A geometry-preserving finite volume method for compressible fluids on Schwarzschild spacetime - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2012

A geometry-preserving finite volume method for compressible fluids on Schwarzschild spacetime

Philippe G. LeFloch
Hasan Makhlof
  • Fonction : Auteur
  • PersonId : 947553

Résumé

We consider the relativistic Euler equations governing spherically symmetric, perfect fluid flows on the outer domain of communication of Schwarzschild space- time, and we introduce a version of the finite volume method which is formulated from the geometric formulation (and thus takes the geometry into account at the discretization level) and is well-balanced, in the sense that it preserves steady solutions to the Euler equations on the curved geometry under consideration. In order to formulate our method, we first derive a closed formula describing all steady and spherically sym- metric solutions to the Euler equations posed on Schwarzschild spacetime. Second, we describe a geometry-preserving, finite volume method which is based from the family of steady solutions to the Euler system. Our scheme is second-order accurate and, as required, preserves the family of steady solutions at the discrete level. Numerical experiments are presented which demonstrate the efficiency and robustness of the pro- posed method even for solutions containing shock waves and nonlinear interacting wave patterns. As an application, we investigate the late-time asymptotics of perturbed steady solutions and demonstrate its convergence for late time toward another steady solution, taking the overall effect of the perturbation into account.
Fichier principal
Vignette du fichier
LeFloch-Makhlof.pdf (3.06 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00877629 , version 1 (29-10-2013)

Identifiants

  • HAL Id : hal-00877629 , version 1

Citer

Philippe G. LeFloch, Hasan Makhlof. A geometry-preserving finite volume method for compressible fluids on Schwarzschild spacetime. 2012. ⟨hal-00877629⟩
169 Consultations
228 Téléchargements

Partager

Gmail Facebook X LinkedIn More