
The Spirit of Ghost Code

Jean-Christophe Filliâtre1,2, Léon Gondelman1⋆, and Andrei Paskevich1,2

1 Lab. de Recherche en Informatique, Univ. Paris-Sud, CNRS, Orsay, F-91405
2 INRIA Saclay – Île-de-France, Orsay, F-91893

Abstract. In the context of deductive program verification, ghost code
is part of the program that is added for the purpose of specification.
Ghost code must not interfere with regular code, in the sense that it
can be erased without observable difference in the program outcome. In
particular, ghost data cannot participate in regular computations and
ghost code cannot mutate regular data or diverge. The idea exists in the
folklore since the early notion of auxiliary variables and is implemented
in many state-of-the-art program verification tools. However, a rigorous
definition and treatment of ghost code is surprisingly subtle and few
formalizations exist.
In this article, we describe a simple ML-style programming language
with mutable state and ghost code. Non-interference is ensured by a
type system with effects, which allows, notably, the same data types and
functions to be used in both regular and ghost code. We define the proce-
dure of ghost code erasure and we prove its safety using bisimulation. A
similar type system, with numerous extensions which we briefly discuss,
is implemented in the program verification environment Why3.

1 Introduction

A common technique in deductive program verification consists in introducing
data and computations, traditionally named ghost code, that only serve to fa-
cilitate specification. Ghost code can be safely erased from a program without
affecting its final result. Consequently, a ghost expression cannot be used in a
regular (non-ghost) computation, it cannot modify a regular mutable value, and
it cannot raise exceptions that would escape into regular code. However, a ghost
expression can use regular values and its result can be used in program annota-
tions: preconditions, postconditions, loop invariants, assertions, etc. A classical
use case for ghost code is to equip a data structure with ghost fields containing
auxiliary data for specification purposes. Another example is ghost step counters
to prove the time complexity of an algorithm.

When it comes to computing verification conditions, for instance using a
weakest precondition calculus, there is no need to make a distinction between
ghost and regular code. At this moment, ghost code is just a computation that
supplies auxiliary values to use in specification and to simplify proofs. This

⋆ This work is partly supported by the Bware (ANR-12-INSE-0010, http://bware.
lri.fr/) project of the French national research organization (ANR).

computation, however, is not necessary for the program itself and thus should
be removed when we compile the annotated source code. Therefore we need a
way to ensure, by static analysis, that ghost code does not interfere with the
rest of the program.

Despite that the concept of ghost code exists since the early days of deductive
program verification, and is supported in most state-of-the-art tools [1–4], it is
surprisingly subtle. In particular, a sound non-interference analysis must ensure
that every ghost sub-expression terminates. Otherwise, one could supply such a
sub-expression with an arbitrary postcondition and thus be able to prove any-
thing about the program under consideration. Another non-obvious observation
is that structural equality cannot be applied naively on data with ghost compo-
nents. Indeed, two values could differ only in their ghost parts and consequently
the comparison would yield a different result after the ghost code erasure.

There is a number of design choices that show up when conceiving a lan-
guage with ghost code. First, how explicit should we be in our annotations? For
example, should every ghost variable be annotated as such, or can we infer its
status by looking at the values assigned to it? Second, how much can be shared
between ghost and regular code? For instance, can a ghost value be passed to a
function that does not specifically expect a ghost argument? Similarly, can we
store a ghost value in a data structure that is not specifically designed to hold
ghost data, e.g. an array or a tuple? Generally speaking, we should decide where
ghost code can appear and what can appear in ghost code.

In this article, we show that, using a tailored type system with effects, we can
design a language with ghost code that is both expressive and concise. As a proof
of concept, we describe a simple ML-style programming language with mutable
state, recursive functions, and ghost code. Notably, our type system allows the
same data types and functions to be used in both regular and ghost code. We
give a formal proof of the soundness of ghost code erasure, using a bisimulation
argument. A type system based on the same concepts is implemented in the
verification tool Why3 [4]. The language presented is this paper is deliberately
simplified. The more exciting features, listed in Section 4 and implemented in
Why3, only contribute to more complex effect tracking in the type system, which
is mostly orthogonal to the problem of ghost code non-interference.

Outline. This paper is organized as follows. Section 2 introduces an ML-like
language with ghost code. Section 3 defines the operation of ghost code erasure
and proves its soundness. Section 4 describes the actual implementation in Why3.
We conclude with related work in Section 5 and perspectives in Section 6. An
extended version of this paper containing proofs is available at http://hal.

archives-ouvertes.fr/hal-00873187/.

2 GhostML

We introduce GhostML, a mini ML-like language with ghost code. It features
global references (that is, mutable variables), recursive functions, and integer
and Boolean primitive types.

2

2.1 Syntax

The syntax of GhostML is given in Fig. 1. Terms are either values or compound
expressions like application, conditional, reference access and modification. We
assume a fixed finite set of global references. All the language constructions are
standard ML, except for the keyword ghost which turns a term t into ghost code.

t ::= terms

| v value
| t v application
| let xβ = t in t local binding
| if v then t else t conditional
| rβ := v assignment
| !rβ dereference
| ghost t ghost code

τ ::= types

| κ primitive type
| τβ ǫ

=⇒τ functional type

κ ::= primitive types

| int | bool | unit primitive types

v ::= values

| c constant
| xβ variable
| λxβ : τ. t anonymous function
| rec xβ : τβ ǫ

=⇒τ. λxβ : τ. t
recursivefunction

c ::= constants

| () unit
| ...,−1, 0, 1, ... integers
| true, false Boolean
| +,∨,=, ... operators

β ∈ {⊥,⊤} ghost status

ǫ ∈ {⊥,⊤} effect

Fig. 1. Syntax.

Every variable is tagged with a ghost status β, which is ⊤ for ghost vari-
ables and ⊥ for regular ones (here and below, “regular” stands for “non-ghost”).
Similarly, references and formal function parameters carry their ghost status.
Consider the following example:

let upd⊤ = λx⊥ : int. g⊤ := x⊥ in upd⊤ !r⊥

Here, function upd⊤ takes one regular parameter x⊥ and assigns it to a ghost
reference g⊤. Then upd⊤ is applied to the contents of a regular reference r⊥.

Note that compound terms obey a variant of A-normal form [5]. That is,
in application, conditional, and reference assignment, one of the sub-expressions
must be a value. This does not reduce expressiveness, since a term such as
(t1 (t2 v)) can be rewritten as let xβ = t2 v in t1 xβ , where β depends on the
ghost status of the first formal parameter of t1.

Types are either primitive data-types (int, bool, unit) or function types. A

function type is an arrow τ
β
2

ǫ
=⇒τ1 where β stands for the function argument’s

ghost status, and ǫ is the latent effect of the function. An effect ǫ is a Boolean
value that indicates presence of regular side effects such as modification of a
regular reference or possible non-termination.

3

MiniML Syntax. The syntax of traditional MiniML can be obtained by omitting
all ghost indicators β (on references, variables, parameters, and types) and ex-
cluding the ghost construct. Equivalently, we could define MiniML as the subset
of GhostML where all ghost indicators β are ⊥ and where terms of the form
ghost t do not appear.

2.2 Semantics

Fig. 2 gives a small-step operational semantics to GhostML which corresponds
to a deterministic call-by-value reduction strategy. Each reduction step defines
a relation between states. A state is a pair t | µ of a term t and a store µ. A
store µ maps global references of t to constants. The regular part of a store µ,
written µ⊥, is the restriction of µ to regular references. Rules indicate the store
µ only when relevant.

A reduction step can take place directly at the top of a term t. Such a
step is called a head reduction and is denoted t | µ

α
→ t′ | µ′ . Rule (E-

Ghost) expresses that, from the point of view of operational semantics, there
is no difference between regular and ghost code. Other head reduction rules are
standard. For instance, rules (E-Op-λ) and (E-Op-δ) evaluate the application of
a constant c0 to constants c1...cm. Such an application is either partial (1 ≤ m <

arity(c0)), and then turned into a function λx⊥ : κ.c0 c1 . . . cm x⊥, or total (m =
arity(c0)), and then some oracle function δ gives the result δ(c0, c1, . . . , cm). For
instance, δ(not, true) = false, δ(+, 47,−5) = 42, etc.

A reduction step can also be contextual, i.e. it takes place in some sub-
expression. Since our language is in A-normal form, there are only two contextual
rules, (E-Context-App) and (E-Context-Let).

As usual, →⋆ denotes the reflexive, transitive closure of →. We say that a
closed term t evaluates to v in a store µ if there is a µ′ such that t | µ →⋆ v | µ′ .
Note that, since t is closed, v is not a variable. Finally, the divergence of a term
t in a store µ is defined co-inductively as follows:

t | µ →1 t′ | µ′ t′ | µ′ → ∞

t | µ → ∞
(E-Div)

MiniML Semantics. Since ghost statuses do not play any role in the semantics
of GhostML, dropping them (or, equivalently, marking all β as ⊥) and removing
the rule (E-Ghost) results in a standard call-by-value small-step operational
semantics for MiniML. For the sake of clarity, we use a subscript m when writing
MiniML reduction steps: t | µ →m t′ | µ′ .

2.3 Type System

The purpose of the type system is to ensure that “well-typed terms do not go
wrong”. In our case, “do not go wrong” means not only that well-typed terms
verify the classical type soundness property, but also that ghost code does not

4

ghost t
α
→ t (E-Ghost)

1 ≤ m < arity(c0)

c0 c1 . . . cm
α
→ λx⊥ : κ. c0 c1 . . . cm x⊥

(E-Op-λ)

m = arity(c0) δ(c0, c1, . . . , cm) is defined

c0 c1 . . . cm
α
→ δ(c0, c1, . . . , cm)

(E-Op-δ)

(λxβ : τ. t) v
α
→ t[xβ ← v] (E-App-λ)

(rec fβ : τβ ǫ
=⇒τ. λxβ : τ. t) v

α
→ t[xβ ← v, fβ ← rec fβ : τβ ǫ

=⇒τ. λxβ : τ. t]

(E-App-Rec)

let xβ = v1 in t2
α
→ t2[x

β ← v1] (E-Let)

if true then t1 else t2
α
→ t1 (E-If-True)

if false then t1 else t2
α
→ t2 (E-If-False)

!rβ | µ
α
→ µ(rβ) | µ (E-Deref)

rβ := c | µ
α
→ () | µ[rβ 7→ c] (E-Assign)

t | µ
α
→ t′ | µ′

t | µ → t′ | µ′

(E-Head)

t1 | µ → t′1 | µ
′

(t1 v) | µ → (t′1 v) | µ′

(E-Context-App)

t2 | µ → t′2 | µ
′

let xβ = t2 in t1 | µ → let xβ = t′2 in t1 | µ′

(E-Context-Let)

Fig. 2. Semantics.

interfere with regular code. More precisely, non-interference means that ghost
code never modifies regular references and that it always terminates. For that
purpose, we introduce a type system with effects, where the typing judgment is

Σ, Γ ⊢ t : τ, β, ǫ.

Here, τ is the type of term t. Boolean indicators β and ǫ indicate, respectively,
the ghost status of t and its regular side effects. Γ is a typing environment
that binds variables to types. Σ is a store typing that binds each reference rβ

to the primitive type of the stored value. We restrict types of stored values to
primitive types to avoid a possible non-termination via Landin’s knot (that is,

5

Typeof(c) = τ

Σ, Γ ⊢ c : τ, ⊥, ⊥
(T-Const)

(xβ : τ) ∈ Γ

Σ, Γ ⊢ xβ : τ, β, ⊥
(T-Var)

Σ, Γ, xβ : τ ⊢ t : τ0, β0, ǫ

Σ, Γ ⊢ (λxβ : τ. t) : τβ ǫ
=⇒τ0, β0, ⊥

(T-λ)

Σ, Γ, f⊥ : τβ2
⊤

=⇒τ1 ⊢ (λxβ : τ2. t) : τ
β
2

ǫ
=⇒τ1, ⊥, ⊥

Σ, Γ ⊢ (rec f⊥ : τβ2
⊤

=⇒τ1. λxβ : τ2. t) : τ
β
2

⊤
=⇒τ1, ⊥, ⊥

(T-Rec)

Σ, Γ ⊢ v : bool, β0, ⊥ Σ, Γ ⊢ t1 : τ, β1, ǫ1 Σ, Γ ⊢ t2 : τ, β2, ǫ2

Σ, Γ ⊢ (if v then t1 else t2) : τ, β0 ∨ β1 ∨ β2, ǫ1 ∨ ǫ2
(T-If)

Σ, Γ, x⊥ : τ2 ⊢ t1 : τ1, β1, ǫ1 Σ, Γ ⊢ t2 : τ2, β2, ǫ2

Σ, Γ ⊢ (let x⊥ = t2 in t1) : τ1, β1 ∨ β2, ǫ1 ∨ ǫ2
(T-Let-Regular)

Σ, Γ, x⊤ : τ2 ⊢ t1 : τ1, β1, ǫ1 Σ, Γ ⊢ t2 : τ2, β2, ⊥

Σ, Γ ⊢ (let x⊤ = t2 in t1) : τ1, β1, ǫ1
(T-Let-Ghost)

Σ, Γ ⊢ t : τ⊥2
ǫ1
=⇒τ1, β1, ǫ2 Σ, Γ ⊢ v : τ2, β2, ⊥

Σ, Γ ⊢ (t v) : τ1, β1 ∨ β2, ǫ1 ∨ ǫ2
(T-App-Regular)

Σ, Γ ⊢ t : τ⊤2
ǫ1
=⇒τ1, β1, ǫ2 Σ, Γ ⊢ v : τ2, β2, ⊥

Σ, Γ ⊢ (t v) : τ1, β1, ǫ1 ∨ ǫ2
(T-App-Ghost)

(rβ : κ) ∈ Σ

Σ, Γ ⊢ !rβ : κ, β, ⊥
(T-Deref)

Σ, Γ ⊢ v : κ, β′, ⊥ (rβ : κ) ∈ Σ β ≥ β′

Σ, Γ ⊢ (rβ := v) : unit, β, ¬β
(T-Assign)

Σ, Γ ⊢ t : τ, β, ⊥

Σ, Γ ⊢ (ghost t) : τ, ⊤, ⊥
(T-Ghost)

Fig. 3. Typing rules.

6

recursion encoded using a mutable variable containing a function), which would
be undetected in our type system.

Typing rules are given in Fig. 3. To account for non-interference, each rule
whose conclusion is a judgement Σ, Γ ⊢ t : τ, β, ǫ is added the implicit extra
side condition

(β = ⊤)⇒ (ǫ ∨ ǫ+(τ) = ⊥) (1)

where ǫ+(τ) is defined recursively on τ as follows:

ǫ+(κ) , ⊥

ǫ+(τβ2
ǫ

=⇒τ1) , ǫ ∨ ǫ+(τ1)

In other words, whenever t is ghost code, it must terminate and must not modify
any regular reference. In particular, a ghost function whose body is possibly
non-terminating or possibly modifies a regular reference is rejected by the type
system.

Let us explain some rules in detail. The rule (T-Const) states that any
constant c is regular code, (i.e. β = ⊥) yet is pure and terminating (i.e. ǫ =
⊥). Moreover, we assume that if c is some constant operation, then its formal
parameters are all regular. The type of each constant is given by some oracle
function Typeof(c). For instance, Typeof(+) = int⊥ ⊥

=⇒ int⊥ ⊥
=⇒ int.

Recursive functions are typed as follows. For simplicity, we assume that when-
ever a recursive function is used, we may have non-termination. Therefore, we
enforce the latent effect ǫ of any recursive function to be ⊤. Consequently, no
recursive function can be used or even occur in ghost code. In practice, however,
we do not have to assign a latent non-termination effect to recursive functions
whose termination can be established by static analysis (e.g. by a formal proof).

The rule (T-If) shows how ghost code is propagated through conditional
expressions: if at least one of the branches or the Boolean condition is ghost
code, then the conditional itself becomes ghost. Note, however, that the typing
side-condition (1) will reject conditionals where one part is ghost and another
part has some effect, as in

if true then r⊥ := 42 else ghost ().

The rule (T-Ghost) turns any term t into ghost code, with ghost status ⊤,
whatever the ghost status of t is, provided that t is pure and terminating. Thus,
terms such as ghost (r⊥ := 42) or ghost (fact 3) are ill-typed, since their evalu-
ation would interfere with the evaluation of regular code.

The side condition (β ≥ β′) of the rule (T-Assign) ensures that regular
references cannot be assigned ghost code. (Boolean values are ordered as usual,
with ⊤ > ⊥.) Additionally, the rule conclusion ensures that, if the assigned
reference is regular (β = ⊥), then ǫ is ⊤; on the contrary, if the assigned reference
is ghost (β = ⊤), then ǫ is ⊥, since ghost reference assignments are not part of
regular effects.

The most subtle rules are those for local bindings and application. Rule (T-

Let-Ghost) states that, whatever the ghost status of a term t2 is, as long as

7

t2 is pure and terminating, we can bind a ghost variable x⊤ to t2. Similarly, by
rule (T-App-Ghost) a function that expects a ghost parameter can be applied
to both ghost and regular values.

Rule (T-Let-Regular) is somewhat dual to (T-Let-Ghost): it allows us
to bind a regular variable x⊥ to a ghost term. The difference with the previous
case is that, now, the ghost status of the let expression depends on the ghost
status of t2: if t2 is ghost code, then the “contaminated” let expression becomes
ghost itself. Consequently, if t2 is ghost, then by the implicit side-condition, as
ǫ1∨ǫ2 must be equal to⊥, both t1 and t2 must be pure and terminating. Similarly,
rule (T-App-Regular) allows us to pass a ghost value to a function expecting
a regular parameter, in which case the application itself becomes ghost. In other
words, the goal of rules (T-Let-Regular) and (T-App-Regular) is to allow
ghost code to use regular code. This was one of our motivations.

It is worth pointing out that there is no sub-typing in our system. That is, in
rules for application, the formal parameter and the actual argument must have
exactly the same type τ2. In particular, all latent effects and ghost statuses in
function types must be the same. For instance, a function expecting an argument
of type int⊥ ǫ

=⇒ int cannot be applied to an argument of type int⊤ ǫ
=⇒ int.

Type System of MiniML. Similarly to operational semantics, if we drop all ghost
statuses (or, equivalently, if we consider them marked as ⊥) and get rid of typing
rule (T-Ghost), we get a standard typing system with effects for MiniML with
simple types. For clarity, we add a subscript m when we write typing judgments
for MiniML terms: Σ, Γ ⊢m t : τ, ǫ.

2.4 Type Soundness

The type system of GhostML enjoys the standard soundness property. Any well-
typed program either diverges or evaluates to a value. This property is well
established in the literature for ML with references [6, 7], and we can easily adapt
the proof in our case. Due to lack of space, we only give the main statements.

As usual, we decompose type soundness into preservation and progress lem-
mas. First, we define well-typedness of a store with respect to a store typing.

Definition 1. A store µ is well-typed with respect to a store typing Σ, written
Σ ⊢ µ, if dom(µ) ⊆ dom(Σ) and µ(rβ) has type Σ(rβ) for every rβ ∈ dom(µ).

With this definition, the preservation lemma is stated as follows:

Lemma 1 (Preservation). If Σ, Γ ⊢ t : τ, β, ǫ and Σ ⊢ µ, then t | µ →

t′ | µ′ implies that Σ, Γ ⊢ t′ : τ, β′, ǫ′ and Σ ⊢ µ′, where β ≥ β′ and ǫ ≥ ǫ′.

The only difference with respect to the standard statement is that ghost
statuses and effect indicators can decrease during evaluation.

Lemma 2 (Progress). If Σ, ∅ ⊢ t : τ, β, ǫ, then either t is a value or, for
any store µ such that Σ ⊢ µ, there exists a reduction step t | µ → t′ | µ′ .

8

Additionally, we have the following results for effect-less programs.

Lemma 3 (Store Preservation). If Σ, ∅ ⊢ t : τ, β, ⊥ and Σ ⊢ µ, then
t | µ → t′ | µ′ implies µ⊥ = µ′⊥.

Lemma 4 (Program Termination). If Σ, ∅ ⊢ t : τ, β, ⊥ and Σ ⊢ µ, then
evaluation of t in store µ terminates, that is, there is a value v and a store µ′

such that t | µ →⋆ v | µ′ .

A consequence of the previous lemmas and the side condition (1) is that
ghost code does not modify the regular store and is terminating.

3 From GhostML to MiniML

This section describes an erasure operation that turns a GhostML term into a
MiniML term. The goal is to show that ghost code can be erased from a regular
program without observable difference in the program outcome.

The erasure is written either Eβ(.), when parameterized by some ghost status
β, and simply E(.) otherwise. First, we define erasure on types and terms. The
main idea is to preserve the structure of regular terms and types, and to replace
any ghost code by a value of type unit.

Definition 2 (τ-erasure). Let τ be some GhostML type. The erasure Eβ(τ) of
type τ with respect to β is defined by induction on the structure of τ as follows:

E⊤(τ) , unit

E⊥(τ
β2

2
ǫ

=⇒τ1) , Eβ2
(τ2)

ǫ
=⇒E⊥(τ1)

E⊥(κ) , κ

In other words, the structure of regular types is preserved and all ghost types
are turned into type unit. Now we can define erasure on terms.

Definition 3 (t-Erasure). Let t be such that Σ, Γ ⊢ t : τ, β, ǫ holds. The
erasure Eβ(t) is defined by induction on the structure of t as follows:

E⊤(t) , ()

E⊥(c) , c

E⊥(x
⊥) , x

E⊥(λx
β : τ. t) , λx : Eβ(τ). E⊥(t)

E⊥(rec f⊥ : τβ2

2
⊤

=⇒τ1. t) , rec f : E⊥(τ
β2

2
⊤

=⇒τ1). E⊥(t)

E⊥(r
⊥ := v) , r := E⊥(v)

E⊥(!r
⊥) , !r

E⊥(if v then t1 else t2) , if E⊥(v) then E⊥(t1) else E⊥(t2)

E⊥(t v) , E⊥(t) Eβ′(v) where t has type τ2
β′ ǫ1

=⇒τ1

E⊥(let x
β′

= t2 in t1) , let x = Eβ′(t2) in E⊥(t1)

9

Note that ghosts variables and ghost references do not occur anymore in E⊥(t).
Note also that a regular function (recursive or not) with a ghost parameter
remains a function, but with an argument of type unit. Similarly, a let expression
that binds a ghost variable inside a regular code remains a let, but now binds a
variable to (). More generally, E⊥(t) is a value if and only if t is a value.

Leaving unit values and arguments in the outcome of erasure may seem un-
necessary. However, because of latent effects, full erasure of ghost code is not
possible. Consider for instance the function

λx⊥ : int. λy⊤ : int. r⊥ := x

where r is a regular reference. Then a partial application of this function to a
single argument should not trigger the modification of r. Our solution is to keep
a second argument y of type unit.

3.1 Well-typedness Preservation

We prove that erasure preserves well-typedness of terms. To do so, we first
define the erasure of a typing context and of a store typing by a straightforward
induction on their size:

Definition 4 (Γ -erasure and Σ-erasure).

E(∅) , ∅ E(∅) , ∅

E(Γ, x⊤ : τ) , E(Γ), x : unit E(Σ, r⊤ : κ) , E(Σ)

E(Γ, x⊥ : τ) , E(Γ), x : E⊥(τ) E(Σ, r⊥ : κ) , E(Σ), r : κ

With these definitions, we prove well-typedness preservation under erasure:

Theorem 1 (Well-typedness Preservation). If Σ, Γ ⊢ t : τ, ⊥, ǫ holds,
then E(Σ), E(Γ) ⊢m E⊥(t) : E⊥(τ), ǫ holds.

3.2 Correctness of Erasure

Finally, we prove correctness of erasure, that is, evaluation is preserved by era-
sure. To turn this into a formal statement, we first define the erasure of a store
µ by a straightforward induction on the store size:

Definition 5 (µ-erasure).

E(∅) , ∅

E(µ ⊎ {r⊤ 7→ c}) , E(µ)

E(µ ⊎ {r⊥ 7→ c}) , E(µ) ⊎ {r 7→ c}

Notice that E(µ) removes ghost annotations, and thus is not the same that µ⊥.
The correctness of erasure means that, for any evaluation t | µ →⋆ v | µ′ in

GhostML, we have E⊥(t) | E(µ) →
⋆
m E⊥(v) | E(µ

′) in MiniML and that, for any

10

diverging evaluation t | µ → ∞ in GhostML, we have E⊥(t) | E(µ) →m ∞ in
MiniML. We prove these two statements using a bisimulation argument. First, we
need the substitution lemma below, which states that substitution and erasure
commute.

Lemma 5 (Substitution Under Erasure). Let t be a GhostML term and v

a GhostML value such that Σ, Γ, xβ : τ ⊢ t : τ0, ⊥, ǫ and Σ, Γ ⊢ v : τ, β′, ⊥,
with β ≥ β′, hold. Then the following holds:

E⊥(t)[x← Eβ(v)] = E⊥(t[x
β ← v]).

Note that if Σ ⊢ µ then E(Σ) ⊢m E(µ). To prove erasure correctness for
terminating programs, we use the following forward simulation argument:

Lemma 6 (Forward Simulation of GhostML). If Σ, ∅ ⊢ t : τ, ⊥, ǫ and,
for some store µ such that Σ ⊢ µ, we have t | µ → t′ | µ′ , then the following

holds in MiniML: E⊥(t) | E(µ) →
0|1
m E⊥(t

′) | E(µ′) .

We are now able to prove the first part of the main theorem:

Theorem 2 (Terminating Evaluation Preservation). If typing judgment
Σ, ∅ ⊢ t : τ, ⊥, ǫ holds and t | µ →⋆ v | µ′ , for some value v and some store

µ such that Σ ⊢ µ, then E⊥(t) | E(µ) →
⋆
m E⊥(v) | E(µ′) .

To prove the second part of the erasure correctness (non-termination preser-
vation), we use the following simulation argument.

Lemma 7 (Forward Simulation of MiniML). If Σ, ∅ ⊢ t : τ, ⊥, ǫ holds,
then, for any store µ such that Σ ⊢ µ, if E⊥(t) | E(µ) →m q | ν for some term

q and some store ν, then t | µ →≥1 t′ | µ′ where E⊥(t
′) = q and E(µ′) = ν.

Finally, we establish non-termination preservation:

Theorem 3 (Non-termination Preservation). If Σ, ∅ ⊢ t : τ, ⊥, ǫ holds
and t | µ → ∞, for some store µ such that Σ ⊢ µ, then E⊥(t) also diverges,

that is, E⊥(t) | E(µ) →m ∞.

4 Implementation

Our method to handle ghost code is implemented in the verification tool Why33.
With respect to GhostML, the language and the type system of Why3 have the
following extensions:

Type Polymorphism. The type system of Why3 is first-order and features ML-
style type polymorphism. Our approach to associate ghost status with variables
and expressions, and not with types, makes this extension straightforward.

3 Why3 is freely available from http://why3.lri.fr/.

11

Local References. Another obvious extension of GhostML is the support of non-
global references. As long as such a reference cannot be an alias for another one,
the type system of GhostML requires practically no changes. In a system where
aliases are admitted, the type system and, possibly, the verification condition
generator must be adapted to detect modifications made by a ghost code in
locations accessible from regular code. In Why3, aliases are tracked statically,
and thus non-interference is ensured purely by type checking.

Data Structures with Ghost Fields. Why3 supports algebraic data types (in par-
ticular, records), whose fields may be regular or ghost. Pattern matching on such
structures requires certain precautions. Any variable bound in the ghost part of
a pattern must be ghost. Moreover, pattern matching over a ghost expression
that has at least two branches must make the whole expression ghost, whatever
the right-hand sides of the branches are, just as in the case of a conditional over
a ghost Boolean expression.

That said, ghost code can use the same data types as regular code. A ghost
variable may be a record with regular, mutable fields, which can be accessed and
modified in ghost code. Similarly, Why3 has a unique type of arrays and admits
both regular and ghost arrays.

Exceptions. Adding exceptions is rather straightforward, since in Why3 excep-
tions are introduced only at the top level. Indeed, it suffices to add a new effect
indicator, that is the set of exceptions possibly raised by a program expression.
We can use the same exceptions in ghost and regular code, provided that the
ghost status of an expression that raises an exception is propagated upwards
until the exception is caught.

Provable Termination. For the sake of simplicity, GhostML forbids the use of
recursive functions in ghost code. In Why3, the use of recursive functions and
loops in ghost code is allowed. The system requires that such constructs are
supplied with a “variant” clause, so that verification conditions for termination
are generated.

Example. Let us illustrate the use of ghost code in Why3 on a simple example.
Fig. 4 contains an implementation of a mutable queue data type, in Baker’s
style. A queue is a pair of two immutable singly-linked lists, which serve to
amortize push and pop operations. Our implementation additionally stores the
pure logical view of the queue as a list, in the third, ghost field of the record.
Notice that we use the same list type both for regular and ghost data.

We illustrate propagation in function push (lines 27–30), where a local vari-
able v is used to hold some intermediate value, to be stored later in the ghost
field of the structure. Despite the fact that variable v is not declared ghost,
and the fact that function append is a regular function, Why3 infers that v

is ghost. Indeed, the ghost value q.view contaminates the result of append. It
would therefore generate an error if we tried to store v in a non-ghost field of an
existing regular structure. Since the expression append q.view (Cons x Nil)

12

1 module Queue
2

3 type elt
4

5 type list = Nil | Cons elt list
6

7 let rec append (l1 l2: list) : list
8 variant { l1 }
9 = match l1 with

10 | Nil → l2
11 | Cons x r1 → Cons x (append r1 l2)
12 end
13

14 let rec rev_append (l1 l2: list) : list
15 variant { l1 }
16 = match l1 with
17 | Nil → l2
18 | Cons x r1 → rev_append r1 (Cons x l2)
19 end
20

21 type queue = {
22 mutable front: list;
23 mutable rear: list;
24 ghost mutable view: list;
25 }
26

27 let push (x: elt) (q: queue) : unit
28 = q.rear ← Cons x q.rear;
29 let v = append q.view (Cons x Nil) in
30 q.view ← v
31

32 exception Empty
33

34 let pop (q: queue): elt
35 raises { Empty }
36 = match q.front with
37 | Cons x f →
38 q.front ← f;
39 q.view ← append f (rev_append q.rear Nil);
40 x
41 | Nil →
42 match rev_append q.rear Nil with
43 | Nil →
44 raise Empty
45 | Cons x f →
46 q.front ← f;
47 q.rear ← Nil;
48 q.view ← f;
49 x
50 end
51 end
52 end

Fig. 4. Queue implementation in Why3.

13

is ghost, it must not diverge. Thus Why3 requires function append to be termi-
nating. This is ensured by the variant clause on line 8. In function pop (lines
34–52), the regular function rev_append is used both in regular code (line 42)
and ghost code (line 39).

The online gallery of verified Why3 programs contains several other exam-
ples of use of ghost code4, in particular, ghost function parameters and ghost
functions to supply automatic induction proofs (also known as lemma functions).

5 Related Work

The idea to use ghost code in a program to ease specification exists since the early
days (late sixties) of deductive program verification, when so-called auxiliary
variables became a useful technique in the context of concurrent programming.
According to Jones [8] and Reynolds [9], the notion of auxiliary variable was first
introduced by Lucas in 1968 [10]. Since then, numerous authors have adapted
this technique in various domains.

It is worth pointing out that some authors, in particular Kleymann [11]
and Reynolds [9], make a clear distinction between non-operational variables
used in program annotations and specification-purpose variables that can appear
in the program itself. The latter notion has gradually evolved into the wider
idea that ghost code can be arbitrary code, provided it does not interfere with
regular code. For example, Zhang et al. [12] discuss the use of auxiliary code in
the context of concurrent program verification. They present a simple WHILE
language with parallelism and auxiliary code, and prove that the latter does not
interfere with the rest of the program. In their case, non-interference is ensured
by the stratified syntax of the language. For instance, loops can contain auxiliary
code, but auxiliary code cannot contain loops, which ensures termination. They
also define auxiliary code erasure and prove that a program with ghost code
has no less behaviors than its regular part. Schmaltz [13] proposes a rigorous
description of ghost code for a large fragment of C with parallelism, in the context
of the VCC verification tool [2]. VCC includes ghost data types, ghost fields in
regular structures, ghost parameters in regular functions, and ghost variables. In
particular, ghost code is used to manipulate ownership information. A notable
difference w.r.t. our work is that VCC does not perform any kind of inference of
ghost code. Another difference is that VCC assumes that ghost code terminates,
and the presence of constructions such as ghost(goto l) makes it difficult to
reason about ghost code termination.

Another example of a modern deductive verification tool implementing ghost
code is the program verifier Dafny [1]. In Dafny, “the concept of ghost versus
non-ghost declarations is an integral part of the Dafny language: each func-
tion, method, variable, and parameter can be declared as either ghost or non-
ghost.” [14]. In addition, a class can contain both ghost fields and regular fields.
Dafny ensures termination of ghost code. Ghost code can update ghost fields, but

4 http://toccata.lri.fr/gallery/ghost.en.html

14

is not allowed to allocate memory or update non-ghost fields. Consequently, ghost
code cannot obtain full reuse of libraries that allocate and mutate classes or ar-
rays. However, on the fragment of Dafny’s language corresponding to GhostML,
Dafny provides a semantics of ghost code similar to what is presented here.

The property of non-interference of ghost code is a special case of information
flow non-interference [15]. Indeed, one can see ghost code as high-security infor-
mation and regular code as low-security information, and non-interference pre-
cisely means that high-security information does not leak into low-security com-
putations. Information flow properties can be checked using a type system [16]
and proofs in that domain typically involve a bisimulation technique (though not
necessarily through an erasure operation). Notice that applying an information
flow type system to solve our problem is not straightforward, since termination
of ghost code is a crucial requirement. For instance, the type system described
by Simonet and Pottier [17] simply assumes termination of secret code. To the
best of our knowledge, this connection between information flow and ghost code
has not been made before, and mainstream deductive verification tools employ
syntactical criteria of non-interference instead of type-based ones. In this pa-
per, we develop such a type-based approach, specifically tailored for program
verification.

6 Conclusion and Perspectives

In this paper, we described an ML-like language with ghost code. Non-interfe-
rence between ghost code and regular code is ensured using a type system with
effects. We formally proved the soundness of this type system, that is, ghost code
can be erased without observable difference. Our type system results in a highly
expressive language, where the same data types and functions can be reused in
both ghost and regular code.

We see two primary directions of future work on ghost code and Why3.
First, ghost code, especially ghost fields, plays an important role in program
refinement. Indeed, ghost fields that give sufficient information to specify a data
type are naturally shared between the interface and the implementation of this
data type. In this way, the glue invariant becomes nothing more than the data
type invariant linking regular and ghost fields together. Our intention is to design
and implement in Why3 a module system with refinement that makes extensive
use of ghost code and data. Second, since ghost code does not have to be exe-
cutable, it should be possible to use in ghost code various constructs which, up to
now, may only appear in specifications, such as quantifiers, inductive predicates,
non-deterministic choice, or infinitely parallel computations (cf. the aggregate
forall statement in Dafny).

Acknowledgments. We are grateful to Sylvain Conchon, Rustan Leino, and Fran-
çois Pottier for comments and discussions regarding earlier versions of this paper.

15

References

1. Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness.
In Springer, ed.: LPAR-16. Volume 6355. (2010) 348–370

2. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen,
T., Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C.
In: Theorem Proving in Higher Order Logics (TPHOLs). Volume 5674 of Lecture
Notes in Computer Science., Springer (2009)

3. Jacobs, B., Piessens, F.: The VeriFast program verifier. CW Reports CW520,
Department of Computer Science, K.U.Leuven (August 2008)

4. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In Felleisen,
M., Gardner, P., eds.: Proceedings of the 22nd European Symposium on Program-
ming. Volume 7792 of Lecture Notes in Computer Science., Springer (March 2013)
125–128

5. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. SIGPLAN Not. 28(6) (June 1993) 237–247

6. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115 (1992) 38–94

7. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)

8. Jones, C.B., Roscoe, A., Wood, K.R.: Reflections on the Work of C.A.R. Hoare.
1st edn. Springer Publishing Company, Incorporated (2010)

9. Reynolds, J.C.: The craft of programming. Prentice Hall International series in
computer science. Prentice Hall (1981)

10. Lucas, P.: Two constructive realizations of the block concept and their equivalence.
Technical Report 25.085, IBM Laboratory, Vienna (June 1968)

11. Kleymann, T.: Hoare logic and auxiliary variables. Formal Asp. Comput. 11(5)
(1999) 541–566

12. Zhang, Z., Feng, X., Fu, M., Shao, Z., Li, Y.: A structural approach to prophecy
variables. In Agrawal, M., Cooper, S., Li, A., eds.: 9th annual conference on Theory
and Applications of Models of Computation (TAMC). Volume 7287 of Lecture
Notes in Computer Science., Springer Berlin Heidelberg (2012) 61–71

13. Schmaltz, S.: Towards the Pervasive Formal Verification of Multi-Core Operating
Systems and Hypervisors Implemented in C. PhD thesis, Saarland University,
Saarbrücken (2013)

14. Leino, K.R.M., Moskal, M.: Co-induction simply: Automatic co-inductive proofs
in a program verifier. In Jones, C., Pihlajasaari, P., Sun, J., eds.: FM 2014: Formal
Methods. Volume 8442 of Lecture Notes in Computer Science., Springer (May
2014) 382–398

15. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Communications of the ACM 20(2) (July 1977) 504–513

16. Pottier, F., Conchon, S.: Information flow inference for free. In: Proceedings of
the Fifth ACM SIGPLAN International Conference on Functional Programming
(ICFP’00), Montréal, Canada (September 2000) 46–57

17. Pottier, F., Simonet, V.: Information flow inference for ML. ACM Transactions
on Programming Languages and Systems 25(1) (January 2003) 117–158 c©ACM.

16

A Proofs

A.1 Proofs of Section 2

We prove type soundness using the standard presentation of preservation and
progress lemmas. To prove preservation, we need the following substitution
lemma:

Lemma 8 (Substitution Lemma). Let Σ, Γ, xβ0 : τ0 ⊢ t : τ, β1, ǫ and
Σ, Γ ⊢ v : τ0, β2, ⊥ be two derivable typing judgements such that ǫ+(τ) ∨ ǫ = ⊤
and β0 = ⊥ implies β2 = ⊥. Then, Σ, Γ ⊢ t[xβ0 ← v] : τ, β3, ǫ is derivable
with

i) β0 = ⊥ ⇒ β1 ∨ β2 ≥ β3

ii) β0 = ⊤ ⇒ β1 ≥ β3

Proof. By induction on the derivation of the statement

Σ, Γ, xβ0 : τ0 ⊢ t : τ, β1, ǫ.

We detail the proof for some interesting cases.

Case (T-Var): t = zβ with (zβ : τ ′0) ∈ Γ, xβ0 : τ0. There are two subcases to
consider, depending on whether zβ is xβ0 or a different variable. If zβ 6= xβ0 , then
β1 = β3, so the result follows, whatever β0 is. If zβ = xβ0 , then t[xβ0 ← v] = v

with β0 = β1 and β2 = β3. So, if β0 = ⊥, we have β1 ∨ β2 = β2 ≥ β2 = β3; if
β0 = ⊤, then ⊤ = β1 ≥ β3 which holds for any β3.

Case (T-Assign): t = rβ1 := v′. The typing of t is

Σ, Γ ⊢ v′ : κ, β′, ⊥ (rβ1 : κ) ∈ Σ β1 ≥ β′

Σ, Γ ⊢ rβ1 := v′ : unit, β1, ¬β1
(T-Assign)

where Γ = Γ ′, xβ0 : τ0.
Sub-Case β0 = ⊤: by induction hypothesis on the typing subderivation for

v′, we get Σ, Γ ′ ⊢ v′[xβ0 ← v] : κ, β′3, ⊥ with β′ ≥ β′3. Since β1 ≥ β′ by
hypothesis, we have by transitivity β1 ≥ β′3. Thus the typing judgement Σ, Γ ⊢
(rβ1 := v′)[xβ0 ← v] : unit, β1, ¬β1 is derivable.

Sub-Case β0 = ⊥, β1 = ⊤: by induction hypothesis on the typing subderiva-
tion for v′, we get Σ, Γ ′ ⊢ v′[xβ0 ← v] : κ, β′3, ⊥ with ⊤ = β1 ∨ β2 ≥ β′3.
Thus the side condition ⊤ ≥ β′3 is trivially verified and the typing judgement
Σ, Γ ⊢ (rβ1 := v′)[xβ0 ← v] : unit, β1, ¬β1 is derivable.

Sub-Case β0 = ⊥, β1 = ⊥: Since ǫ = ⊤, we can assume that β2 = ⊥. Since
β′ = ⊥ as well, the induction hypothesis on the typing subderivation of v′ gives

Σ, Γ ′ ⊢ v′[xβ0 ← v] : κ, β′3, ⊥

where β′3 = ⊥ since ⊥ = β′∨ β2 ≥ β′3. Thus the side condition ⊥ ≥ β′3 is trivially
verified and the typing judgement Σ, Γ ⊢ (rβ1 := v′)[xβ0 ← v] : unit, β1, ¬β1

is derivable.

17

Σ, Γ ⊢ v : τ0, β2, ⊥.

By induction hypothesis on the typing subderivation for v′, we obtain

Σ, Γ ′ ⊢ v′[xβ0 ← v] : κ, β′3, ⊥

with β′ ∨ β2 ≥ β′3.

Case (T-If): t = if v′ then t1 else t2. The typing of t is

Σ, Γ ⊢ v′ : bool, β10, ⊥ Σ, Γ ⊢ t1 : τ, β11, ǫ1 Σ, Γ ⊢ t2 : τ, β12, ǫ2

Σ, Γ ⊢ if v′ then t1 else t2 : τ, β10 ∨ β11 ∨ β12, ǫ1 ∨ ǫ2

where Γ = Γ ′, xβ0 : τ0.
Sub-Case β0 = ⊤: by induction hypotheses on the subderivations, we get
Σ, Γ ′ ⊢ v′[xβ0 ← v] : bool, β30, ⊥ with β10 ≥ β30

Σ, Γ ′ ⊢ t1[x
β0 ← v] : τ, β31, ǫ1 with β11 ≥ β31

Σ, Γ ′ ⊢ t2[x
β0 ← v] : τ, β32, ǫ2 with β12 ≥ β32

Thus, the typing judgement

Σ, Γ ′ ⊢ (if v′ then t1 else t2)[x
β0 ← v] : τ, β30 ∨ β31 ∨ β32, ǫ1 ∨ ǫ2

is derivable with β1 ≥ β3 = β30 ∨ β31 ∨ β32.
Sub-Case β0 = ⊥: if ǫ+ ∨ ǫ1 ∨ ǫ2 = ⊤, then we may assume that β2 = ⊥ and

the subcase is proved in the same way; if ǫ+ ∨ ǫ1 ∨ ǫ2 = ⊥, then by induction
hypotheses on the typing subderivations, we get

Σ, Γ ′ ⊢ v′[xβ0 ← v] : bool, β30, ⊥ with β10 ∨ β2 ≥ β30

Σ, Γ ′ ⊢ t1[x
β0 ← v] : τ, β31, ǫ1 with β11 ∨ β2 ≥ β31

Σ, Γ ′ ⊢ t2[x
β0 ← v] : τ, β32, ǫ2 with β12 ∨ β2 ≥ β32

Thus, the typing judgement

Σ, Γ ′ ⊢ (if v′ then t1 else t2)[x
β0 ← v] : τ, β30 ∨ β31 ∨ β32, ǫ1 ∨ ǫ2

is derivable with β1 ∨ β2 ≥ β3 = β30 ∨ β31 ∨ β32.

The other cases are proved similarly (with standard auxiliary weakening and
permutation lemmas in the cases for λ-abstractions and let-in expressions). ⊓⊔

Lemma 1 page 8 (Preservation). If Σ, Γ ⊢ t : τ, β, ǫ and Σ ⊢ µ, then
t | µ → t′ | µ′ implies Σ, Γ ⊢ t′ : τ, β′, ǫ′ and Σ ⊢ µ′, where β ≥ β′ and

ǫ ≥ ǫ′.

Proof. By induction on the derivation of Σ, Γ ⊢ t : τ, β, ǫ, using lemmas above.
At each step of the induction, we assume that the desired result holds for all sub-
derivations and proceed by case analysis on the last rule used in the derivation.
The four cases where t is a value cannot happen.

18

Case (T-If): t = if v then t1 else t2 with typing judgement

Σ, Γ ⊢ v : bool, β0, ⊥ Σ, Γ ⊢ t1 : τ, β1, ǫ1 Σ, Γ ⊢ t2 : τ, β2, ǫ2

Σ, Γ ⊢ if v then t1 else t2 : τ, β0 ∨ β1 ∨ β2, ǫ1 ∨ ǫ2

There are two rules by which t | µ → t′ | µ′ can be derived: (E-If-True)

and (E-If-False).

Subcase (E-If-True): t | µ → t1 | µ . As can be seen in the typing sub-
derivation of t1 above, the desired property holds, since β0 ∨ β1 ∨ β2 ≥ β1 and
ǫ1 ∨ ǫ2 ≥ ǫ1.

Subcase (E-If-False): t | µ → t1 | µ . Identical to the previous subcase.

Case (T-Let-Regular): t = let x⊥ = t2 in t1. The typing judgement is

Σ, Γ, x⊥ : τ2 ⊢ t1 : τ1, β1, ǫ1 Σ, Γ ⊢ t2 : τ2, β2, ǫ2

Σ, Γ ⊢ let x⊥ = t2 in t1 : τ1, β1 ∨ β2, ǫ1 ∨ ǫ2
(T-Let-Regular)

There are two rules by which t | µ → t′ | µ′ can be derived: (E-Let) and

(E-Context-Let).

Subcase (E-Let): t2 = v2 and let x⊥ = v2 in t1 | µ → t1[x
⊥ ← v2] | µ . By

substitution lemma 8, we have Σ, Γ ⊢ t1[x
⊥ ← v2] : τ1, β3, ǫ1 where β1 ∨ β2 ≥

β3.

Subcase (E-Context-Let): let x⊥ = t2 in t1 | µ → let x⊥ = t′2 in t1 | µ′

with subderivation t2 | µ → t′2 | µ
′ . The typing judgement for t is

Σ, Γ, x⊥ : τ2 ⊢ t1 : τ1, β1, ǫ1 Σ, Γ ⊢ t2 : τ2, β2, ǫ2

Σ, Γ ⊢ let x⊥ = t2 in t1 : τ1, β1 ∨ β2, ǫ1 ∨ ǫ2
(T-Let-Regular)

By induction hypothesis on Σ, Γ ⊢ t2 : τ2, β2, ǫ2 we have Σ, Γ ⊢ t′2 : τ2, β
′
2, ǫ
′
2

with ǫ2 ≥ ǫ′2 β2 ≥ β′2. So we can derive

Σ, Γ, x⊥ : τ2 ⊢ t1 : τ1, β1, ǫ1 Σ, Γ ⊢ t′2 : τ2, β
′
2, ǫ
′
2

Σ, Γ ⊢ let x⊥ = t′2 in t1 : τ1, β1 ∨ β′2, ǫ1 ∨ ǫ′2
(T-Let-Regular)

with (ǫ1 ∨ ǫ2) ≥ (ǫ1 ∨ ǫ′2) and (β1 ∨ β2) ≥ (β1 ∨ β′2).

Case (T-Let-Ghost): t = let x⊤ = t2 in t1. There are two rules by which
t | µ → t′ | µ′ can be derived: (E-Let) and (E-Context-Let).

Subcase (E-Let): t2 = v2 and let x⊤ = v2 in t1 | µ → t1[x
⊤ ← v2] | µ

The result follows from the substitution lemma 8.

Subcase (E-Context-Let): let x⊤ = t2 in t1 | µ → let x⊤ = t′2 in t1 | µ′

with subderivation t2 | µ → t′2 | µ
′ . The typing judgement for t is

Σ, Γ, x⊤ : τ2 ⊢ t1 : τ1, β1, ǫ1 Σ, Γ ⊢ t2 : τ2, β2, ⊥

Σ, Γ ⊢ let x⊤ = t2 in t1 : τ1, β1, ǫ1
(T-Let-Regular)

19

By induction hypothesis on Σ, Γ ⊢ t2 : τ2, β2, ⊥ we have Σ, Γ ⊢ t′2 : τ2, β
′
2, ⊥

with β2 ≥ β′2. So we can derive

Σ, Γ, x⊤ : τ2 ⊢ t1 : τ1, β1, ǫ1 Σ, Γ ⊢ t′2 : τ2, β
′
2, ⊥

Σ, Γ ⊢ let x⊤ = t′2 in t1 : τ1, β1, ǫ1
(T-Let-Regular)

Case (T-App-Regular): t = t1 v2 with Σ, Γ ⊢ t1 : τ⊥2
ǫ1
=⇒τ1, β1, ǫ2. Similar

to the case (T-Let-Regular).

Case (T-App-Ghost): t = t1 v2 with Σ, Γ ⊢ t1 : τ⊤2
ǫ1
=⇒τ1, β1, ǫ2. Similar to

the case (T-Let-Ghost).

Case (T-Deref): t = !rβ with !rβ | µ
α
→ µ(rβ) | µ . We have the following

typing for t:

(rβ : κ) ∈ Σ

Σ, Γ ⊢ !rβ
:
κ, β, ⊥

(T-Deref)

By hypothesis, Σ ⊢ µ, so µ(rβ) has type κ. Moreover, µ(rβ) is necessarily a
constant. Therefore we can conclude by deriving the typing judgement for µ(rβ):

Typeof(µ(rβ)) = κ

Σ, Γ ⊢ µ(rβ) : κ, ⊥, ⊥
(T-Const)

Case (T-Assign): t = rβ := v. The typing rule for t is

Σ, Γ ⊢ v : κ, β′, ⊥ (rβ : κ) ∈ Σ β ≥ β′

Σ, Γ ⊢ rβ := v : unit, β, ¬β
(T-Assign)

The only rule that allows us to derive t | µ
α
→ t′ | µ′ is (E-Assign). That is

v is necessarily a constant and the derivation is rβ := c | µ
α
→ () | µ[rβ 7→ c]

It remains then to check that Σ ⊢ µ[rβ 7→ c], which is true, since we have
µ\{rβ} = µ′\{rβ} and c = µ′(rβ) has type κ = Σ(rβ).

Case (T-Ghost): t = ghost t1 with Σ, Γ ⊢ t1 : τ, β, ⊥. The result follows
immediately. ⊓⊔

Lemma 2 page 8 (Progress). If Σ, ∅ ⊢ t : τ, β, ǫ, then either t is a value or,
for any store µ such that Σ ⊢ µ, there exists a reduction step t | µ → t′ | µ′ .

Proof. Straightforward induction on the typing derivation of t. ⊓⊔

Beside type soundness, we also prove additional properties to be used later
for proving erasure properties in Section 3.

20

Lemma 3 page 9 (Store Preservation). If Σ, ∅ ⊢ t : τ, β, ⊥ and Σ ⊢ µ,
then t | µ → t′ | µ′ implies µ⊥ = µ′⊥.

Proof. By induction on the derivation of t | µ → t′ | µ′ . We only consider the
cases where the store is modified.

Case (E-Head). The only head evaluation rule that modifies state is

rβ := c | µ
α
→ () | µ[rβ 7→ c] (E-Assign)

where t is rβ := c. By hypothesis, ǫ = ⊥, so in the typing of t, β = ⊤ :

Σ, Γ ⊢ v : κ, β′, ⊥ (rβ : κ) ∈ Σ β ≥ β′

Σ, Γ ⊢ rβ := v : unit, β, ¬β
(T-Assign)

that is rβ is necessarily a ghost reference, so the regular part of the store remains
the same.

Case (E-Context-App): t1 v | µ → t′1 v | µ
′ . As t is well-typed by hypothesis,

t1 is well-typed too with the typing

Σ, Γ ⊢ t1 : τβ
′′ ǫ2

=⇒τ2, β
′, ǫ1

for some β′, β′′ that depend on typing rule for t (either (T-App-Regular) or
(T-App-Ghost)). In both cases, by hypothesis, we have ⊥ = ǫ1∨ǫ2. As ǫ1 = ⊥,
we can apply the induction hypothesis on the sub-derivation t1 | µ → t′1 | µ

′ ,

which gives the desired result µ⊥ = µ′⊥

Case (E-Context-Let). Identical to the previous case. ⊓⊔

Lemma 4 page 9 (Program Termination). If Σ, ∅ ⊢ t : τ, β, ⊥ and Σ ⊢ µ,
then evaluation of t in store µ terminates, that is, there is a value v and a store
µ′ such that t | µ →⋆ v | µ′ .

Proof. Since t has effect ⊥, it does not make any call to a recursive function (all
recursive functions have latent effect ⊤ to account for possible non-termination).
Moreover, the set of global references is finite. Each global reference ri stores
a value of a primitive type κi (whatever its ghost status is). Then program t

can be translated into a simply-typed λ-term, using the state monad M τ ,

κ1×· · ·×κn → τ ×κ1×· · ·×κn. The result follows by normalization of simply-
typed λ-calculus. ⊓⊔

A.2 Proofs of Section 3

Theorem 1 page 10 (Well-typedness Preservation). If Σ, Γ ⊢ t : τ, ⊥, ǫ
holds, then E(Σ), E(Γ) ⊢m E⊥(t) : E⊥(τ), ǫ holds.

21

Proof. By induction on the typing derivation, with case analysis on the last
applied rule.

Case (T-λ):
Σ, Γ, xβ : τ ⊢ t : τ0, ⊥, ǫ

Σ, Γ ⊢ λxβ : τ. t : τβ ǫ
=⇒τ0, ⊥, ⊥

By induction hypothesis, we have

E(Σ), E(Γ), x : Eβ(τ) ⊢m E⊥(t) : E⊥(τ0), ǫ.

Therefore, we conclude that

E(Σ), E(Γ) ⊢m λx : Eβ(τ). E⊥(t) : Eβ(τ)
ǫ

=⇒E⊥(τ0), ⊥.

Case (T-App-Regular):

Σ, Γ ⊢ t : τ⊥2
ǫ1
=⇒τ1, β1, ǫ2 Σ, Γ ⊢ v : τ2, β2, ⊥

Σ, Γ ⊢ (t v) : τ1, β1 ∨ β2, ǫ1 ∨ ǫ2

By hypothesis β1 ∨ β2 = ⊥. By induction hypotheses on the rule premises,

E(Σ), E(Γ) ⊢m E⊥(t) : E⊥(τ2)
ǫ1
=⇒E⊥(τ1), ǫ2

E(Σ), E(Γ) ⊢m E⊥(v) : E⊥(τ2), ⊥.

Thus, E(Σ), E(Γ) ⊢m E⊥(t) E⊥(v) : E⊥(τ1), ǫ1 ∨ ǫ2.

Case (T-App-Ghost):

Σ, Γ ⊢ t : τ⊤2
ǫ1
=⇒τ1, β1, ǫ2 Σ, Γ ⊢ v : τ2, β2, ⊥

Σ, Γ ⊢ (t v) : τ1, β1, ǫ1 ∨ ǫ2

By hypothesis β1 = ⊥. Thus, E⊥(t v) = E⊥(t) (). By induction hypothesis,

E(Σ), E(Γ) ⊢m E⊥(t) : unit
ǫ1
=⇒E⊥(τ1), ǫ2

Since E(Σ), E(Γ) ⊢m () : unit, ⊥, we conclude that

E(Σ), E(Γ) ⊢m E⊥(t) () : E⊥(τ1), ǫ1 ∨ ǫ2

Case (T-Assign):

Σ, Γ ⊢ v : κ, β′, ⊥ (rβ : κ) ∈ Σ β ≥ β′

Σ, Γ ⊢ rβ := v : unit, β, ¬β

By hypothesis β = ⊥, and by premise side condition β ≥ β′, so β′ = ⊥ as well.
Also, (rβ : κ) ∈ Σ, so (r : κ) ∈ E(Σ). Thus, by induction hypothesis on the rule
premise, we have E(Σ), E(Γ) ⊢m E⊥(v) : κ, ⊥. Therefore:

E(Σ), E(Γ) ⊢m E⊥(v) : κ, ⊥ (r : κ) ∈ E(Σ)

E(Σ), E(Γ) ⊢m r := E⊥(v) : unit, ⊤

Other cases are easily proved in a similar way. ⊓⊔

22

Lemma 5 page 11 (Substition Under Erasure). Let t be some GhostML
term and v some GhostML value such that Σ, Γ, xβ : τ ⊢ t : τ0, ⊥, ǫ and
Σ, Γ ⊢ v : τ, β′, ⊥, with β ≥ β′, hold. Then the following holds:

E⊥(t)[x← Eβ(v)] = E⊥(t[x
β ← v]).

Proof. Straightforward induction on the structure of t. ⊓⊔

Lemma 6 page 11 (Forward Simulation of GhostML). If Σ, ∅ ⊢ t :
τ, ⊥, ǫ and, for some store µ such that Σ ⊢ µ, we have t | µ → t′ | µ′ , then
the following holds in MiniML:

E⊥(t) | E(µ) →
0|1
m E⊥(t

′) | E(µ′) .

Proof. By induction on the derivation →.

Case (E-Head): By case analysis on the head reduction
α
→. We only give the

proof for (E-App-λ); other cases are proved in a similar way.

Sub-Case (E-App-λ): (λxβ : τ. t) v
α
→ t[xβ ← v]. If β = ⊤, then

Σ, Γ ⊢ λx⊤ : τ2. t : τ
⊤
2

ǫ1
=⇒τ1, ⊥, ǫ2 Σ, Γ ⊢ v : τ2, β2, ⊥

Σ, Γ ⊢ (λx⊤ : τ2. t v) : τ1, ⊥, ǫ1 ∨ ǫ2

Therefore, by substitution under erasure (Lemma 5), we get

E⊥((λx
⊤ : τ. t) v) = (λx : unit. E⊥(t)) ())

α
→m E⊥(t)[x← ()] = E⊥(t[x

⊤ ← v]).

If β = ⊥, then we have

Σ, Γ ⊢ λx⊥ : τ2. t : τ
⊥
2

ǫ1
=⇒τ1, ⊥, ǫ2 Σ, Γ ⊢ v : τ2, ⊥, ⊥

Σ, Γ ⊢ (λx⊥ : τ2. t v) : τ1, ⊥, ǫ1 ∨ ǫ2

Again, by substitution under erasure (Lemma 5), we get

E⊥((λx
⊥ : τ. t) v)

α
→m E⊥(t)[x← E⊥(v)] = E⊥(t[x

⊥ ← v]).

Case (E-Context-Let):

t2 | µ → t′2 | µ
′

let xβ = t2 in t1 | µ → let xβ = t′2 in t1 | µ′

.

If β = ⊤, then

Σ, Γ, x⊤ : τ2 ⊢ t1 : τ1, ⊥, ǫ1 Σ, Γ ⊢ t2 : τ2, β2, ⊥

Σ, Γ ⊢ let x⊤ = t2 in t1 : τ1, ⊥, ǫ1
.

As t2 is an effectless term, we have by store preservation (Lemma 3), µ⊥ = µ′⊥.
Thus we have E(µ) = E(µ′). Therefore,

E⊥(let x
⊤ = t2 in t1) | E(µ) →

0
m E⊥(let x

⊤ = t′2 in t1) | E(µ′) .

23

If β = ⊥, then

Σ, Γ, x⊥ : τ2 ⊢ t1 : τ1, ⊥, ǫ1 Σ, Γ ⊢ t2 : τ2, ⊥, ǫ2
Σ, Γ ⊢ let x⊥ = t2 in t1 : τ1, ⊥, ǫ1 ∨ ǫ2

.

By induction hypothesis on sub-derivation t2 | µ → t′2 | µ
′ , we get

E⊥(t2) | E(µ) →
0|1
m E⊥(t

′
2) | E(µ

′) .

The result trivially holds when this reduction has 0 steps. Otherwise, we have

E⊥(t2) | E(µ) →m E⊥(t
′
2) | E(µ

′)

let x = E⊥(t2) in E⊥(t1) | E(µ) →m let x = E⊥(t′2) in E⊥(t1) | E(µ
′)

The remaining case (E-Context-App) is similar. ⊓⊔

Theorem 2 page 11 (Terminating Evaluation Preservation). If Σ, ∅ ⊢
t : τ, ⊥, ǫ holds and t | µ →⋆ v | µ′ , for some value v and some store µ such

that Σ ⊢ µ, then E⊥(t) | E(µ) →
⋆
m E⊥(v) | E(µ′) .

Proof. By induction on the length of the evaluation t | µ →⋆ v | µ′ . If

t | µ →0 v | µ′ , then the result trivially holds since t = v and µ′ = µ. Now,

assume that t | µ →1 t′′ | µ′′ →n v | µ′ for some intermediate store µ′′.

By preservation (Lemma 1), Σ, Γ ⊢ t′′ : τ, ⊥, ǫ′′ and Σ ⊢ µ′′ for some ǫ′′, such
that ǫ′ ≥ ǫ′′. By induction hypothesis on t′′, E⊥(t

′′) | E(µ′′) →⋆
m E⊥(v) | E(µ′) .

By forward simulation (Lemma 6), E⊥(t) | E(µ) →
0|1
m E⊥(t

′′) | E(µ′′) . Putting

pieces together, we get E⊥(t) | E(µ) →
0|1
m E⊥(t

′′) | E(µ′′) →⋆
m E⊥(v) | E(µ

′) .

⊓⊔

Lemma 7 page 11 (Forward Simulation of MiniML). If Σ, ∅ ⊢ t : τ, ⊥, ǫ
holds, then, for any store µ such that Σ ⊢ µ, if E⊥(t) | E(µ) →m q | ν for

some term q and some state ν, then t | µ →≥1 t′ | µ′ where E⊥(t
′) = q and

E(µ′) = ν.

Proof. By induction on the term t.

Case 1: t is let x⊤ = t2 in t1. If t2 is not a value, then by the GhostML progress
property (Lemma 2), it can be reduced. By hypothesis, t is well-typed, with
a typing judgment for t2 being Σ, ∅ ⊢ t2 : τ, β, ⊥. By program termination
(Lemma 4), we have t2 | µ →⋆ v | µ′ for some v and µ′. Consequently,

let x⊤ = t2 in t1 | µ →⋆ let x⊤ = v in t1 | µ′ → t1[x
⊤ ← v] | µ′

Therefore, by forward simulation in GhostML (Lemma 6), we have

E⊥(t) | E(µ) →
0
m E⊥(let x

⊤ = v in t1) | E(µ) →m E⊥(t1)[x← ()] | E(µ) .

24

Finally, by store preservation (Lemma 3), µ⊥ = µ′⊥. Therefore, E(µ) = E(µ′),
which allows us to conclude.

Case 2: t is let x⊥ = t2 in t1. We have by hypothesis that t1 is regular code.
Then we also have that t2 is regular too. If t2 is a value, the result follows
immediately. If t2 is not a value, then the result follows from the results of
GhostML soundness (safety and anti-monotony of statuses), using the induction
hypothesis on t2, since t-erasure preserves the structure of regular terms.

Other cases are proved in a similar way. ⊓⊔

Theorem 3 page 11 (Non-termination Preservation) If Σ, ∅ ⊢ t : τ, ⊥, ǫ
holds and t | µ → ∞, for some store µ such that Σ ⊢ µ, then E⊥(t) also

diverges, that is E⊥(t) | E(µ) →m ∞.

Proof. By co-induction, it suffices to prove that there exist t′ and µ′ such that
Σ, ∅ ⊢ t′ : τ, ⊥, ǫ′ and Σ ⊢ µ′, and

E⊥(t) | E(µ) →
1
m E⊥(t

′) | E(µ′) ∧ t′ | µ′ → ∞.

Observe that, since t diverges, t is not a value. Thus E⊥(t) is not a value ei-
ther. By well-typedness preservation (Theorem 1), E⊥(t) is well-typed, with
E(Σ), ∅ ⊢m E⊥(t) : E⊥(τ), ǫ. We have E(Σ) ⊢m E(µ), since Σ ⊢ µ. Therefore,
by progress in MiniML, there exist some term q and some store ν such that
E⊥(t) | E(µ) →m q | ν . By simulation (Lemma 7), t | µ →≥1 t′ | µ′ with

q = E⊥(t
′) and ν = E(µ′). The reduction being deterministic, t′ diverges and we

have the following reductions:

t | µ →≥1 t′ | µ′ →∞

⇓ ⇓
E⊥(t) | E(µ) →

1
m q | ν

By preservation (Lemma 1), Σ, Γ ⊢ t′ : τ, ⊥, ǫ′, with ǫ ≥ ǫ′, and Σ ⊢ µ′. Now,
by co-induction hypothesis, q | ν →m ∞ and thus E⊥(t) | E(µ) →m ∞. ⊓⊔

25

