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ABSTRACT

This study concerns the ultrasonic wave propagation in fractional dimensional
rigid porous media. A Biot equivalent fluid model with a non-integer dimensional space
is developed using the Stillinger-Palmer-Staravinou formalism. A generalized lossy
wave equation is derived and solved analytically in time domain. The coefficients of
the propagation equation are constant and depend only on thefractional dimension and
the acoustical parameters of the porous material. As in the integer dimension case, the
obtained propagation equation contains fractional derivative terms that describe viscous
and thermal interactions between the solid and the fluid. Thedynamic response of the
material is obtained using the Laplace transform method.

1 INTRODUCTION

Understanding sound wave propagation in porous materials saturated by vis-
cous fluid is important in various applications as architectural acoustics, geophysics,
rock mechanics (Allardet al 2009). In these media wave attenuation results from vis-
cous dissipation due to the flow created by the passing wave. The passing wave creates
local pressure gradients within the fluid phase, leading to the fluid flow. Because of
the complicated structure of most porous materials, the induced fluid flow can take
place on various length scales. The real structure of porousmedia is characterized by a
network of interconnected pores forming an extremely irregular geometry. A possible
way of describing the complex structure of such media is to use the theory of fractal
(Adler 1997) sets with non integral dimension. A fractal is aquantity which displays
self-similarity on all scales. In physics, behind this word, we understand object or phe-
nomenon having no characteristic length or having structural details in a hierarchy of



i

i

“Template” — 2013/10/1 — 10:30
i

i

i

i

i

i

scales which cannot be described by smooth functions. The object does not need to ex-
hibit exactly the same structure at all scales but the same type of structures must appear
on all scales.

Modeling of acoustic propagation in in non-integer-dimensional porous media
was initiated by Depollieret al (2008) using the Stillinger (1977), Palmer-Stavrinou
(2004) formalism. In this work, we develop a temporal model for the propagation of
ultrasonic waves in non-integer-dimensional rigid porousmedium. We use the notion
of fractional derivatives (Samkoet al 1993) to describe the visco-thermal exchange
between fluid and structure. An original fractional propagation equation is obtained for
the ultrasonic propagation in fractal porous material withrigid structure.

2 EQUIVALENT FLUID MODEL

In the acoustics of porous materials, one distinguishes twosituations according
to whether the frame is moving or not. In the first case, the dynamics of the waves due
to the coupling between the solid skeleton and the fluid is well described by the Biot
theory (Biot 1956). In air-saturated porous media, the vibrations of the structure can be
neglected when the excitation is not very important and the waves can be considered to
propagate only in fluid. This case is described by the model ofequivalent fluid which
is a particular case of the Biot model. Express the Lagrangian densityL = T −V. The
expression of the kinetic energy is given by:T = 1

2
ρf
(

∂u
∂t

)2
, whereu is the fluid dis-

placement,ρf is the fluid density. The expression of the potential energyV is given by:
V = 1

2
K
(

∂u
∂x

)2
, whereKa is the compressibility modulus of the fluid. The Lagrangian

density is then written by:

L =
1

2
ρf

(

∂u

∂t

)2

− 1

2
K

(

∂u

∂x

)2

. (1)

The principle of action for the Lagrangian system depends onthe vector fieldϕ(x),
and spatial and temporal derivatives∂µϕ(x) is given by the integral

S =

∫ b

a

dtL (ϕ(x), ∂µϕ(x)) , (2)

with integration between the initiala and final instantb. The action can be written in
terms of the Lagrange density by:

L =

∫

∂Ω

dDxL (ϕ(x), ∂µϕ(x)) (3)

whereD is the spatial dimension, and∂Ω the border. Where the action

S =

∫

∂Ω′

dD+1xL (4)
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where∂Ω is the boundary for all coordinates. Taking into account thevariations and
minimizing the actionS, i.e δS = 0, usual equations of Euler-Lagrange are obtained

∂L
∂ϕ

− ∂µ

(

∂L
∂ (∂µϕ)

)

= 0 (5)

whereµ = x, y, z, t andϕ = ux, uy, uz. For propagation along thex-axis, We obtain
the equation of wave propagation in a lossless medium:

∂2u(x, t)

∂x2
−
(

ρf
Ka

)

∂2u(x, t)

∂t2
= 0. (6)

Within the framework of the acoustic propagation in a porousrigid structure, the den-
sity and compressibility of the fluid are ”renormalized” by the fluid-structure interac-
tions:ρf → ρfα(ω) andKa → Ka/β(ω) giving the following Helmholtz equation in
lossy porous material with rigid structure:

∂2u(x, t)

∂x2
+ ω2

(

ρfα(ω)β(ω)

Ka

)

u(x, t) = 0. (7)

A prediction of the acoustic comportment of the porous material requires the deter-
mination of the dynamic tortuosityα(ω) and dynamic compressibilityβ(ω). Theses
functions depends to the physical characteristic of the fluid in the pore space of the
medium and are independent of the dynamic characteristics of the structure. The func-
tionsα(ω) andβ(ω) express the viscous and thermal exchanges between the fluid and
the structure which are responsible of the sound damping in acoustic materials. These
exchanges are due on the one hand to the fluid-structure relative motion and on the
other hand to the fluid compressions-dilatations produced by the wave motion. The
parts of the fluid affected by these exchanges can be estimated by the ratio of a micro-
scopic characteristic length of the media, as for example the sizes of the pores, to the
viscous and thermal skin depth thicknessδ = (2η/ωρf)

1/2 andδ′ = (2η/ωρfPr)
1/2.

For the viscous effects this domain corresponds to the region of the fluid in which the
velocity distribution is perturbed by the frictional forces at the interface between the
viscous fluid and the motionless structure. For the thermal effects, it corresponds to
the fluid volume affected by the heat exchange between the twophases of the porous
medium.

3 FRACTIONAL MODEL

When the wave frequency is high, the skin depth is very narrowand the viscous
effects are concentrated in a small volume near the frameδ/r ≪ 1; then the vis-
cous effects in the fluid can be neglected: the fluid behaves almost like a perfect fluid
(without viscosity). In the same way, the compression/dilatation cycle is a much faster
process than the heat transfer between the air and the structure and it is a well-founded
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approximation to consider that the compression is adiabatic. In The high frequency
approximations (Johnsonet al 1987) of the response factorsα(ω) andβ(ω) are :

α(ω) = α∞

(

1− 2

Λ

(

η

jωρf

)1/2
)

, ω −→ ∞. (8)

β(ω) = 1− 2(γ − 1)

Λ′

(

η

Prρf

)1/2(
1

jω

)1/2

, ω −→ ∞, (9)

From these two equations, we note that the frequency dependence ofα(ω) andβ(ω)
is the high frequency range, is in square root of the frequency It is interesting to note
that the temporal equivalent of the square root is the fractional derivative. Write the
equations in the time domain is equivalent to taking the inverse Fourier transform of
(8) and (9). The temporal equivalent ofjω is ∂/∂t, while the temporal equivalent of√
jω is a fractional derivative of order1/2. The definition of fractional derivative of

orderν, where0 ≤ ν < 1 is given by Samkoet al (1993):

Dν [x(t)] =
1

Γ(−ν)

∫ t

0

(t− u)−ν−1x(u)du, (10)

whereΓ(x) is the Eulerian function of the second kind. From the definition (10), the
expressions of response factorsα(ω) andβ(ω) are then given in the time domain by
(Fellah and Depollier 2000):

α(ω)
t−→ α̃(t) = α∞

(

δ(t) +
2

Λ

(

η

πρf

)1/2

t−1/2

)

, (11)

β(ω)
t−→ β̃(t) = δ(t) +

2(γ − 1)

Λ′

(

η

πPrρf

)1/2

t−1/2, (12)

whereδ(t) is the Dirac distribution and the operators. In this model, the time convolu-
tion of t−1/2 with a function, is interpreted as an operator of fractionalderivative. Using
Eqs. (11) and (12), the Helmholtz equation (7) becomes in time domain a Fractional
wave equation, and is of the form:

∂2p(x, t)

∂x2
− A

∂2p(x, t)

∂t2
−B

∂3/2p(x, t)

∂t3/2
− C

∂p(x, t)

∂t
= 0, (13)

where the coefficientsA, B andC are constants respectively given by ;

A =
ρfα∞

Ka

, B =
2α∞

√
ρfη

Ka

(

1

Λ
+

γ − 1√
PrΛ′

)

C =
4α∞(γ − 1)η

KaΛΛ′
√
Pr

.

The fractional propagation equation (13) is valid for the case of a porous media with
integer-dimension in space We will discuss in the next chapter the case of a medium
with non-integer dimension space. Solving this equation for propagation (Fellahet al,
2003,2005) in the time domain was crucial for the characterization of porous materials.
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4 INTEGRATION IN SPACES WITH NON INTEGER DIMENSION

Stillinger (1977) developed a formalism for writing the Laplace operator in
spaces having a fractional dimension D. This dimension is defined from an integral
calculus. Let us consider the integration of a radially symmetric functionf in a D
dimension space:

∫

dx0f (r (x0, x1)) =

∫

∞

0

drv1(r)f(r) (14)

wherer (x0, x1) is the distance between pointsx0 andx1. Here:

v1(r) = σ(D)rD−1 and σ(D) =
2πD/2

Γ(D/2)
, (15)

D is an integer,σ(D) agrees with the volume of the unit sphere in Euclidean spaces.
This justifies the generalization of fractional dimension to any value ofD. Using this
formalism, Stillinger shows that the Laplace operator in aD-dimensional space is

∇2f(r) =
∂2f(r)

∂r2
+

(

D − 1

r

)

∂f(r)

∂r
(16)

For a non integerD-dimensional space, the Stillinger’s formalism leads to a Laplace
operator for which the non integer dimension is located in only in one direction. For ex-
ample, in a space where only the dimension of thep coordinate is integer, the Laplacian
becomes

∇2f(p, l) =

[

∂2

∂p2
+

∂2

∂l2
+

D − 2

l

∂

∂l

]

f(p, l). (17)

5 ULTRASONIC WAVE IN FRACTIONAL DIMENSIONAL SPACE

The Stillinger’s formalism of noninteger dimensional spaces has been general-
ized ton orthogonal coordinates by C. Palmer and P.N. Stavrinou (2004). Using the
variational principle, the authors derive the Euler Lagrange equations of a field theory
in such spaces which follow from the stationarity property of the action integral with
the respect to variations of the fields and their derivatives. So, if the action is defined
by

S =

∫

Ldvdt, (18)

whereL = L (ϕk, ∂µϕk) is the Lagrangian density corresponding to a definite point of
the space-time, the Euler-Lagrange equations are:

∂L (ϕi, ∂µϕi)

∂ϕi
− ∂µ

∂L (ϕi, ∂µϕi)

∂ (∂µϕi)
− (dµν − δµν)

(

x(−1)
)ν ∂L (ϕi, ∂µϕi)

∂ (∂µϕi)
= 0. (19)
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Here,i = 1, 2, ..., n is the number of degrees freedom (i.e. scalar fields), the index µ
runs from 1 to 4,xν = (x1, x2, x3, x4 = t) and∂µϕi = ∂ϕi/∂x

µ. d is a diagonal matrix,
the elements of which are the time and spatial dimensiond = diag(1, d11, d22, ..., dnn),
with D = Tr(d)− 1 andδ is the diagonal unit matrix. The third term of the left hand
side of (19) is the additional term due to the fractional dimension. In an Euclidean
space wheredµν = δµν this term vanishes.
The Euler-Lagrange fractional dimension are constructed so as equivalent to those be-
longing to the entire dimensions, except the introduction of the Lagrangian derivatives
multiplied by a constant fraction.
The parameters(dµν − δµν)

(

x(−1)
)ν ∂L(ϕi,∂µϕi)

∂(∂µϕi)
introduce the notions of material

anisotropy. In our case, we takeδµν = 0, whenµ 6= ν andδµν = 1, whenµ = ν. More-
over, we imposedµν = 0, whenµ 6= ν, at leastdyy = dzz = dtt = 1. The fractional
dimension is therefore only fixed by the constantdxx. However,dxx + dyy + dzz = D
andD ≤ 3, therefore0 ≤ dxx ≤ 1 anddxx is real. To simplify writing, we will take
dxx = d.
Using the expression of the Lagrangian density(1), the temporal expressions of the
tortuosity and compressibility (8, 9), we obtain the following fractional propagation
equation in fractal porous material, at high frequency range.

∂2p(x, t)

∂x2
− A

∂2p(x, t)

∂t2
− B

∂3/2p(x, t)

∂t3/2
− C

∂p(x, t)

∂t
+

(

d− 1

x

)

∂p(x, t)

∂x
= 0, (20)

whered is the fractal dimension of the porous material. Eq. (20) is the generalized
propagation equation for lossy non-integer-dimensional fractal porous material. This
equation is very important for treating the direct and inverse scattering problems in
inhomogeneous porous materials in time domain. It is easy tofind the special case of
integer-dimensional rigid porous media, i.e. whend = 0, Eq. (20) is reduced to the
propagation equation in integer-dimensional material (Eq. 13).

Let us study the sensitivity of the fractal dimension of the propagation equa-
tion. Fig. 1 shows the incident signal on a plastic foam sample having the following
characteristics: thickness 5 cm, tortuosityα∞ = 1.04, viscous characteristic length
Λ = 200µm, thermal characteristic lengthΛ′ = 600µm. Fig. 2 shows a comparison
between different signals propagating through the fractalporous medium, for different
values of the fractal dimensiond. From theses figures, we can see that by increasing
the value ofd, the amplitude of the signal decreases, and thus the ultrasonic attenua-
tion of the material increases. This result is very important for solving direct and inverse
problems for ultrasonic characterization of porous fractal. We will try, in future work,
to solve the inverse problem for measuring the fractal dimension of porous materials
using experimental ultrasonic data.
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Figure 1. Incident signal.
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Figure 2. Comparison of signals propagating through the fractal porous medium,
for d = 0.2 (solid line),d = 0.4 (dashdot line), d = 0.6 (dotted line) and d = 0.8
(dashed line)

6 CONCLUSION

An original fractional propagation equation is established for the ultrasonic
propagation in non-integer-dimensional rigid porous media. The coefficients of this
equations depends on the acoustic properties of the porous material and to the fractal
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dimension of the medium. By increasing the fractal dimension of the material, the ul-
trasonic attenuation of the material increases. The directproblem is solved, we hope,
in future solve the inverse problem for the ultrasonic characterization of fractal porous
materials.
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