In this section, we give the basic definitions of Formal and Relational Concept Analysis

(FCA, RCA). We explain their use for the generation of concept lattices along with

simple examples.

2.1 Formal Concept Analysis (FCA)

We base our approach on FCA [10] which is a classification method that permits the

identification of groups of objects having common attributes. It takes a data set repre-

sented as an n×m table (formal context) with objects as rows and attributes as columns.

A cross "×" in this table means that the corresponding object has the correspond-

ing attribute. An example of a formal context is shown in Table 1, for a set of objects

O={1,2,3,4,5,6,7,8,9,10} and a set of attributes A={odd,even,prime,
composite,square}.



Highlighting Stakeholder Communities to Support Requirements Decision-Making 3

From a formal context, FCA extracts the set of all formal concepts. A formal con-

cept is a maximal set of objects (called extent) sharing a maximal set of attributes (called

intent). For example, in Table 1, a=({4,6,8,10},{even, composite}) is a for-

mal concept because the objects 4, 6, 8, and 10 share exactly the attributes even and

composite (and vice-versa). On the other hand, ({6},{even, composite}) is

not a formal concept because the extent {6} is not maximal: other objects share the

same set of attributes.

Table 1. A formal context for objects O and attributes A.

odd even prime composite square

1 × ×

2 × ×

3 × ×

4 × × ×

5 × ×

6 × ×

7 × ×

8 × ×

9 × × ×

10 × ×

FCA reveals the inheritance relations (super-concept and sub-concept) between the

extracted concepts and organizes them into a partially ordered structure known as Galois

lattice or concept lattice. The resulting concept lattice is illustrated in Fig. 1(L).

Fig. 1. Formal concept lattice1for the context in Table 1 (L); focus on the concept b (R).

This lattice reveals phenomena that may not be recognized intuitively. For example,

in Fig. 1(R) appears the concept b=({4},{composite,even,square}) as a sub-

1 Built using the Concept Explorer (ConExp) tool: http://conexp.sourceforge.net/users/index.html

In a lattice, a full node indicates that the concept introduces objects and attributes that weren’t

introduced before; a half-full node introduces either objects when the bottom half is full, or

attributes when the upper half is full; and an empty node represents an intermediary concept,

which does not introduce any objects or attributes.



4 Zeina Azmeh, Isabelle Mirbel, and Pierre Crescenzo

concept of the concept a. It inherits a’s attributes composite and even, and extends

it by the square.

2.2 Relational Concept Analysis (RCA)

RCA [14] is an extension of FCA that takes into consideration the relations between

the objects. Thus, it takes as input two types of contexts: (non-relational) ones that

are previously used with FCA to classify objects by attributes, and inter-context (re-

lational) ones that represent the relations between the objects. RCA generates lattices

similar to the ones generated by FCA, but enriched with the information about the rela-

tion between the objects. We take as an example two sets of numbers, {1,2,3,4,5}
and {11,12,13,14,15,16,17,18,19,20}. We build two non-relational con-

texts similar to the one in Table 1. We consider a relation called Divides between the

first and second sets of numbers, and we build the relational context in Table 2.

Table 2. The relational context Divides.

Divides 11 12 13 14 15 16 17 18 19 20

1 × × × × × × × × × ×

2 × × × × ×

3 × × ×

4 × × ×

5 × ×

RCA takes the two non-relational contexts (numbers×attributes), and the relational

context Divides, then generates the two lattices in Fig. 2.

Fig. 2. The enriched lattices generated by RCA.

These lattices are similar to FCA lattices, but one of them is enriched with the

relation Divides. For example, by regarding the concept a=({2},{prime,even,
Divides:c7,Divides:c3}) in lattice (L), we notice that the numbers in its extent

can divide the numbers in the extents of the concepts 7 and 3 in lattice (R).



Highlighting Stakeholder Communities to Support Requirements Decision-Making 5

3 Highlighting Stakeholder Communities

The objective of our approach is to discover stakeholder communities, according to

the requirements in which they participate. The approach is composed of two main

steps: structuring the data of a project, by semantically annotating the different actors

and artifacts, together with the possible interactions between them; and analyzing this

annotated data, using concept lattices to discover stakeholder communities.

We explain our approach along with an example that is inspired by a collaborative

software development platform, called Launchpad [2]. In such platforms, stakeholders

are themselves involved in various activities of the software development life-cycle,

which may not be necessarily the case in platforms devoted to requirements elicitation.

The different tasks performed by stakeholders result in rich information that we can

exploit to discover groups of requirements and groups of stakeholders. On the other

hand, requirements captured through this kind of platforms are low level requirements.

Indeed, Launchpad enables stakeholders of proposing blueprints (new functional-

ities that they require) and reporting bugs (existing functionalities that need to be en-

hanced or repaired). Every project in this platform has a set of artifacts like: blueprints,

bugs, and code branches, as well as a set of stakeholders participating in these arti-

facts. This platform provides the ability to track blueprints and bugs, as well as code

branches. A large collection of projects are being managed through this platform, we

mention some featured projects like: MySQL, Ubuntu, Mozilla, etc.

Let us consider the simplified example in Fig. 3. It presents a sample of data that

can be obtained from this platform, involving a set of stakeholders and their different

activities performed on a set of blueprints.

hasSubscriber

Patrick

Martin

Edward

William Joseph Oliver

Daniel

Robert

Tony

Mike

KevinJohnDavid

Mark

proposedBy

proposedBy

proposedBy

startedBy

proposedBy

proposedBy

proposedBy

proposedBy

proposedBy
startedBy

proposedBy

proposedBy

proposedBy

startedBy

proposedBy

proposedBy

startedBy

proposedBy

proposedBy

approvedBy

approvedBy

approvedBy

startedBy

startedBy

startedBy
startedBy

completedBy

bp1

bp2

bp3

bp4

bp5
bp6

bp7
bp8

bp9

bp10

bp11
bp12

bp13

bp14
bp15

bp16

Fig. 3. An example of stakeholders performing different activities on a set of blueprints.



6 Zeina Azmeh, Isabelle Mirbel, and Pierre Crescenzo

The stakeholders contributing to a project are not necessarily members of this project.

Their profile pages give an overview about their personal information, which is usually

very poor and insufficient for determining stakeholders importance. We can also have

access to the list of artifacts, in which they participate. The artifacts also have profiles,

in which we can find different attributes related to them like: status, importance, .., and

other attributes indicating the involved stakeholders with their different activities.

The problem in this kind of platforms lies in the large number of blueprints and

bugs that we can find for each project. Deciding on these requirements can not be done

in a straightforward manner, especially with the poor stakeholder profiles that are not

helpful for evaluating neither the stakeholders nor their requirements.

We propose to annotate semantically data from such a platform, using an ontology

that we define and explain hereafter. Then we process the annotated data with concept

lattices, to highlight stakeholder communities.

3.1 Ontology for Collaborative Software Development

We propose the ontology in Fig. 4 for collaborative software development (CSD) [13].

The advantage of annotating data from CSD environments with the help of such an

ontology is embodied in the ability to share data across platforms. This is in addition

to the ability to reason about the data, by exploiting classes and properties at different

levels of granularity.

relatedToBlueprint

Stakeholder

Bug
CodeBranch

hasCommenter createdBy

approvedBy

Artifact

Requirement

hasOwner

hasSubscriber

relatedToCode

assignedTo

relatedToBug

Team

startedBy

proposedBy

Project

hasArtifact

registeredBy

foaf:Person

partOf

Question

revisedBy
doap:Project

hasDriver

hasMember subTeamOf

FAQ

relatedToFAQ

hasRelatedProject

hasMaintainter

linkedToBug

hasContributor

ownedBy

hasAdministrator

affectingProject

partOfProject

askedBy / answeredBy / solvedBy

hasFAQ

foaf:Group

WorkItem

Blueprint

hasWorkItem

Actor

hasAssignee

Revision

committedBy

MailingList

hasMailingList

completedBy
reportedBy

oflossc:Actor

draftedBy

Fig. 4. An ontology for collaborative software development.

In this ontology, we represent the different actors (stakeholders and teams) and their

interactions with the different artifacts of a software project.



Highlighting Stakeholder Communities to Support Requirements Decision-Making 7

This ontology is described using the RDF Schema vocabulary [5]. It makes use

of several other ontologies like the FOAF vocabulary (Friend of a Friend) to describe

stakeholders and groups [6], and the DOAP vocabulary (Description of a Project) to

describe a software project itself with its various resources [1]. It is also connected to

an ontology called OFLOSSC [17] that annotates community members and resources

for open source development.

Every software project is annotated by the class doap:Project. It has a set of actors

and a set of artifacts. Actors can either be individuals (stakeholders) or teams of individ-

uals. A stakeholder is annotated by the class foaf:Person, while a team is annotated by

the class foaf:Group. Project artifacts can be blueprints, bugs, code branches, or ques-

tions. We consider blueprints and bugs to be two different kinds of requirements. As

we mentioned before, a blueprint is a proposal of a new functionality, while a bug is a

proposal of enhancement of an existing functionality.

Using this ontology, we can reason about the annotated data. For example, a re-

quirement is a coarse-grained artifact that can be replaced by either a blueprint or a bug

to get further relationships.

As the matter of fact, it can be used to annotate data retrieved from almost any col-

laborative software development platform. For example, we developed a crawler that

harvests data from Launchpad pages, and represents them in an RDF graph [16], con-

forming to the defined ontology.

We explain below the use of concept lattices to analyze the annotated data.

3.2 Using Concept Lattices

We mentioned above in Section 2 that concept lattices are data structures that reveal the

hidden relationships between the different entities of the contained data.

The objective of using concept lattices is to extract hidden profiles for the set of

requirements of a certain project, then to use these profiles for extracting stakeholder

communities. Therefore, we make use of two kinds of information: the set of attributes

defined for each requirement, as well as, the different interactions (participation) be-

tween stakeholders and the considered requirements.

Let us take again the example in Fig. 3. In this example, we have profile informa-

tion for each blueprint (requirement), as well as stakeholder participation information.

This different information is retrieved using the Launchpad crawler and is annotated in

an RDF format. We analyze this annotated data according to two steps: blueprints ex-

plicit profile information is used to build a lattice of blueprints, which enable us to dis-

cover implicit blueprint profiles, following their common attributes; then, the identified

blueprint profiles are used to classify the stakeholders according to their participation

in these blueprints.

In Launchpad, an explicit (provided by stakeholders) blueprint profile consists of

several attributes. These attributes can be numerical (like: the number of involved stake-

holders) or nominal (non-numerical). Nominal attributes can further be divided into two

types: ordinal attributes that have sortable enumerated values, and categorical attributes

that have enumerated values with no ordering.

We suppose that a requirement analyst can specify his configurations of the at-

tributes to consider. This includes specifying what attribute values are considered to be



8 Zeina Azmeh, Isabelle Mirbel, and Pierre Crescenzo

equivalent, for example: a blueprint that has the status ”new” or the status ”under dis-

cussion” can be considered in the two cases to be ”pending approval”. An expert can

also specify if the values of an attribute are ordinal or not, for example: the priority

values of a blueprint can be specified as ”low < medium < high”.

In our running example, we consider values for priority and definition status only,

for simplicity sake. These two attributes have sortable values: priority can take the val-

ues (undefined, low, medium, high), while definition status can take the values (un-

known, approved, started, suspended, completed). In fact, we extract the information

we need to analyze by querying the RDF data using the SPARQL query language [21].

Let us suppose having the formal context in Table 3, describing the set of blueprints

by their values of priority and status. Since these attributes are ordinal, a blueprint in

this formal context that has a high priority, covers also the other values of priority. This

is also the case for the status values.

Table 3. Blueprints formal context.

Priority Status

high medium low undefined completed suspended started approved unknown

bp1 × × × × × × × × ×

bp2 × × × × × × × ×

bp3 × × × × × × ×

bp4 × × × × ×

bp5 × × × × ×

bp6 × × × × × ×

bp7 × × × × × × × ×

bp8 × × ×

bp9 × × × × ×

bp10 × × × × × ×

bp11 × × ×

bp12 × × ×

bp13 × × × × × ×

bp14 × ×

bp15 × × ×

bp16 × × × ×

FCA classifies the set of considered blueprints into the concept lattice in Fig. 5.

This lattice reveals the blueprints that are more important than the others. These are the

blueprints that appear in the lower part of the lattice, because they have more attributes

than the others. This is the case for the blueprint bp3, appearing at the bottom, since it

has the best values for the considered attributes (priority:high and status: completed).

In this lattice, several groups (profiles) of blueprints can be extracted. We consider

for example, the four following profiles (appearing in Fig. 5): blueprints that are ap-

proved regardless of priority (includes all the blueprints except for bp14, bp8, and

bp12); the ones that are completed regardless of priority (bp13, bp11, bp7, and bp3);

the ones having medium priority at least and are approved at least (bp5, bp4, bp6, bp1,

bp2, bp7, and bp3); and finally the ones having a high priority and that are started at

least (bp1, bp2, and bp3).

We use these four blueprint profiles to construct a new formal context of stakehold-

ers. We make use of RCA (expressing the relation between objects and the concepts of

another lattice), as we can see in Table 4. In this formal context, we can determine if a

stakeholder has a profile or not by fixing a minimal number of blueprints belonging to



Highlighting Stakeholder Communities to Support Requirements Decision-Making 9

high priority
started at least

approved
regardless of priority

medium priority at least
approved at least

completed
regardless of priority

bp1

bp2

bp3

bp4

bp5

bp6

bp7

bp8

bp9

bp10

bp11

bp12

bp13

bp14

bp15

bp16

Fig. 5. Blueprints lattice revealing different profiles.

this profile, in which the stakeholder participated. In this example, we considered this

number to be one blueprint at least. We also considered stakeholder participation to be

a coarse-grained relation that includes proposing, approving, starting, and completing a

blueprint. This aggregation of relations and getting the corresponding data is obtained

through a direct SPARQL query on the RDF data.

Table 4. Stakeholders formal context.

completed high priority medium priority at least approved

regardless of priority started at least approved at least regardless of priority

david × ×

john ×

robert × ×

tony × × ×

oliver × × ×

mark ×

joseph ×

martin × ×

daniel ×

kevin × × ×

mike × ×

william

patrick × × ×

edward ×



10 Zeina Azmeh, Isabelle Mirbel, and Pierre Crescenzo

The stakeholder lattice that results from the context in Table 4, is shown in Fig. 6. In

this lattice, we can notice the formation of four communities of stakeholders. Stakehold-

ers inside each community share the fact that they participated in blueprints belonging

to one of the four chosen profiles. We can notice that the stakeholder called William does

not belong to any community. This is normal since we did not consider the blueprint

profile (low priority and unknown status), in which he participates. We can notice also

that these communities are overlapping. For example, the members of community C4

participate in blueprints of all profiles. While for example, the members of community

C1 participate only in blueprints of a high priority and that are started at least.

Like this, stakeholder profiles can now be enriched with an additional information

concerning their participation, obtained in a collective relative manner.

William

approved
regardless of priority

Patrick

Tony Kevin

Oliver

medium priority at least
approved at least

David

Mike
Martin

Robert

high priority
started at least

John

Mark

Joseph

completed
regardless of priority

Edward

Daniel

C1

C2C3

C4

Fig. 6. Lattice of stakeholder communities.

Possible Configurations: FCA and RCA tend to generate fairly large lattices when

dealing with datasets of large sizes. Possible solution to such an issue is to use the notion

of a Galois Sub-Hierarchy [12], which is a compressed representation of the lattice. It

encodes in a non-redundant way all the information that is necessary for the recovery

of the complete lattice [14]. Another possibility is to impose constraints on the number

of requirements inside each profile, and the number of requirements a stakeholder must

participate in to have a certain requirement profile.



Highlighting Stakeholder Communities to Support Requirements Decision-Making 11

4 Proof of Concept

In this section, we present one of our conducted experiments, the Inkscape project2, and

we show the obtained results.

The Inkscape project contains 3840 contributing stakeholders, and 227 blueprints.

We choose to show how the approach processes the blueprints only, because of the

limited paper space. The analyst configurations3 that we choose for classifying the

blueprints are the following:

– definitionState, takes the values: pendingApproval = {new, review, drafting, dis-

cussion}, approved, discarded = {obsolete, superseded};

– priority, takes the values: undefined, not, low < medium < high < essential;

– relatedToBlueprint, takes the value true if it is related to another blueprint;

– relatedToBug, takes the value true if it is related to a bug.

We also specify the relations that we want to take into consideration. We con-

sider that stakeholders who proposed and subscribed to blueprints, have participate-

dInBlueprint. Running the approach on this data results in two lattices4: a lattice of

blueprints, and a lattice that classifies stakeholders by the extracted blueprint profiles.

The blueprints lattice, shown in Fig. 7, gives us an overview of the blueprints, ac-

cording to the considered attributes. It shows three main profiles: discarded, pendingAp-

proval, and approved blueprints. The approved blueprints profile contains itself three

other main sub profiles. We list these profiles in Table 5 together with the number of

blueprints inside each one of them. Thereafter, we build the stakeholders lattice us-

Table 5. Extracted blueprint profiles.

Blueprint profile Description # blueprints

blueprint-p1 discarded 41

blueprint-p2 pendingApproval 161

blueprint-p3 approved 25

blueprint-p3.1 approved-low 4

blueprint-p3.2 approved-medium 12

blueprint-p3.2.1 approved-medium-relatedToBug 10

blueprint-p3.3 approved-high 6

blueprint-p3.3.1 approved-high-relatedToBug 4

blueprint-p3.4 approved-essential 2

ing the three main blueprint profiles. This lattice is shown in Fig. 8, it highlights six

communities of stakeholders. The communities 1, 3, and 6 correspond to stakehold-

ers participating in approved, pendingApproval, and discarded blueprints, respectively.

Community1 for example, contains itself two other sub communities, with a total

2 Data retrieved on September 18, 2012, from https://launchpad.net/inkscape.
3 The attributes and values are provided by Launchpad. We specify the values that we consider

to be equivalent and also specify the ones that should be treated according to some order.
4 Here, we show a compact version of the lattices. The complete lattices can be visualized on:

www-sop.inria.fr/members/Zeina.Azmeh/REFSQ13/



12 Zeina Azmeh, Isabelle Mirbel, and Pierre Crescenzo

C0

C1BP-Profile2
pendingApproval
(161 blueprints)...

C2

C40

(1 blueprint)

C4BP-Profile1
discarded

(41 blueprints)...

C3BP-Profile3
approved

(25 blueprints)

C9
relatedToBug

C22BP-Profile3.1

(4 blueprints)

C27
low

C30BP-Profile3.2.1

(10 blueprints)

C31BP-Profile3.2

(12 blueprints)

C33
medium

C36BP-Profile3.3.1

(4 blueprints)

C39
high

C37BP-Profile3.3

(6 blueprints)

C41BP-Profile3.4
essential

(2 blueprints)

Fig. 7. The blueprints lattices.

number of 80 stakeholders (63 of them participated in accepted blueprints only). Usu-

ally, stakeholders appearing closer to the bottom of a lattice tend to have more profiles.

For example, the three stakeholders of Community4 have participated in blueprints

belonging to the three blueprint profiles.

Lattices utilization: The blueprints lattice gives us a better view on the blueprints

according to their various attributes. It enables us to identify the different profiles, in

addition to exploring a classification of these profiles. This is quite useful because if

we consider for example the case of accepted blueprints, the next activity that may be

applied to them might be selection for processing. Having such a blueprint classification

(embodied in the lattice) enables us to identify the blueprints that have the best values

for the chosen attributes. These blueprints are the ones appearing closer to the bottom

of the lattice (because they cover more attribute values than the others).



Highlighting Stakeholder Communities to Support Requirements Decision-Making 13

C0

C1Community1
participatesInBlueprint:C3

(80 stakeholders)

C2Community2

(17 stakeholders)

C3Community3
participatesInBlueprint:C1

Community3(163 stakeholders)

C4Community4

(3 stakeholders)

C5Community5

(15 stakeholders)

C6Community6
participatesInBlueprint:C4

(28 stakeholders)

Fig. 8. Lattice of stakeholders of the Inkscape project.

Using the stakeholders lattice, we can discover stakeholders having specific profiles.

In this experiment, we considered the main blueprint profiles only, but if we consider

all the profiles in Table 5, we can then discover for example, the stakeholders who

participated in approved blueprints with high to essential priority values (the profile

blueprint-p3.3). Blueprints that may be proposed in the future by these stakeholders

may have a higher probability of being accepted than the ones potentially proposed

by stakeholders of Community6 (who participated in discarded blueprints only). We

can also decide to prioritize stakeholders having the best blueprint profiles, and conse-

quently prioritize their blueprints.

Threats to validity: According to the experiments that we conducted, we noticed

some limitations in our proposed approach. These limitations appear in three situations:

when the contributing stakeholders are newbies with no previous participation in any

blueprint or bug, when there is no sufficient number of evaluated blueprints or bugs to

extract stakeholder communities, and when the retrieved dataset is fairly huge (the case

for instance of the Ubuntu project having more than 290,000 bugs).

Since our approach has a learning aspect (evaluating stakeholders according to their

evaluated artifacts), in the first two situations, the approach will fail to produce useful

lattices. In such a case, stakeholders might get grouped into only one community; the

community of stakeholders participating in requirements that are pendingApproval.

Having large datasets will also cause some inefficiency to the approach, regarding the

ability to analyze the resulting lattices due to the added complexity.

Discussion: In this experiment, we considered the stakeholders’ participation in blueprints

only. Considering their participation in other artifacts (bugs or code branches) gives us

more information about them that would help in better evaluating them. The advantage

of using RCA is that we can choose to consider any other artifact to enrich the stake-



14 Zeina Azmeh, Isabelle Mirbel, and Pierre Crescenzo

holders lattice without affecting the approach. Especially with the use of the ontology

that we are proposing, since we can choose the different levels of granularity that we

wish to consider. Nevertheless, this may add more complexity to the resulting lattices,

regarding their readability and understandability.

What should be noticed is that the approach can be totally configured regarding the

chosen levels of granularity, even when deciding the blueprint profiles to consider. For

example, the stakeholders lattice was generated considering a coarse granularity. Con-

sidering finer granularity would leads us to generate the stakeholders lattice using all of

the extracted blueprint profiles.

5 Related Work

In this section, we list related work of two main categories: works dealing with require-

ments engineering using social network analysis (SNA), and works dealing with com-

munity detection. Social Network Analysis is the application of methods to understand

the relationships among actors and on the patterns and implications of the relationships.

A social network is a structure consisting of actors and the relations defined on them. It

is often depicted as a graph. A community in a social network is a group of people that

are gathered according to their common properties or approximating interests.

Social Network Analysis (SNA): In [15], Lim and Finkelstein propose a tool for the

elicitation of pertinent highly wanted requirements in a software system. It is a semi-

automatic approach that makes use of social network analysis for requirement engineer-

ing. Fitsilis et al. present in [8] the use of SNA for the management and prioritization of

software requirements. In [20], Pagano lists the challenges, embodied in the fairly huge

amount of unstructured data that may suffer of a low quality and possible conflicts. He

also lists the current techniques aiming at facing each of these challenges, like SNA and

collaborative filtering. In [18], Mulla and Girase proposed an approach that uses social

networks and collaborative filtering for requirements prioritization.

Community Detection: Community detection and graph partitioning share the goal of

separating a network into groups of nodes having few connections between them [19].

The difference is that in community detection, the objective is to find the naturally

occurring groups regardless of their number or size. Another difference is that in graph

theory, ideal partitioning results in disjointed groups, while in community detection,

groups may be overlapping.

In [24], Veerappa and Letier propose an approach for stakeholders clustering based

on their approximating ratings on requirements. The discovered stakeholders groups

can be used afterwards for requirements decision-making. In [7], Cuvelier and Aufaure

explain the notion of a community in the light of graph theory. They present the princi-

ple graph definitions and the different graph related measures that can be employed for

social network analysis [23]. They list and detail the existing methods for community

detection, categorized according to the used techniques.

In [25], Wang et al. models the interactions of users and information in a bipar-

tite graph. They propose to manipulate the resulting graph by one-mode projections



Highlighting Stakeholder Communities to Support Requirements Decision-Making 15

to capture the shared interests of users and the information similarity. In [9], Flake et

al. propose an algorithm for detecting communities in graphs of Web pages connected

by hyperlinks. In [4], Blondel et al. present a heuristic method for discovering com-

munities based on modularity optimization. Modularity, which is detailed in [19], is a

score for measuring the density of links inside and outside communities that helps in

determining the belonging of a node to a certain community. Other works that we can

find adopt divisive algorithms that work on splitting a network by deleting edges [22].

Additionally, others use agglomerative algorithms that work on adding nodes to groups

until no individual node remains [11].

Discussion: To our knowledge, current techniques for SNA and community detection

manipulate social graphs according to their topologies only. They do not consider the

semantics conveyed by the network elements. Consequently, a lot of important informa-

tion may get discarded (as we showed in Section 4). Moreover, in the presented works,

communities are considered as disjointed groups of nodes that do not overlap. While

using concept lattices, the communities overlap.

An advantage of using FCA and RCA lies in the fact that we can represent any

social network with its complete set of data, without any loss of information. Then

the derived concepts enable us to reveal groups of each type of nodes with inclusion

relations between these groups.

6 Conclusion

In this paper, we presented an approach for discovering communities of stakeholders to

support requirements handling and decision-making. The approach is based on semantic

Web languages and concept lattices. It reveals stakeholder communities by analyzing

their past participation in requirements. We considered as a study context a platform for

collaborative software development, from which we retrieved datasets about projects

and annotated them semantically. The use of concept lattices enabled us to analyze

heterogeneous multi-relational social networks of stakeholders and artifacts.

There are diverse perspectives for this work. On top of these perspectives is to study

the utilization of the approach for the purpose of prioritization as well as recommen-

dation of requirements and/or stakeholders, in addition to introducing the notion of

trust among stakeholder communities. Another point that we would like to work on

is to connect data from several platforms to enrich user profiles. An important issue

to be considered also, is the scalability of the approach, when considering fairly large

datasets. This may imply the dynamic updating of the resulting concept lattices, using

incremental lattice construction algorithms. We may also consider the use of Galois

Sub-Hierarchies (GSH) [12] as compact alternatives for concept lattices.

References

1. DOAP vocabulary (description of a project), https://github.com/edumbill/doap/wiki

2. Launchpad: https://launchpad.net/



16 Zeina Azmeh, Isabelle Mirbel, and Pierre Crescenzo

3. Begel, A., Herbsleb, J.D., Storey, M.A.: The future of collaborative software development.

In: Proceedings of CSCW ’12. pp. 17–18. ACM, New York, NY, USA (2012)
4. Blondel, V., Guillaume, J., Lambiotte, R., Mech, E.: Fast unfolding of communities in large

networks. J. Stat. Mech p. P10008 (2008)
5. Brickley, D., Guha, R.V.: Rdf vocabulary description language 1.0: Rdf schema. Tech. rep.

(2 2004), http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
6. Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.98. Namespace document (August

2010), http://xmlns.com/foaf/spec/
7. Cuvelier, E., Aufaure, M.A.: Graph mining and communities detection. In: Aufaure, M.A.,

Zimányi, E. (eds.) Business Intelligence, LNBIP, vol. 96, pp. 117–138. Springer (2012)
8. Fitsilis, P., Gerogiannis, V., Anthopoulos, L., Savvas, I.K.: Supporting the requirements pri-

oritization process using social network analysis techniques. In: Proceedings of WETICE

’10. pp. 110–115. IEEE CS, Washington, DC, USA (2010)
9. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-organization and identification

of web communities. Computer 35(3), 66–71 (Mar 2002)
10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer,

Berlin/Heidelberg (1999)
11. Girvan, M., Newman, M.: Community structure in social and biological networks. Proceed-

ings of the National Academy of Sciences 99(12), 7821–7826 (2002)
12. Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using galois

lattices. SIGPLAN Not. 28(10), 394–410 (Oct 1993)
13. Happel, H.J., Maalej, W., Seedorf, S.: Applications of ontologies in collaborative software

development. In: Mistrı́k, I., Grundy, J., Hoek, A., Whitehead, J. (eds.) Collaborative Soft-

ware Engineering, pp. 109–129. Springer Berlin Heidelberg (2010)
14. Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Relational concept discovery in struc-

tured datasets. Ann. Math. Artif. Intell. 49(1-4), 39–76 (2007)
15. Lim, S.L., Finkelstein, A.: Stakerare: Using social networks and collaborative filtering for

large-scale requirements elicitation. IEEE Trans. Softw. Eng. 38(3), 707–735 (May 2012)
16. Manola, F., Miller, E.: RDF primer. W3C Recommendation 10, 1–107 (2004), http://

www.w3.org/TR/rdf-primer/

17. Mirbel, I.: OFLOSSC, an ontology for supporting open source development communities.

In: Cordeiro, J., Filipe, J. (eds.) ICEIS (4). pp. 47–52 (2009)
18. Mulla, N., Girase, S.: A new approach to requirement elicitation based on stakeholder rec-

ommendation and collaborative filtering, 3 (3), 51-60. IJSEA (2012)
19. Newman, M.: Modularity and community structure in networks. Proceedings of the National

Academy of Sciences 103(23), 8577–8582 (2006)
20. Pagano, D.: Towards systematic analysis of continuous user input. In: Proceedings of the 4th

international workshop SSE ’11. pp. 6–10. ACM, New York, NY, USA (2011)
21. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommenda-

tion 4, 1–106 (2008), http://www.w3.org/TR/rdf-sparql-query/
22. Shen, Y., Pei, W., Wang, K., Li, T., Wang, S.: Recursive filtration method for detecting com-

munity structure in networks. Physica A: Statistical Mechanics and its Applications 387(26),

6663 – 6670 (2008)
23. Tang, L., Liu, H.: Graph mining applications to social network analysis. In: Aggarwal, C.C.,

Wang, H. (eds.) Managing and Mining Graph Data, Advances in Database Systems, vol. 40,

pp. 487–513. Springer US (2010)
24. Veerappa, V., Letier, E.: Clustering stakeholders for requirements decision making. In: Berry,

D., Franch, X. (eds.) Requirements Engineering: Foundation for Software Quality, Lecture

Notes in Computer Science, vol. 6606, pp. 202–208. Springer Berlin Heidelberg (2011)
25. Wang, F., Xu, K., Wang, H.: Discovering shared interests in online social networks. In:

ICDCS Workshops. pp. 163–168. IEEE Computer Society (2012)


