
HAL Id: hal-00863129
https://hal.science/hal-00863129

Preprint submitted on 18 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Yet Another Type System for Lock-Free Processes
Luca Padovani

To cite this version:

Luca Padovani. Yet Another Type System for Lock-Free Processes. 2013. �hal-00863129�

https://hal.science/hal-00863129
https://hal.archives-ouvertes.fr

Yet Another Type System for Lock-Free Processes

Luca Padovani – Dipartimento di Informatica, Università di Torino, Italy

Abstract. A network of processes is lock free if every message produced in it
is eventually consumed and if every process waiting for a message eventually
receives one. We study a type system guaranteeing that well-typed process net-
works are lock free. Despite its minimality, our type system subsumes existing
type-based approaches for lock freedom. In particular, we show that interactions
whose lock freedom is guaranteed by design, because they are described by a
global specification, can be realized as a well-typed network of processes.

1 Introduction

Communication has become a prominent aspect of all modern system architectures,
which are characterized by a fragmentation into interacting computational entities. The
ever growing complexity of such systems calls for reliable (i.e. formal) methods verify-
ing that they enjoy various safety and liveness properties. In this work, we are concerned
with lock freedom [11], namely the property that every message that is produced is even-
tually consumed, and every message expected to be consumed is eventually produced.
In its simplicity, lock freedom entails a number of other desirable properties including
deadlock freedom and absence of orphan messages.

yx

To make the discussion more concrete and to set
up one of the bench tests for our solution, consider
the network depicted aside, representing a grid of pro-
cesses that elaborate some compound data structure
(say a matrix M). Such configurations arise frequently
in the parallel implementation of iterative algorithms,
such as Jacobi finite differences. Each process is dedicated to computing one element
Mi, j of the matrix. To determine the value of Mi, j at the (n+1)-th iteration, the process
must know the value of its neighbour elements at iteration n. To this aim, the process at
(i, j) sends Mi, j(n) to its neighbours, receives Mi−1, j(n), Mi, j−1(n), Mi, j+1(n), Mi+1, j(n)
from them, computes Mi, j(n+1) and then iterates. We can model the behavior of a pro-
cess with respect to one of its neighbours as a term

NodeA(x,y)
def
= (νa)(x!〈a〉 | y?(z).NodeA〈a,z〉) (1.1)

parametric in two channels, x for sending messages to and y for receiving messages
from the neighbour. The process creates a new channel a (a continuation) which sends
in x!〈a〉 along with the payload Mi, j(n) (omitted). So, a is the channel on which NodeA
will send Mi, j(n+ 1) at the next iteration. The process then waits for a message from
the y channel, which carries another continuation z along with the neighbour’s payload
(omitted). At that point, the process starts anew with the two new continuations. It is
important to use fresh channels at each iteration to make sure that messages are sent and

2 Luca Padovani

received in the desired order (we are assuming that communication is asynchronous and
that processes run independently).

A necessary requirement for the correctness of the system is that the composition

L1
def
= NodeA〈e, f 〉 |NodeA〈 f ,e〉

representing a link between a process and one of its neighbours must be lock free. Note
that we swap the two distinct channels e and f in the two invocations of NodeA, so that
no confusion arises between messages exchanged by the two linked processes. Note
also that NodeA is not the only possible modeling of a process. An alternative one is

NodeB(x,y)
def
= y?(z).(νa)(x!〈a〉 |NodeB〈a,z〉) (1.2)

in which the process first waits for a message from its neighbour, and only then sends its
own information. Therefore, it is also relevant to determine whether the compositions

L2
def
= NodeA〈e, f 〉 |NodeB〈 f ,e〉 L3

def
= NodeB〈e, f 〉 |NodeB〈 f ,e〉

are lock free. In L1 each process produces its own message before waiting for the neigh-
bour’s; in L2 one process waits for the neighbour’s message before producing its own,
but the neighbour does not; in L3 each process waits for the neighbour’s message before
producing its own. From these observations we can argue that both L1 and L2 are lock
free, while L3 is not. The main contribution of this article is the definition of a type
system that turns these informal arguments into verified facts.

Current type-based approaches for guaranteeing lock freedom of communicating
processes can be roughly classified as bottom-up, top-down, and hybrid. The basic
idea of bottom-up approaches [11,13,14] is to enrich channel types with information
that specifies the (partial) order in which different channels can used. This information
comes in different forms (as time tags [11], as priorities [13], or as events [14]) although
the purpose is the same, namely to detect circular dependencies between channels like
in L3, where the input on e blocks the output on f and the input on f blocks the out-
put on e. In general, these approaches have problems dealing with recursive processes,
either because they lack (or admit limited forms of) recursive types, or because the in-
formation they attach to channel types has an absolute meaning, which easily leads to
false circular dependencies due to the fact that the same time tag/priority/event occurs
several times in the unfolding of a recursive type. For example, none of the Li’s is well
typed in any of these type systems: even in L1, which is the most “asynchronous” of
these compositions, the type systems spot a circularity between the inputs on e and
f . Top-down approaches [9,1,8,7] use global types to describe from a vantage point of
view the topology of the communication network as a whole, along with the number and
role of the interacting processes. For example, the global type satisfying the equation

G = A→ B.B→ C.C→ A.G

describes an interaction between three processes A, B and C that pass messages around
in a ring configuration. If the global type satisfies some realizability conditions, it can
be projected onto the local behaviors of the single participants and their parallel compo-
sition is guaranteed to be lock free. Top-down approaches enjoy better expressiveness

Yet Another Type System for Lock-Free Processes 3

regarding recursive behaviors; for example, none of the known bottom-up approaches
is able to declare that the process implementing the session described by G is well
typed. On the down side, global types lack compositionality and they require advance
planning of, and impose constraints to, the network topology (consider that it takes
the most sophisticated global type language available to date [7] to faithfully describe
the interactions occurring in a system as simple as L1). For these reasons, and despite
their “global” denomination, global types are successful for describing confined interac-
tions such as those occurring within multiparty sessions but find limited applicability on
larger scales. The same reasons explain the interest towards hybrid approaches [1,3,4]
where global types are complemented by information on the order in which different
sessions interleave. The outcome is barely the sum of the first two approaches, which is
disappointing considering that hybrid approaches inherit the disadvantages of the other
approaches and require complex, multi-level type systems.

For completeness we also mention other works [2,15] not fitting the above cate-
gories where the syntax of (well-typed) processes prevents the modeling of cyclic net-
work topologies. In these cases a plain session type discipline without specific features
ensures lock freedom. Note however that all the Li’s and G shown earlier describe cyclic
network topologies, and therefore cannot be expressed or typed by the type disciplines
described in these articles.

The type system we put forward, albeit falling in the bottom-up classification, en-
compasses the expressiveness of current bottom-up approaches, fills the gap with and
actually goes beyond top-down approaches, and achieves all this with a simple and
uniform machinery. To substantiate our claims:

– We work with the type system for the linear π-calculus [12], to which we add
a single construct M t where M contains (literally) one bit of information and t is a
type. Not only the extension is minimal, but we give up any advanced type structure
for describing complex interactions, which must be encoded by means of explicit
continuation passing [6]. Our type system is impervious to such additional burden.

– We give typing derivations for NodeA and NodeB which, written with explicit con-
tinuations as shown in (1.1) and (1.2), are representative of the kind of processes
that current bottom-up approaches are not able to handle.

– We prove that the encoding of well-typed terms of the simply-typed λ -calculus
yields well-typed (i.e., lock-free) processes. This is a proof of weak termination
for the simply-typed λ -calculus which also shows the ability of our type system to
handle interleaved, terminating communications in dynamic network topologies.

– We prove that every multiparty session described by a realizable global type can be
encoded as a well-typed (i.e., lock-free) process that communicates through linear
channels. This shows the general ability of our type system to handle interleaved,
possibly non-terminating communications in static networks topologies.

Section 2 defines syntax and semantics of the π-calculus and gives the precise def-
inition of lock freedom. In Section 3 we take an informal tour of the type system, to
prepare the reader for its formal development in Section 4. Sections 5 and 6 show the
encodings of the simply-typed λ -calculus and of multiparty sessions. Section 7 con-
cludes and hints at future developments. Proofs and additional technical material can
be found in the Appendix, which is not part of the formal submission.

4 Luca Padovani

2 Language

We use h, k, . . . , m, n, . . . to denote natural numbers; we let x, y, . . . range over a
countable set of variables and a, b, . . . range over a countable set of channels; names u,
v, . . . are either channels or variables. Expressions and processes are defined below:

e ::= n
∣∣ u

∣∣ e,e
∣∣ inl e

∣∣ inr e
∣∣ · · ·

P ::= 0
∣∣ u?(x).P

∣∣ ∗u?(x).P
∣∣ u!〈e〉

∣∣ (P |Q)
∣∣ (νa)P

∣∣ let x,y = e
in P

∣∣ case e of
{ inl x⇒ P,
inr y⇒ Q }

Expressions e, . . . are either natural numbers, names, pairs of expressions, or ex-
pressions injected using one of the two constructors inl and inr. Other operators and
data types can be accommodated, assuming that the evaluation of expressions always
terminates. Values v, w, . . . are expressions without variables.

Processes P, Q, . . . are terms of the π-calculus enriched with pattern matching for
pairs and injected values. In particular, 0 performs no action. An input u?(x).P waits for
a message from channel u and then continues as P where the message has been substi-
tuted to x. A replicated input ∗u?(x).P is similar, but is persistent: each time a message
is received from u, a new copy of P is spawned and ∗u?(x).P remains available for fur-
ther inputs. An output u!〈e〉 sends the value of e on u. Outputs have no continuation,
namely communication is asynchronous. Processes P |Q and (νa)P respectively denote
the parallel composition of P and Q and the restriction of a in P, as usual. A process
let x,y = e in P deconstructs the value of e, which must be a pair, and continues as
P where x and y have been respectively replaced by the first and second component of
the pair. A process case e of{i xi⇒ Pi}i=inl,inr evaluates e, which must result into a
value (i v) where i ∈ {inl,inr}, and continues as Pi where xi has been replaced by v.

Binders are the same as in the π-calculus, with the addition of let x,y = e in P,
which binds both x and y in P, and case e of{i xi⇒ Pi}i=inl,inr, which binds xi in Pi.
The notions of free and bound names of a process P, respectively denoted by fn(P) and
bn(P), follow consequently.

The operational semantics is defined as usual by a combination of structural con-
gruence≡ and a reduction relation→. We omit the definition of structural congruence,
which is basically the same as in the π-calculus except that we do not include the law
∗P ≡ P | ∗P because we treat replicated inputs in an ad hoc way to guarantee input
receptiveness. Reduction is defined by the rules below

[R-COMM]
a!〈v〉 |a?(x).P→ P{v/x}

[R-COMM*]
a!〈v〉 | ∗a?(x).P→ P{v/x} | ∗a?(x).P

[R-LET]
let x,y = v,w in P→ P{v,w/x,y}

[R-CASE]
k ∈ {inl,inr}

case (k v) of{i xi⇒ Pi}i=inl,inr→ Pk{v/xk}

and closed by reduction contexts C ::= [] | (C |P) | (νa)C and structural congruence.
The rules are unremarkable. Just note that P{v/x} is the capture-avoiding substitution
of v in place of the free occurrences of x in P. We write→∗ for the reflexive, transitive
closure of→ and P X→ if there is no Q such that P→ Q.

Yet Another Type System for Lock-Free Processes 5

To formulate the lock-freedom property, we define a few predicates that describe
the immediate input/output capabilities of a process P with respect to some channel a:

input(a,P) def⇐⇒ P≡ C [a?(x).Q]∧a 6∈ bn(C)

∗input(a,P) def⇐⇒ P≡ C [∗a?(x).Q]∧a 6∈ bn(C)

output(a,P) def⇐⇒ P≡ C [a!〈e〉]∧a 6∈ bn(C)

free(a,P) def⇐⇒ (input(a,P)∨∗input(a,P))∧output(a,P)
wait(a,P) def⇐⇒ (input(a,P)∨output(a,P))∧¬free(a,P)

In words, input(a,P) holds if there is a sub-process Q within P that is waiting for
a message from a (it is similar to the live predicate in [2]). Note that, by definition of
reduction context, the input is not guarded by other actions. The condition a 6∈ bn(C)
means that a occurs free in P. The predicates ∗input(a,P) and output(a,P) are sim-
ilar, but they regard replicated inputs and outputs. Whenever one of input(a,P) or
output(a,P) holds, the lock-freedom property is “in danger”, in the sense that there
is some pending input/output operation that is required to succeed (eventually). On the
contrary, we do not consider ∗input(a,P) as endangering lock freedom because we do
not require that a persistent input process should unblock infinitely often. This discus-
sion explains the free(a,P) and wait(a,P) predicates: the first one denotes the fact that
there are pending input/output operations on a, but a synchronization on a is imme-
diately possible; the second one denotes the fact that there is a pending output or a
pending non-replicated input on a, but no immediate synchronization on a is available.
Then, lock freedom can be expressed as the property that every process P such that
wait(a,P) holds can be reduced to a state in which free(a,P) holds. Formally:

Definition 2.1 (lock-free process). We say that P is lock free if for every Q such that
P→∗ (ν ã)Q and wait(a,Q) there exists R such that Q→∗ R and free(a,R).

Example 2.1. We encode the process NodeB from Section 1 using replication for pro-
cess definition, output for process invocation, and pair construction and decomposition
for passing multiple parameters. More precisely:

NodeB
def
= ∗cB?(x′).let x,y = x′ in y?(z).(νa)(x!〈a〉 | cB!〈a,z〉)

where channel cB can be used for invoking NodeB. Using this encoding, the configura-
tion L3 is represented and reduces thus:

L3
def
= NodeB | cB!〈e, f 〉 | cB!〈 f ,e〉
→∗ NodeB | f ?(z).(νa)(e!〈a〉 | cB!〈a,z〉) | e?(z).(νb)(f !〈a〉 | cB!〈b,z〉) X→

and the final configuration satisfies the input predicate but not output for both e and f .
We deduce that L3 is not lock free. A similar configuration is reached also by NodeB |
cB!〈e,e〉, where the input on e guards the very output that is meant to unblock it. �

In the following we will use polyadic inputs u?(x1, . . . ,xn) as an abbreviation for
monadic input of (possibly nested) pairs followed by (possibly nested) pair decostruc-
tions using let’s, as in Example 2.1. We will also occasionally write let x = e in P in
place of let x,y = e,0 in P for some fresh y.

6 Luca Padovani

3 Types for lock freedom (informal)

We start from a layer of familiar types for channels and messages, those for the linear
π-calculus [12,6]. This means classifying channels as either linear – that must be used
exactly once for input and once for output, like e and f in Example 2.1 – or unlimited
– that can be used any number of times, like cB in Example 2.1. The types ?[t] and ![t]
denote linear channels for respectively receiving/sending one message of type t, while
?ω [t] and !ω [t] denote unlimited channels. We will make sure that a channel of type
?ω [t] is used for a replicated input, to guarantee input receptiveness. That is, using the
terminology of [12], we treat channels with type ?ω [t] as replicated channels. A channel
!ω [t] can (but need not) be used for output.

With this basis we are able to exclude some simple locked processes right away, for
example those where a linear channel is used just once, either for one input or for one
output. But this is clearly not enough: all the processes in Section 1 respect linearity,
and yet some of them eventually lock. A paradigmatic example of locked process is

a?(x).b!〈x〉 |b?(y).a!〈y〉 (3.1)

where the subprocess on the left hand side of | forwards one message from channel
a to channel b, and the subprocess on the right hand side of | forwards one message
from channel b to channel a. We have already met a configuration like this in Ex-
ample 2.1, while discussing the reduction of L3. The process (3.1) is well typed in a
conventional linear type system, for example by typing the left subprocess under the
type environment a : ?[nat],b : ![nat] and the right subprocess under the type envi-
ronment a : ![nat],b : ?[nat] (note that each channel is given opposite polarities ? and
! in the two environments). Having assigned independent types to the two channels a
and b, there is nothing in these type environments that hints at the circular dependency
between the input on a that blocks the output on b and the input on b that blocks the
output on a. To keep track of these dependencies, we decorate channel types with a
construct Sm where m is the rank of the channel, a number measuring the urgency with
which the channel must be used (Sm denotes m consecutive applications S · · ·S of the S
type constructor). We obtain two tentative type environments for the processes in (3.1)

a : Sm ?[nat],b : Sn ![nat] and b : Sn ?[nat],a : Sm ![nat]

which are no longer independent, because they mention the same ranks m and n. Then,
we verify that processes perform input operations on channels in an order that respects
their rank: inputs on channels with lower rank must occur before other operations on
channels with higher rank. With this constraint (3.1) becomes ill typed because it should
simultaneously satisfy the contradictory constraints m < n and n < m.

The same principle extends to bound variables. For example, the process

a?(x).b?(y).y!〈x〉 |b!〈a〉 (3.2)

is locked although there is no immediate circular dependency between inputs on a and
inputs on b. There is an input on a that blocks an input on b, from which we deduce that
the rank of a, say m, should be lower than that of b, say n. There is also an input on b that

Yet Another Type System for Lock-Free Processes 7

blocks an output on y, which is the message received from b itself. Therefore, n should
be lower than the rank of y. From b!〈a〉 we also learn that the rank of a coincides with
that of y. Overall, we end up once again with a conjunction of contradicting constraints
m < n and n < m. From (3.2) we extrapolate another general rule: the rank of a message
must be greater than that of the channel on which it travels. Thinking again at ranks as
of measures of urgency, this makes sense considering that a message can be used only
after the channel on which it travels has been used.

By now the attentive reader will be aware of a conflict. On the one hand, the need
to work with recursive processes such as (1.1) in Section 1. On the other hand, the
escalation of ranks from channels to messages received from them. Consider the process

∗c?(x).x?(y).c!〈y〉 (3.3)

which reproduces, in a simplified form, the recursive structure of NodeA. Suppose that
the type of c indicates that x is a channel with rank m; the process receives a message
y from x, from which we deduce that the rank of y is higher than m; the process starts
a new iteration sending y on c. The trouble here is that x and y must have different
ranks (hence different types) and yet they are used in the same position (x is received
from c and y is sent on c). This problem is the main show-stopper for all the bottom-up
approaches mentioned in Section 1. It turns out that unlimited channels like c in (3.3)
enjoy an interesting (and crucial) form of polymorphism to the extent that it is safe to
send y on c even if the rank of y is lifted compared to the one of x. Intuitively, this is
because it is not the absolute value of the rank of y that matters, but only the fact that it
is higher than that of x.

There is another problem though, this time concerning the concrete representation
of the type of x and y. The recursive structure of (3.3) requires x and y to have a recursive
type. In particular, from the above discussion one could come up with the assignment
x : t where t is the type that satisfies the equation

t = Sm ?[Sn ?[t]]

and Sn ?[t] is the type of y. However, no matter how we choose m < n (we want y to
have higher rank than x) we have only shifted the problem because at the next iteration
the message received from y will have again rank m, and n < m does not hold. We solve
this conflict by giving a relative, rather than absolute, interpretation to ranks written
in types. In particular, we postulate that the actual type of y is Sm+n ?[t] and not Sn ?[t]
because y comes from x which has rank m; the channel received from y will have rank
2m+n, the next one rank 2m+2n, and so on and so forth. In fact, we will see shortly
(Example 4.1) that it suffices to choose t = ?[S t] to find a typing derivation for (3.3).

The idea of using ranks for restricting the order in which channels should be used
(for input) is insufficient to enforce lock freedom. For example, the process

c!〈a〉 | ∗c?(x).c!〈x〉 |a!〈1984〉 → c!〈a〉 | ∗c?(x).c!〈x〉 |a!〈1984〉 → ·· · (3.4)

is not lock free despite the fact that it reduces forever. The problem is that there is a
pending output on channel a, but no corresponding input action because the “other half”
of channel a is just passed around as message in the infinite recursion that involves the

8 Luca Padovani

unlimited channel c. Observe that the three sub-processes in (3.4) can be respectively
typed under the three type environments (ranks omitted)

a : ?[nat],c : !ω [?[nat]] c : ?ω [?[nat]] a : ![nat]

and that, in particular, the linear channel a occurs indeed linearly, once with input polar-
ity in the first sub-process and once with output polarity in the third sub-process. This
example is an instance of a degenerate phenomenon whereby some channel – a in (3.4)
– is the object of infinite communications occurring on other channels – c in (3.4) –
but it is never the subject of such communications. We can now reveal that the S in the
examples above stands for “subject rank” of a channel, and that we introduce another
constructor O standing for “object rank” of a channel. The object rank of a channel gives
an upper bound to the number of times it can be sent in a message. Every time this hap-
pens, the object rank of the channel decreases. Because all channels originate with finite
ranks, every channel must eventually be used as the subject of some communication.
For example, we will see that the channel y in NodeA can be given the type t = ?[SO t]
because the channel z received from it is used only once as an object – in the invocation
NodeA〈a,z〉 – before it is used as subject.

4 Type system

Syntax. We introduce some more notation. Polarities p, q, . . . are non-empty subsets of
{?,!}. For readability we will often abbreviate {?} with ?, {!} with !, and {?,!} with
#. Multiplicities ι , . . . are either 1 or ω . Rank modifiers M, . . . are either S or O. We also
need a countable set of type variables α , Types t, s, . . . are defined by the grammar
below:

t ::= nat
∣∣ α

∣∣ t× s
∣∣ t⊕ s

∣∣ pι [t]
∣∣ M t

∣∣ µαk{αi := ti}i=1..n

The types nat, t× s, and t⊕ s respectively denote natural numbers, pairs inhabited
by values (v,w) where v has type t and w has type s, and the disjoint sum of t and s
inhabited by values (inl v) when v has type t or (inr w) when w has type s. The type
pι [t] denotes a channel to be used with polarity p and multiplicity ι for exchanging
messages of type t. The polarity determines the operations allowed on the channel: ?
means input, ! means output, and # means both. The multiplicity determines how many
times the channel can or must be used: 1 means that the channel must be used exactly
once (for each element in p), while ω means that the channel can be used any number
of times. We will usually write p[t] in place of p1[t]. We use type variables and µ’s for
building recursive types. In particular, the type µαk{αi := ti}i∈I simultaneously binds
all the type variables αi for i ∈ I in each ti for i ∈ I. The elected type variable αk with
k ∈ I stands for the whole term. It is known that this generalized recursion operator has
the same expressive power than the one that binds exactly one variable [5] and in the
following we will often write µα.t in place of µα{α := t}. We adopt this generalized
operator because it simplifies many technicalities in Section 6. Notions of free and
bound type variables are as expected. Modifiers lift the subject and object ranks of a
type. In particular, S t adds 1 to the subject rank of t and O t adds 1 to the object rank of
t. We will see how to compute subject and object rank of a type shortly. We write Mn t
for n (possibly 0) consecutive applications of the modifier M to t.

Yet Another Type System for Lock-Free Processes 9

Contractiveness. We forbid non-contractive types where recursion variables are not
guarded by a channel type. In particular, µα.α , µα.Mα , µα.(α×α), and µα.(α⊕α)
are illegal while µα.pι [α] is allowed. The formal definition of contractiveness can be
found in Appendix A. We identify two types modulo renaming of bound type variables
and if they have the same infinite unfolding, that is if they denote the same (regular)
tree [5]. In particular, µαk{αi := ti}i∈I = tk{µαi{αi := ti}i∈I/αi}i∈I where t{si/αi}i∈I
denotes the simultaneous substitution of every free occurrence of αi in t with si.

Ranks. We now define the M-rank of a type, where ranks are elements of N∪{⊥,>}
ordered in the obvious way (⊥< n <> for every n∈N). We extend the + operation on
natural numbers to ranks so that ⊥+n =⊥ and >+n =>; we leave ⊥+> undefined.
The M-rank of a closed type t, denoted M-rank(t), is defined as:

M-rank(t) def
=



⊥ if t = (?∪ p)ω [s]
0 if t = p1[s]
1+M-rank(s) if t = Ms
M-rank(s) if t = M0 s and M 6= M0

min{M-rank(t1),M-rank(t2)} if t = t1× t2 or t = t1⊕ t2
> otherwise

(4.1)

Contractiveness ensures that M-rank(t) is well defined. Intuitively, every type that has a
top-level unlimited channel type with input polarity has M-rank⊥ (first equation). In the
other cases, M-rank(t) is the smallest number of M’s occurring along any path from the
root of t to any of its topmost channel types (second to fifth equations), or > if all the
top-level channel types are unlimited and only have output polarity (last equation). The
rationale of this definition is clear when thinking of the S-rank as an inverse priority: an
unlimited channel with input polarity must be used with maximum priority (⊥) because
we want to ensure input receptiveness, so its use cannot be postponed by any means;
numbers and unlimited channels with only output polarity can be used with the least
priority (>) because their use does not affect lock freedom in any way; linear channels
must be used with the relative priority determined by the number of S constructors. Note
the difference between the ranks ⊥ and 0: the former one cannot be lifted because ⊥
absorbs any natural number (1+⊥=⊥), while the latter one can be lifted (1+0 = 1).

We say that a (name with) type t is unlimited if S-rank(t) = >; we say that it is
linear if S-rank(t) ∈ N; we say that it is relevant if S-rank(t) =⊥.

Type equivalence. It is handy to move modifiers around without altering the rank of a
type. To this aim we define an equivalence relation' as the least congruence such that:

M1M2t ' M2M1t M(t×s)' M t×Ms M(t⊕s)' M t⊕Ms
M-rank(t) ∈ {⊥,>}

t ' M t

With' we can permute modifiers and distribute them over products and sum types.
We can also materialize and erase modifiers ad libitum in front of unlimited and relevant
types. This is useful for rewriting products t× s and sums t⊕ s where only one of t and

10 Luca Padovani

s is linear. For instance, nat× (M p[t])' (Mnat)× (M p[t])' M(nat× p[t]). In general
we will silently use ' everywhere a type occurs for rewriting it in a normal form:

Proposition 4.1 (type normal form). For every t there exist m, n, and s such that
t ' Sm On s and s is a constructor other than a modifier or a µ .

Type environments. We check that processes are well typed in type environments, which
are finite maps from names to types written u1 : t1, . . . ,un : tn. We let Γ , . . . range over
type environments, we write dom(Γ) for the domain of Γ , namely the set of names
for which there is a binding in Γ , and we write Γ ,Γ ′ for the union of Γ and Γ ′ when
dom(Γ)∩ dom(Γ ′) = /0. In general we need a more flexible way of composing type
environments, taking into account the linearity and relevance of types and the fact that
we can split channel types by distributing different polarities to different processes.
Following [12] we define a partial composition operator + between types, thus:

t + t = t if t is unlimited
pω [t]+qω [t] = (p∪q)ω [t]

Sn Oh p[s]+Sn Ok q[s] = Sn Oh+k (p∪q)[s] if p∩q = /0
(4.2)

Informally, unlimited types compose with themselves without restrictions. The com-
position of two unlimited/relevant channel types has the union of their polarities. Two
linear channel types can be composed only if they have the same S-rank and disjoint
polarities, and the composition has the union of their polarities. Note that the O-ranks
of the two types are added together in the composition, meaning that there is some loss
of information as to which component had which O-rank. This is however irrelevant for
the soundness of the type system.

We extend + to a partial composition operator between type environments:

Γ1 + Γ2
def
=

{
Γ1,Γ2 if dom(Γ1)∩dom(Γ2) = /0
(Γ ′1 + Γ ′2),u : t + s if Γ1 = Γ ′1,u : t and Γ2 = Γ ′2,u : s

(4.3)

Note that Γ1 + Γ2 is undefined if there is u ∈ dom(Γ1)∩dom(Γ2) such that Γ1(u)+
Γ2(u) is undefined and that dom(Γ1 + Γ2) = dom(Γ1)∪ dom(Γ2). Here is some more
notation regarding type environments. We write un(Γ) if all the types in the range of Γ
are unlimited. We let S-rank(Γ) denote the least S-rank of the types in the range of Γ , that
is S-rank(Γ) =min{S-rank(Γ(u)) | u∈ dom(Γ)}. We let SΓ denote the environment that
is the same as Γ , except that all types in its range have been lifted by the S constructor,
that is (SΓ)(u) = SΓ(u) for every u ∈ dom(Γ).

Type rules. The type rules for expressions and processes are presented in Table 1. The
former ones derive judgments of the form Γ ` e : t, denoting that e is well typed and has
type t in Γ ; the latter ones derive judgments of the form Γ ` P, denoting that P is well
typed in Γ . The type rules for expressions are unremarkable. Just observe that [T-CONST]
and [T-NAME] require the unused part of the type environment to be unlimited. In other
words, linear and relevant names must be used. Also note that [T-PAIR] splits the type
environment according to (4.3).

Rule [T-IDLE] states that the idle process is well typed in any unlimited environment.

Yet Another Type System for Lock-Free Processes 11

Table 1. Type rules for expressions and processes.

Expressions

[T-CONST]
un(Γ)

Γ ` n : nat

[T-NAME]
un(Γ)

Γ ,u : t ` u : t

[T-PAIR]
Γ ` e : t Γ ′ ` e′ : s

Γ + Γ ′ ` e,e′ : t× s

[T-INL]
Γ ` e : t

Γ ` inl e : t⊕ s

[T-INR]
Γ ` e : s

Γ ` inr e : t⊕ s

Processes

[T-IDLE]
un(Γ)

Γ ` 0

[T-IN]
Γ ,x : Sn t ` P n < S-rank(Γ)

Γ +u : Sn Om ?[t] ` u?(x).P

[T-IN*]
Γ ,x : t ` P un(Γ)

Γ +u : ?ω [t] ` ∗u?(x).P

[T-PAR]
Γ ` P Γ ′ ` Q

Γ + Γ ′ ` P |Q

[T-OUT]
Γ ` e : Sn O t 0 < S-rank(t)

Γ +u : Sn Om !ι [t] ` u!〈e〉

[T-OUT*]
Γ ` e : Sn O t 0≤ S-rank(t)

Γ +u : !ω [t] ` u!〈e〉

[T-NEW]
Γ ,a : Sn Om #ι [t] ` P

Γ ` (νa)P

[T-LET]
Γ ` e : t× s Γ ′,x : t,y : s ` P

Γ + Γ ′ ` let x,y = e in P

[T-CASE]
Γ ` e : t⊕ s Γ ′,x : t ` P Γ ′,y : s ` Q

Γ + Γ ′ ` case e of{inl x⇒ P,inr y⇒ Q}

Rule [T-IN] is used for typing (linear) input processes u?(x).P, where u must be a
linear channel with input polarity. The continuation P is typed in an environment where
the input polarity of u has been removed and the received message x has been added.
Note that the type of x is lifted by the subject rank of u. The object rank of u is irrelevant,
because u is used for an input operation, not as the content of a message. The condition
n < S-rank(Γ) ensures that the input on u does not block operations on other channels
with lower or equal rank (see the discussion of (3.1)). In particular, Γ cannot contain u
(whose rank would be n) nor any relevant channel (whose rank would be ⊥).

Rule [T-OUT] is used for typing output processes. Note that the type of the message e
must be t (as specified in the type of the channel u) with subject rank lifted by n (which is
the rank of u) and object rank lifted by 1. The lifting of the subject rank derives from the
fact that the subject rank of t is relative to the subject rank of the channel. The lifting of
the object rank actually means that, by sending e as a message, one unit from every finite
object rank in the type of e is consumed. This prevents the degenerate phenomenon of
infinite delegation that we have modeled in (3.4). The condition 0 < S-rank(t) makes
sure that the subject rank of e is greater than the subject rank of u (we have seen why
this is important discussing (3.2)).

Rule [T-IN*] is used for typing replicated input processes ∗u?(x).P. This rules differs
from [T-IN] in several important ways. First of all, u must be an unlimited channel with
input polarity. Subject and object ranks do not matter, they are both⊥ anyway according
to (4.1). Second, the residual environment Γ must be unlimited, because there is no
guarantee on the number of messages that will be sent on u, and hence on the number
of times the continuation P will be spawned (see [R-COMM*]). Third, it may be the case
that u∈ dom(Γ), because ?ω [t]+!ω [t] = #ω [t] according to (4.2) and !ω [t] is unlimited.

12 Luca Padovani

This means that replicated input processes may invoke themselves. We have used this
feature extensively in all the examples seen so far.

Rule [T-OUT*] is used for outputs on unlimted channels. There are two crucial dif-
ferences with respect to [T-OUT]. First, the condition 0 ≤ S-rank(t), where t is the type
of x, only implies that no relevant names can be communicated. Second, the type of the
message need not match exactly the type t in the channel, but its subject rank can be
lifted by an arbitrary amount n. This can be tolerated because we know, from [T-IN*],
that the receiver process has no free linear channels.

Rules [T-PAR], [T-LET], and [T-CASE] are standard, and [T-NEW] is used for typing the
creation of new (linear and unlimted) channels. In both cases the subject and object
ranks of the channel can be lifted by arbitrary finite amounts. Note that every new
channel comes with the full set # of polarities.

Properties. Much of the expressiveness of the type system comes from the relative in-
terpretation of ranks, as we have seen in [T-IN] and [T-OUT], and by the polymorphism on
subject ranks enabled by [T-OUT*]. The following Lemma, which plays a key role in the
soundness proof (Theorem 4.1) and in all the encodings (Sections 5 and 6), formalizes
the fact that subject ranks are relative by stating that the uniform lifting of the subject
ranks in the type environment preserves typing.

Lemma 4.1 (lifting). If Γ ` P, then SΓ ` P.

Note that the converse of the Lemma does not hold. For example, the derivation
for u : S![nat] ` (νa)(a!〈1984〉 |a?(x).u!〈x〉) relies on the fact that u has S -rank 1, for
otherwise it would not be possible to prefix u!〈x〉 with an input operation on a. It is
however possible to lift this derivation by giving u any strictly positive rank.

The type system enjoys subject reduction and is sound (details in Appendix A):

Theorem 4.1 (soundness). If /0 ` P, then P is lock free.

Example 4.1. We are now ready to show that both NodeA and NodeB are well typed,
and so are (the encodings of) the compositions L1 and L2 of Section 1. In fact we are
going to do a little more, by guessing the most general type (with respect to subject
ranks) of the channels cA and cB that represent NodeA and NodeB. We take

cA,cB : #ω [t× s] where t = Sn ![Sm Os] and s = µα.Sh ?[Sm Oα] = Sh ?[Sm Os]

where the fact that the same type Sm Os occurs within both t and s is an inevitable
consequence of the structure of NodeA (and NodeB), so the only variability is given by
n and h. For NodeA we obtain the derivation below if and only if 0 < m:

a : Sm+n O2 s ` a : Sm+n O2 s

x : t,a : Sm+n O2 s ` x!〈a〉

a : Sh+m O t,z : Sh+m Os ` a,z : Sh+m O(t× s)

cA : !ω [t× s],a : Sh+m O t,z : Sh+m Os ` cA!〈a,z〉 0 < m

cA : !ω [t× s],y : s,a : Sh+m O t ` y?(z).cA!〈a,z〉

cA : !ω [t× s],x : t,y : s,a : Sh+m+n O3 #[Sm Os] ` x!〈a〉 | y?(z).cA!〈a,z〉

cA : !ω [t× s],x : t,y : s ` (νa)(x!〈a〉 | y?(z).cA!〈a,z〉)

cA : #ω [t× s] ` ∗cA?(x,y).(νa)(x!〈a〉 | y?(z).cA!〈a,z〉)

Yet Another Type System for Lock-Free Processes 13

For NodeB we obtain the derivation below if and only if h < n and 0 < m:

a : Sm+n O2 s ` a : Sm+n O2 s

x : t,a : Sm+n O2 s ` x!〈a〉

z : Sh+m Os,a : Sh+m O t ` a,z : Sh+m O(t× s)

cB : !ω [t× s],z : Sh+m Os,a : Sh+m O t ` cB!〈a,z〉

cB : !ω [t× s],x : t,z : Sh+m Os,a : Sh+m+n O3 #[Sm Os] ` x!〈a〉 | cB!〈a,z〉

cB : !ω [t× s],x : t,z : Sh+m Os ` (νa)(x!〈a〉 | cB!〈a,z〉) h < n 0 < m

cB : !ω [t× s],x : t,y : s ` y?(z).(νa)(x!〈a〉 | cB!〈a,z〉)

cB : #ω [t× s] ` ∗cB?(x,y).y?(z).(νa)(x!〈a〉 | cB!〈a,z〉)

Since we compose two nodes invoking NodeA and NodeB with swapped pairs of
channels, we deduce that NodeA〈e, f 〉 |NodeA〈 f ,e〉 and NodeA〈e, f 〉 |NodeB〈 f ,e〉 and
NodeA〈e,e〉 are all well typed. Since the constraints found above are the most gen-
eral ones (concerning subject ranks), we also deduce that there are no derivations for
NodeB〈e, f 〉 |NodeB〈 f ,e〉 and NodeB〈e,e〉, suggesting that these are not lock free. �

5 Encoding the simply-typed λ -calculus

In this section we show that the standard encoding of the simply-typed λ -calculus into
the π-calculus using the parallel call-by-value evaluation strategy produces well-typed
processes according to our type discipline. Terms M, N, . . . of the λ -calculus and their
encoding are defined below:

M ::= x JxKu def
= u!〈x〉

| λx.M Jλx.MKu def
= (ν f)(∗ f ?(x,y).JMKy |u!〈 f 〉)

| MN JMNKu def
= (νa)(νb)(JMKa | JNKb |a?(x).b?(y).x!〈y,u〉)

A term M is encoded as a process JMKu, where u is the continuation channel on which
the value of M is sent. A variable x is encoded as the output of x on u; an abstraction
λx.M is encoded as a replicated input on a channel f that accepts an argument x and
another channel y and evaluates M using y as continuation; an application MN evaluates
M and N in parallel using two fresh continuations a and b, collects their respective
values, and invokes the function denoted by M using the value of N as argument.

Observe how the encoding uses channels in two fundamentally different ways: val-
ues are persistent resources that can be used without restrictions and as such they are
represented by unlimited channels; the evaluation of a term produces exactly one value
which, for this reason, is communicated over a linear channel. For example, a func-
tion of type nat→ nat becomes a channel of type !ω [nat×![nat]], where ![nat] is
the type of the continuation on which the function outputs the result of an application.
However, we see from the definition of JMNKu that continuation channels are also used
for input operations and sent as messages. Therefore, in order to produce well-typed
processes as the result of the encoding of well-typed λ -terms, we must determine ap-
propriate subject and object ranks of continuation channels that satisfy the conditions
of rules [T-IN] and [T-OUT]. We do so with the help of a simple effect system for the λ -
calculus.

14 Luca Padovani

∆,x : τ ` x : τ & 0,0

∆,x : τ `M : σ & m,n

∆ ` λx.M : τ
m,n−−→ σ & 0,0

∆ `M : τ
m,n−−→ σ & h,k ∆ ` N : τ & h′,k′

∆ `MN : σ & max{h+2,h′+1,m},n+1

More specifically, types τ , σ , . . . are de-
fined by the grammar

τ ::= nat
∣∣ τ

m,n−−→ σ

and the typing rules are on the right. The
judgments of the effect system have the
form ∆ ` M : τ & m,n, where the type
environment ∆ associates variables with
types, τ is the type of M, and m and n are subject and object ranks of the channel on
which the value of M is sent. The effect system does not alter in any way the class
of well-typed terms: for every type derivation in the classical simply-typed λ -calculus
there is an isomorphic one in our effect system, and vice versa. Looking at the encoding
function J·K· it is clear how the numbers m and n in a judgment ∆ ` M : τ & m,n are
determined: they are both 0 for variables and abstractions because in these cases the
term is already evaluated and the continuation is used immediately. For abstractions,
however, we record the ranks associated with the body of the function on the arrow,
because they will be necessary when the function is applied and its body evaluated.
For applications JMNKu, the subject rank m of u must be greater than the subject ranks
of both a and b because u is blocked by input actions on these two channels, and the
object rank n of u is 1 plus the number of times u is delegated during the evaluation of
M, because u is sent along with y in x!〈y,u〉.

Types are encoded taking into account the effects recorded over arrows, and the
encoding of terms preserves typing:

JnatK def
= nat Jτ

m,n−−→ σK def
= !ω [JτK×Sm On ![JσK]]

Theorem 5.1. /0 `M : τ & m,n implies a : Sm On ![JτK] ` JMKa.

6 Encoding multiparty sessions

In this section we show how to encode a multiparty session using solely linear chan-
nels. The challenge is to obtain a well-typed (and consequently lock-free) encoding,
considering that each participant of the session will be modeled by a recursive process
that interleaves possibly blocking actions pertaining several different linear channels.
We assume a finite, totally ordered set R of participant tags p, q, . . . , A, B, . . . and a set
of labels `, . . . for identifying events in multiparty sessions. Events ε , . . . and global
types G, . . . are defined below:

ε ::= p→ q@` G ::= α
∣∣ ε.G

∣∣ ε.[G+G]
∣∣ G‖G

∣∣ µα.G

An event p→ q@` represents the communication of a message from participant p (the
sender) to participant q (the receiver). We omit the type of the message, because it is
irrelevant for our purposes, and we will think of events merely as synchronizations.
We decorate events with a label ` that uniquely identifies them, although we will see
that the same label may occur several times in a given global type. The global type ε.G

Yet Another Type System for Lock-Free Processes 15

describes a protocol in which ε may occur before all the other events in G (the assurance
that it will necessarily occur before them depends on other properties of the global type
that are not captured by their syntactic structure). The global type ε.[G1+G2] describes
a protocol in which the sender in ε communicates a binary decision to the receiver in ε .
Depending on the outcome of the decision, the protocol evolves as either G1 or G2. The
global type G1‖G2 describes a protocol where G1 and G2 take place in some unspecified
order. Note that the same participant may occur in both G1 and G2. Global types α and
µα.G are used for building recursive protocols. We do not impose any contractiveness
conditions on global types, which we treat as purely syntactic objects. In fact, we define
end as µα.α for denoting the terminated protocol in which no synchronization occurs.
We write fv(G) for the set of free type variables in G, which is defined as expected.

Not every global type describes a sensible prototol. For example,

Ga
def
= A→ B.[C→ D.end+D→ C.end]

specifies that either C sends a message to D or D sends a message to C depending on the
decision taken by A. The problem is that neither C nor D have been explicitly informed
about such decision, so there is no way they can behave differently in the two branches
of the choice. We therefore need to identify a class of global types that describe sensible
protocols, and that we call realizable. An edge p oq is a set {p,q} with p 6= q represent-
ing a communication channel between two participants. We let edge(p→ q@`) = p oq.
A sort is a set of edges and tells us which pairs of participants are supposed to commu-
nicate. Since we will analyze possibly open global types, we define the sort of a global
type relative to a sort environment that maps type variables to sorts:

Definition 6.1. A sort environment Σ is a finite map from type variables to sorts. We
say that Σ is a sort environment for G if fv(G)⊆ dom(Σ). The sort of G with respect to
a sort environment Σ for G is Σ(G)

def
= {edge(ε) | ε occurs in G}∪

⋃
α∈fv(G)Σ(α).

We write /0 for the empty sort environment and upd(Σ,α,G) for the updated sort
environment Σ,α : Σ(µα.G). We can now define the projection ↓(Σ,G,p oq) of a global
type G with respect to a sort environment Σ and an edge p oq. Intuitively, ↓(Σ,G,p oq)
extracts from G the sub-protocol that concerns only participants p and q. Formally:

↓(Σ,α,p oq) def
= α

↓(Σ,ε.G,p oq) def
= ε.↓(Σ,G,p oq) if p oq= edge(ε)

↓(Σ,ε.G,p oq) def
= ↓(Σ,G,p oq) if p oq 6= edge(ε)

↓(Σ,ε.[G1 +G2],p oq)
def
= ε.[↓(Σ,G1,p oq)+↓(Σ,G2,p oq)] if p oq= edge(ε)

↓(Σ,ε.[G1 +G2],p oq)
def
= ↓(Σ,Gi,p oq) if p oq 6= edge(ε)

↓(Σ,G1 ‖G2,p oq)
def
= ↓(Σ,Gi,p oq) if p oq 6∈ Σ(G3−i)

↓(Σ,µα.G,p oq) def
= µα.↓(upd(Σ,α,G),G,p oq)

Note that projection is a partial function. It may be ill-defined if the projections of
two branches of a choice with respect to the same edge p oq differ (fifth equation), or
undefined if the same edge occurs in two independent sub-protocols (sixth equation), in
which case the two sub-protocols are not actually independent. For example, ↓(/0,Ga,C o

16 Luca Padovani

D) is ill-defined because it can be either C→ D.end or D→ C.end. Note the role played
by labels in determining the existence of a projection. For example,

Gb
def
= A→ B@`1.[B→ A@`2.C→ D@`3.end+C→ D@`3.B→ A@`4.end]

is projectable with respect to C oD because the two occurrences of C→ D@`3 in the two
branches have the same label. They must in fact represent the same event, since C and D

are unaware of the choice taken by A. Conversely, B→ A@`2 and B→ A@`4 may have
different labels because both A and B are aware of the choice taken by A.

Projectability alone is not a sufficient condition for realizability. We must also take
into account the ordering of events induced by the structure of global types. For instance

Gc
def
= A→ B@`1.[E→ F@`2.C→ D@`3.end+C→ D@`3.E→ F@`2.end]

is projectable but not realizable: the two occurrences of C→ D and E→ F must be tagged
with the same label in order for ↓(/0,Gc,C oD) and ↓(/0,Gc,E oD) to be well defined, and
yet Gc specifies that the order of these events depends on the decision taken by A, which
none of C, D, E, and F is aware of. To capture these inconsistencies we reason on the
relation≺G induced by the structure of G such that `≺G `′ holds if and only if the event
with label ` immediately precedes the event with label `′ in G. We denote by ≺+

G the
transitive closure of ≺G and we require ≺+

G to be irreflexive for G to be realizable.

Definition 6.2 (realizable global type). We say that G is realizable if (1) ↓(/0,G,p oq)
is well defined for every p oq and (2) the relation ≺+

G is irreflexive.

According to Definition 6.2, Gb is realizable but Gc is not, because `2 ≺+
Gc

`2. Note
that the relation ≺G is solely determined by the syntactic structure of G regardless
of recursions and type variables occurring in G. No non-trivial recursive global type
would be realizable if we considered, for example, µα.A→ B@`.α equivalent to its
own unfolding.

We now show how to build a set of processes that implement any realizable global
type. Every participant p in a global type G will be implemented by a process P(/0,G,p)
(which will possibly fork into more sub-processes) that uses a tuple x[p] = xpq1 , . . . ,xpqn

of variables, where {q1, . . . ,qn} = R \ {p} and the qi’s appear according to the total
order on R (the total order serves only so that x[p] is a uniquely determined tuple).
In particular, xpq is the channel that connects p to q. P(Σ,G,p) is defined inductively
on G by the equations in Table 2. Despite the daunting look of the definition, the idea
is simple: every event A→ B to which p participates determines either an input or an
output action on the channel xpq. When p is the receiver, a message is read from xpq and
is given name xpq, because the message is actually the continuation channel on which
the conversation between p and q continues. When p is the sender, it sends to q the
continuation for the subsequent communications on the edge p oq. This is done through
the auxiliary function C(Σ,p,q, id,G) where id is the identity function: the continuation
is an actual channel a if p oq occurs in Σ(G), that is if p and q will communicate again
in the future, or the number 0 if no other interaction between p and q is expected.
When the event implies a choice ε.[G1 +G2], we make the (arbitrary) decision that
the sender always chooses the left branch G1. We use injection to encode the decision

Yet Another Type System for Lock-Free Processes 17

Table 2. Characteristic participant.

P(Σ,α,p)
def
= cα !〈x[p]〉

P(Σ,A→ B.G,A)
def
= C(Σ,A,B, id,G)

P(Σ,A→ B.G,B)
def
= xBA?(xBA).P(Σ,G,B)

P(Σ,A→ B.G,p)
def
= P(Σ,G,p) p 6∈ A oB

P(Σ,A→ B.[G1 +G2],A)
def
= C(Σ,A,B,inl,G1)

P(Σ,A→ B.[G1 +G2],B)
def
= xBA?(y).case y of{inl xBA⇒ P(Σ,G1,B),inr xBA⇒ P(Σ,G2,B)}

P(Σ,A→ B.[G1 +G2],p)
def
= P(Σ,Gi,p) p 6∈ A oB

P(Σ,G1 ‖G2,p)
def
= P(Σ,G1,p) |P(Σ,G2,p)

P(Σ,µα.G,p)
def
= (νcα)(cα !〈x[p]〉 | ∗cα ?(x[p]).P(upd(Σ,α,G),G,p))

C(Σ,p,q, f ,G)
def
= (νa)(xpq!〈 f a〉 |let xpq = a in P(Σ,G,p)) p oq ∈ Σ(G)

C(Σ,p,q, f ,G)
def
= xpq!〈 f 0〉 |let xpq = 0 in P(Σ,G,p) p oq 6∈ Σ(G)

in the sender and case to decode the decision in the receiver and we use the same
auxiliary function C for sending the decision, to which we pass the injector inl to
wrap the continuation. Forked global types are encoded as parallel processes: the fact
that they are realizable guarantees that the same variable xpq is used in at most one of the
two processes, therefore respecting linearity. Finally, recursions µα.G are implemented
following the same scheme that we have seen over and over in the previous sections: we
associate the type variable α with an unlimited channel cα ; the replicated input on cα

corresponds to defining a recursive process; the output on cα corresponds to invoking
the recursive process. The whole tuple x[p] is transmitted at each invocation.

For illustration, given Gd
def
= µα.A→ B.B→ C.C→ A.α and R = {A,B,C} we have

P(/0,Gd ,A) = (νcα)(cα !〈xAB,xAC〉 |
∗cα ?(xAB,xAC).(νa)(xAB!〈a〉 |let xAB = a in xAC?(xAC).cα !〈xAB,xAC〉))

We now arrive at the main point of this section, namely the definition of a suitable
type environment Γp

def
= {xpq : tpq}q∈R\{p} such that the process P(/0,G,p) is well typed

in Γp. Determining the input/output behavior of P(/0,G,p) with respect to a channel xpq
is easy since this information is written in the global type. But in order for P(/0,G,p)
to be well typed, we must also make sure that blocking actions respect the subject rank
of channels (see [T-IN]) and that delegations are allowed by the object rank of channels
(see [T-OUT] and [T-OUT*]). We determine subject ranks using the event order ≺G and
object ranks looking at the structure of P(/0,G,p). We know that every realizable global
type G has an irreflexive event order ≺+

G , meaning that the events in G form a DAG.
Therefore, there exists a topological ordering ord from labels in G to positive natural
numbers such that `≺G `′ implies 0 < ord(`)< ord(`′). In a sense, ord(`) is the abstract
time at which the event labeled ` occurs so the idea is that we can use just ord(`) as the
(relative) subject rank for the channel types when projecting the action labeled by `. In
what follows, we simplify the notation writing just ` in place of ord(`).

Table 3 defines T(Σ,G,p,q,n) as the type of xpq in the global type G relative to an
arbitrary offset n that is smaller than any label occurring in G. Given how P(Σ,G,p)

18 Luca Padovani

Table 3. Global type projection.

T(Σ,α,p,q,n) def
=

{
Oαpq

nat

p oq ∈ Σ(α)
otherwise

T(Σ,A→ B@`.G,p,q,n) def
=


S`−n ![T(Σ,G,q,p, `)]

S`−n ?[T(Σ,G,p,q, `)]

S`−n T(Σ,G,p,q, `)

p,q= A,B
p,q= B,A
otherwise

T(Σ,A→ B@`.[G1 +G2],p,q,n)
def
=


S`−n ![T(Σ,G1,q,p, `)⊕T(Σ,G2,q,p, `)]

S`−n ?[T(Σ,G1,p,q, `)⊕T(Σ,G2,p,q, `)]

S`−n T(Σ,Gi,p,q, `)

p,q= A,B
p,q= B,A
otherwise

T(Σ,G1 ‖G2,p,q,n)
def
=T(Σ,Gi,p,q,n) p oq 6∈ Σ(G3−i)

T(Σ,µα.G,p,q,n) def
= Oµαpq

{
αpq = T(upd(Σ,α,G),G,p,q,n)
αqp = T(upd(Σ,α,G),G,q,p,n)

}

uses the channel xpq, the definition of T(Σ,G,p,q,n) is hopefully self-explanatory ex-
cept for a few twists that we comment on here: The type T(Σ,α,p,q,n) is the type
variable αpq only if the edge p oq is used in the recursion marked by the type variable
α; otherwise, it is nat to denote a dummy natural number. Subject ranks are deter-
mined as the difference between the label ` of the topmost action in G and the current
offset n; after the action, the offset becomes `. We have T(Σ,A→ B@`.G,A,B,n) =
S`−n ![T(Σ,G,B,A, `)] where A and B are swapped within ![·]. The swapping is moti-
vated by the fact that A sends to B a channel whose type determines how the channel
is used by B. The same phenomenon occurs in determining the type of a choice. Then,
because of the definition of T(Σ,α,p,q,n), it may happen that the type T(Σ,G,p,q,n)
contains both the αpq and the αqp type variables. For this reason, T(Σ,µα.G,p,q,n)
binds both αpq and αqp, taking advantage of the generalized recursion for channel types.
The O constructor is used in the two strategic places where a channel is delegated, in
accordance with the definition of P(Σ,G,p). Finally, note that T(Σ,G,p,q,n) is well
defined whenever G is realizable.

As an example, considering again the global type Gd above, we have

T(/0,Gd ,A,B,0) = OµαAB{αAB := S`1 ![S`3−`1 OαBA],αBA := S`1 ?[S`3−`1 OαBA]}

where we assume that `1, `2, and `3 label the three events in Gd .
The main result of this section states that the P(/0,G,p)’s are well typed:

Theorem 6.1. Let G be realizable. Then {xpq : T(/0,G,p,q,0) | q∈R\{p}} `P(/0,G,p)
for every p ∈R.

It is easy to verify that the parallel composition of the P(/0,G,p) is also well typed.
Note that every global type with two participants and without ‖ is realizable. This cor-
responds to a traditional binary session.

7 Concluding remarks

Existing type-based approaches for lock freedom impose severe restrictions on pro-
cesses, especially recursive ones. Interestingly, all of them make use of rich behav-

Yet Another Type System for Lock-Free Processes 19

ioral types (usages [11], session types [13], global types [9,1,8,7,3,4], conversation
types [14]), and when they are able to handle recursive processes it is because they
take advantage of such richness, almost suggesting that complex types are necessary to
ensure a property as strong as lock freedom. We have shown that this is not the case:
our modest extension of the linear type system for the π-calculus [12] ensures lock
freedom for an unprecedented variety of process networks. Like other bottom-up ap-
proaches for lock freedom [11,13,14], our type systems associates information (subject
ranks) with channels to constrain the order of input/output operations on them. Unlike
other approaches, however, subject ranks have a relative interpretation (Lemma 4.1).
This feature accounts for much of the expressiveness of our technique and enables a
form of polymorphism that plays a crucial role in all the examples and encodings that
have been discussed.

Given the abundance and diversity of type systems ensuring lock freedom, a detailed
comparison with each of them seems unfeasible and perhaps not so interesting. We have
chosen to assess the expressiveness of our type system by addressing two wide classes
of networks whose processes interleave operations on different channels (indeed, it is
such interleaving that determines the presence or absence of locks). Networks in the
first class (Section 5) are characterized by a varying number of terminating processes,
while networks in the second class (Section 6) are characterized by a fixed number
of non-terminating processes. Our type system is also able to address combinations of
these. For example, the following variation of NodeA in Section 1

cF !〈c,c〉 | ∗cF ?(x,y).(νa)(y!〈a〉 | x?(z).(νb)(cF !〈z,b〉 | cF !〈b,a〉))

is an extreme case of non-terminating, dynamic system that develops like a fairy ring:
each output on cF spawns two processes connected by a new channel b. As a conse-
quence, the initial output cF !〈c,c〉 bootstraps the growth of a ring of processes, each
sending a message to its neighbour, and the ring doubles its diameter each time a whole
round of communications is completed. The interested reader may check that this pro-
cess is well typed.

Some processes are well typed according to other type systems, but not according
to our own. For example, Kobayashi’s usages [11] can handle non-linear channels in
a more flexible way so that his modeling of the lock-free dining philosophers is not
captured by our type system. There are also multiparty sessions which are not realizable
with point-to-point communication. For instance, the global type

A→ B.[A→ C.[B→ C+C→ B]+A→ C.[B→ C+C→ B]]

is realizable in [1,4,3] but not according to our definition. The point is that B and C are
both notified of A’s decisions, hence they know whether it should be B to send a message
to C or viceversa. In a native multiparty session the channel connecting A, B and C is one,
so its type reflects this shared knowledge. But when communication is point-to-point,
the types of the channels used by a single participant are independent and this shared
knowledge is lost. Anyway, these examples are not pinpointing an intrinsic limitation
of our approach (based on the ranking of channels), but rather are a consequence of the
simple type discipline that we have chosen as foundation for our study. In fact, we do
not see major obstacles in adding the M t construct to richer type languages.

20 Luca Padovani

There are some open questions regarding our type system that require further in-
vestigation. For example, is there a precise characterization for the class of well-typed
processes? Is there a type reconstruction algorithm? The second question has practical
relevance: as shown by Example 4.1, it is unrealistic to assume that the programmer is
able to estimate subject and object ranks in any non-trivial process. Remarkably, type
reconstruction algorithms are known for the linear π-calculus [10] and for Kobayashi’s
type system [11], both of which share several aspects with ours. In addition, all we had
to do in Example 4.1 was to start from types where subject and object ranks are con-
sidered as variables, to derive a set of constraints between ranks (these constraints are
always linear) and to apply “by hand” a linear constraint solver. Encouraged by these
facts, we are now studying the problem of type reconstruction for our type discipline.

References

1. L. Bettini, M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini, and N. Yoshida.
Global progress in dynamically interleaved multiparty sessions. In CONCUR’08, LNCS
5201, pages 418–433, 2008.

2. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In CON-
CUR’10, LNCS 6269, pages 222–236, 2010.

3. M. Coppo, M. Dezani-Ciancaglini, L. Padovani, and N. Yoshida. Inference of Global
Progress Properties for Dynamically Interleaved Multiparty Sessions. In COORDINA-
TION’13, LNCS 7890, pages 45–59. Springer, 2013.

4. M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani. Global progress for dy-
namically interleaved multiparty sessions. Math. Struct. in Comp. Sci., to appear.

5. B. Courcelle. Fundamental properties of infinite trees. Theor. Comp. Sci., 25:95–169, 1983.
6. O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In PPDP’12, pages

139–150. ACM, 2012.
7. P.-M. Deniélou and N. Yoshida. Multiparty session types meet communicating automata. In

ESOP’12, LNCS 7211, pages 194–213. Springer, 2012.
8. P.-M. Deniélou, N. Yoshida, A. Bejleri, and R. Hu. Parameterised multiparty session types.

Log. Meth. in Comp. Sci., 8(4), 2012.
9. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In

POPL’08, pages 273–284. ACM, 2008.
10. A. Igarashi and N. Kobayashi. Type reconstruction for linear -calculus with i/o subtyping.

Inf. and Comp., 161(1):1–44, 2000.
11. N. Kobayashi. A type system for lock-free processes. Inf. and Comp., 177(2):122–159, 2002.
12. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. ACM Trans.

Program. Lang. Syst., 21(5):914–947, 1999.
13. L. Padovani. From lock freedom to progress using session types. In PLACES’13, to appear.
14. H. T. Vieira and V. T. Vasconcelos. Typing progress in communication-centred systems. In

COORDINATION’13, LNCS 7890, pages 236–250. Springer, 2013.
15. P. Wadler. Propositions as sessions. In ICFP’12, pages 273–286. ACM, 2012.

Yet Another Type System for Lock-Free Processes 21

A Supplement to Section 4

Definitions. Below is the formal definition of contractive types: we say that a type is
contractive if /0 ` con(t) is inductively derivable by the rules

A ` con(nat) A\{α} ` con(α)
/0 ` con(t)

A ` con(pι [t])
A ` con(t)

A ` con(M t)

A ` con(ti) (i=1,2)

A ` con(t1× t2)
A ` con(ti) (i=1,2)

A ` con(t1⊕ t2)
A∪{αi | i ∈ I} ` con(ti) (i∈I)

A ` con(µα{αi := ti}i∈I)

where A is a set of type variables. Note that µα.pι [α] is contractive but neither µα.(α×
α) nor µα.(α ⊕α) are. The last one, in particular, seems preventing the definition of
any recursive algebraic type. The definition of contractiveness we adopt is convenient
for the rest of the technical development but it can be relaxed to allow α be guarded
by any constructor other than priority modifiers, at the cost of a more complicated
definition of M-rank (see (4.1)). In this article we do not investigate the issue further and
we always assume to work with contractive types.

Basic properties. Below are two auxiliary results regarding the type system, namely the
lifting property and the substitution lemma for expressions and processes. Both results
can be easily proved with an induction on the derivation of the judgment in the premise.

Lemma A.1 (lifting). The following properties hold:

1. If Γ ` e : t, then SΓ ` e : S t.
2. If Γ ` P, then SΓ ` P.

Lemma A.2 (substitution). Let Γ ′ ` v : t and Γ + Γ ′ defined. Then:

1. Γ ,x : t ` e : s implies Γ + Γ ′ ` e{v/x} : s.
2. Γ ,x : t ` P implies Γ + Γ ′ ` P{v/x}.

We will make extensive use of Lemma A.1 in Sections B and C, to the point that it
is convenient to extend the type system presented in Table 1 with the (admissible) rule

[T-LIFT]
Γ ` P

Sm Γ ` P

Subject reduction. In order to formulate and prove the subject reduction result, we
need to determine a precise correspondence between the type environment before a
reduction and the one after the reduction. We do so by defining a reduction relation for
type environments. Let→ be the least relation defined by the rule

Γ ,a : Sn Om #[t]→ Γ Γ ,a : O t→ Γ ,a : t

and let →∗ be its reflexive, transitive closure. The first rule erases a linear channel a
from the environment and is used when a synchronization on a occurs (recall that linear
channels can be used for one synchronization only by definition). The second rule erases
one O constructor from the type of a and is used each time a is sent in a message.

22 Luca Padovani

Lemma A.3. Let Γ ` v : O t. Then there exists Γ ′ such that Γ →∗ Γ ′ and Γ ′ ` v : t.

Proof. Easy induction on the derivation of Γ ` v : O t. ut

The following result states that the type of an expression is the same as the type
of its value. Clearly, if the language of expressions is extended with more constructors
and/or operators, it is expected that they obey subject reduction.

Lemma A.4. Let Γ ` e : t and e ↓ v. Then Γ ` v : t.

The following result states that well typed processes reduce to well typed processes.

Lemma A.5. Let Γ ` P and P→ P′. Then Γ ′ ` P′ for some Γ ′ such that Γ →∗ Γ ′.

Proof. By induction on the derivation of P→ P′ and by cases on the last rule applied.

[R-COMM] Then P = a!〈e〉 | a?(x).Q→ Q{v/x} = P′ where e ↓ v. From [T-PAR] we
deduce Γ = Γ1 + Γ2 where Γ1 ` a!〈e〉 and Γ2 ` a?(x).Q. From [T-OUT] we deduce Γ1 =
Γ ′1 + a : Sn Ok ![t] and Γ ′1 ` e : Sn O t. From [T-IN] we deduce Γ2 = Γ ′2 + a : Sn Oh ?[t] and
Γ ′2,x : Sn t ` Q. The fact that the types associated with the two a’s are complementary
follows from the definition of Γ1 + Γ2. By Lemma A.4 we obtain Γ ′1 ` v : Sn O t. By
Lemma A.3 we deduce that there exists Γ ′′1 such that Γ ′′1 ` v : Sn t and Γ ′1→∗ Γ ′′1 . Note that
Γ ′′1 +Γ ′2 is defined. Then by Lemma A.2(2) we obtain Γ ′′1 +Γ ′2 `Q{v/x}. Let Γ ′= Γ ′′1 +Γ ′2.
From [T-PAR] we deduce Γ ′ ` P′. We conclude by observing that Γ →∗ Γ ′.
[R-COMM*] Then P = a!〈e〉 | ∗a?(x).Q→ Q{v/x} | ∗a?(x).Q = P′ where e ↓ v. From

[T-PAR] we deduce Γ = Γ1 + Γ2 where Γ1 ` a!〈e〉 and Γ2 ` ∗a?(x).Q. From [T-OUT*] we
deduce Γ1 = Γ ′1 +a : !ω [t] and Γ ′1 ` e : Sn O t. From [T-IN*] we deduce Γ2 = Γ ′2 +a : ?ω [t]
and Γ ′2,x : t ` Q and un(Γ ′2). By Lemma A.4 we obtain Γ ′1 ` v : Sn O t. By Lemma A.3
we deduce that there exists Γ ′′1 such that Γ ′′1 ` v : Sn t and Γ ′1→∗ Γ ′′1 . By Lemma A.1(2)
we deduce Sn Γ ′2,x : Sn t ` Q. From un(Γ ′2) we deduce Γ ′2 ' Sn Γ ′2, therefore Γ ′1 +Sn Γ ′2 is
defined. By Lemma A.2(2) we deduce Γ ′′1 + Γ ′2 ` Q{v/x}. From [T-IN*] and [T-PAR] we
obtain Γ ′′1 + Γ2 ` Q{v/x} | ∗a?(x).Q. We conclude by taking Γ ′ = Γ ′′1 + Γ2 and observing
that Γ →∗ Γ ′.
[R-LET] Then P= let x,y= e inQ and e ↓ v,w and P′=Q{v,w/x,y}. From [T-MATCH]

we deduce Γ = Γ1 + Γ2 and Γ1 ` e : t× s and Γ2,x : t,y : s ` Q. From Lemma A.4 we de-
duce Γ1 ` v,w : t × s. From [T-PAIR] we deduce Γ1 = Γ11 + Γ12 where Γ11 ` v : t and
Γ12 ` w : s. By Lemma A.2 we deduce Γ ` Q{v,w/x,y} and we conclude by taking
Γ ′ = Γ .

[R-CASE] Then P = case e of{inl x1 ⇒ P1,inr x2 ⇒ P2} and either e ↓ inl v1

or e ↓ inr v2 and P→ Pi{vi/xi} = P′. From [T-CASE] we deduce Γ = Γ1 + Γ2 where
Γ1 ` e : t1⊕ t2 and Γ2,xi : ti ` Pi. From Lemma A.4 and [T-SUM] we deduce Γ1 ` vi : ti.
From Lemma A.2 we deduce Γ ` Pi{vi/xi} and we conclude by taking Γ ′ = Γ . ut

Soundness. In order to prove that the type system is sound, namely that well-typed
processes are lock free, we need to define the measure of a channel. Intuitively, the
measure of a represents an upper bound to the (finite) number of reduction steps that
must occur before a synchronization on a occurs. The measure of a channel depends

Yet Another Type System for Lock-Free Processes 23

Table 4. Depth of a channel.

JaKa = 0
JuKa = ⊥ a 6= u

Je1,e2Ka = Je1Ka∨ Je2Ka
Jinl eKa = Jinr eKa = JeKa

J0Ka = ⊥
Ju?(x).PKa = JuKa∨ (JPKa +1)

J∗PKa = JPKa
Ju!〈e〉Ka = JuKa∨ JeKa
JP |QKa = JPKa∨ JQKa

Jlet x,y = e in PKa = JeKa∨ JPKaq
case e of{i xi⇒ Pi}i=inl,inr

y
a = JeKa∨ JPinlKa∨ JPinrKa

J(νa)PKa = ⊥
J(νb)PKa = JPKa a 6= b

on both its type and the positions in which it occurs in a process. We only consider
processes that are well typed in a balanced environment, where Γ is balanced if for
every a ∈ dom(Γ) we have that Γ(a) = Om Sn #ι [t].

Definition A.1. Let Γ ` P where Γ is balanced and a : t ∈ Γ . Then measure(a,Γ ,P) def
=

(S-rank(t),O-rank(t),JPKa) where JPKa is inductively defined in Table 4.

Given Γ ` P where Γ is balanced and a ∈ dom(Γ), the measure of a is a triple
consisting of the subject rank S-rank(Γ(a)) of a, the object rank O-rank(Γ(a)) of a,
and the maximum “depth” of a in P, namely the maximum number of input prefixes
that guard an occurrence of a in P. Observe that, when P is well typed, the depth
JPKa is always finite. We write < for the usual lexicographic order on triples returned
by measure(a,Γ ,P). Note that < is well founded, i.e. there are no infinite descending
chains of triples related by <.

Lemma A.6. Let (1) Γ `P and (2) Γ balanced and (3) either input(a,P) or output(a,P).
Then there exists Q such that P→∗ Q and free(a,Q).

Proof. Without loss of generality we can assume that P has no restrictions at the top
level. Indeed, if P≡ (νb)P′, from (1) and [T-NEW] we deduce Γ ,b : Sn Om #[t] ` P′ where
Γ ,b : Sn Om #[t] is balanced, so we could reason on P′. We can also assume that P has
no let or case at the top level. If this is the case, then from (1) and the hypothesis that
the evaluation of expressions always terminates we can always reduce P to a well-typed
process that contains no top level let’s or case’s.

We proceed by induction, showing that if the result holds for every triple b,Γ ′,P′

such that measure(b,Γ ′,P′) < measure(a,Γ ,P), then it holds also for the triple a,Γ ,P.
We analyze the various possibilities and we reason by cases on the place where a can
occur. If free(a,P), then we conclude immediately by taking Q = P. Next, we analyze
a few cases that are impossible given the typing rules of processes:

24 Luca Padovani

– P≡ C [a?(x).R] and a ∈ fn(R). Then a : Sn Om #[t] ∈ Γ . According to [T-IN] we have
Γ ′,x : Sn t ` R and n < S-rank(Γ ′). Then a 6∈ dom(Γ ′), hence this case is impossible.

– P≡C [a!〈e〉] and a∈ fn(e) and a : #ω [t]∈ Γ and ¬∗input(a,P). Then from [T-OUT*]
we deduce Γ ′ ` e : Sn O t and 0≤ S-rank(t). From¬∗input(a,P) we know that e must
contain the endpoint a with input capability, for otherwise it would occur at the top
level of P. Hence S-rank(t) =⊥, which contradicts 0≤ S-rank(t). Hence this case
is impossible.

– P ≡ C [a!〈e〉] and a ∈ fn(e) and a : Sn Om #[t] ∈ Γ . Then from [T-OUT] we deduce
Γ ′ ` e : Sn O t and 0 < S-rank(t). We deduce

n < n+S-rank(t) from 0 < S-rank(t)
= S-rank(Sn O t) by definition of S-rank(·)
≤ n from a ∈ fn(e)

which is absurd, so this case is also impossible.

Finally, we consider the cases in which there is a pending operation on a but no
immediate synchronization is possible. In every case we are able to extend the reduction
of P to a state where the measure of a is strictly smaller than measure(a,Γ ,P). This is
enough for establishing the result, given that the order < on measures is well founded.
Note also that in each of these cases we are using the assumption that the evaluation of
expressions always terminates.

– P ≡ C [b!〈e〉 | ∗b?(x).R] and a ∈ fn(e). Then P→ C [R{v/x} | ∗b?(x).R] = P′ and
e ↓ v and a ∈ fn(v). By Lemma A.5 we deduce that Γ ′ ` P′ for some Γ ′ such that
O-rank(Γ ′(a))< O-rank(Γ(a)), therefore measure(a,Γ ′,P′)<measure(a,Γ ,P). We
conclude by induction hypothesis.

– P ≡ C [b!〈e〉] where a ∈ fn(e) and b is a linear channel. From [T-OUT] we deduce
S-rank(Γ(b)) < S-rank(Γ(a)). By induction hypothesis we derive P→∗ C ′[b!〈e〉 |
b?(x).R]→C ′[R{v/x}] = P′ where e ↓ v and a∈ fn(v). By Lemma A.5 there exists
Γ ′ such that Γ ′ ` P′ and O-rank(Γ ′(a)) < O-rank(Γ(a)). We conclude by induction
hypothesis.

– P ≡ C [b?(x).R] where a ∈ fn(R) \ {b}. From [T-IN] we deduce S-rank(Γ(b)) <
S-rank(Γ(a)). By induction hypothesis we derive P→∗ C ′[b!〈e〉|b?(x).R]→C ′[R{v/x}] =
P′ for some v such that e ↓ v. By Lemma A.5 we deduce Γ ′ ` P′ for some Γ ′ such
that Γ →∗ Γ ′ and measure(a,Γ ′,P′)<measure(a,Γ ,P) because a is guarded by one
less input prefix. We conclude by induction hypothesis. ut

B Supplement to Section 5

The following Lemma generalizes Theorem 5.1.

Lemma B.1. If ∆ `M : τ & m,n and u 6∈ dom(∆), then J∆K,u : Sm On ![JτK] ` JMKu.

Proof. By induction on M and by cases on its shape.

Yet Another Type System for Lock-Free Processes 25

M = x Then ∆= ∆′,x : τ and m = n = 0. We conclude

[T-NAME]
J∆′K,x : JτK ` x : JτK

[T-OUT]
J∆′K,x : JτK,a : ![JτK] ` a!〈x〉

noting that un(J∆′K) holds because J·K only produces unlimited types.

M = λx.N Then τ = τ1
h,k−→ τ2 and ∆,x : τ1 ` N : τ2 & h,k and m = n = 0. Note that

JτK = !ω [Jτ1K×Sh Ok ![Jτ2K]]. We conclude with the derivation

...
IND.HYP.

J∆K,x : Jτ1K,y : Sh Ok ![Jτ2K] ` JNKy

[T-IN*]
J∆K, f : ?ω [Jτ1K×Sh Ok ![Jτ2K]] ` ∗ f ?(x,y).JNKy

[T-NAME]
f : JτK ` f : JτK

[T-OUT]
f : JτK,u : ![JτK] ` u!〈 f 〉

[T-PAR]
J∆K, f : #ω [Jτ1K×Sh Ok ![Jτ2K]],u : ![JτK] ` ∗ f ?(x,y).JNKy |u!〈 f 〉

[T-NEW*]
J∆K,u : ![JτK] ` (ν f)(∗ f ?(x,y).JNKy |u!〈 f 〉)

where [T-IN*] uses the fact that un(J∆K) holds and [T-OUT] uses 0 <>= S-rank(JτK).

M = M1M2 Then ∆ `M1 : τ1
m′,n′−−−→ τ & h,k and ∆ `M2 : τ1 & h′,k′ and m = max{h+

2,h′+ 1,m′} and n = n′+ 1. Let a and b two fresh names and let σ = τ1
m′,n′−−−→ τ . We

derive A

...
IND.HYP.

J∆K,a : Sh Ok ![JσK] ` JM1Ka

as well as B

...
IND.HYP.

J∆K,b : Sh′ Ok′ ![Jτ1K] ` JM2Kb

[T-LIFT]
J∆K,b : Sh′′ Ok′ ![Jτ1K] ` JM2Kb

where h′′=max{h+1,h′}. Note that h< h′′=max{h+1,h′}<max{h+2,h′+1}≤m.
Using these relations we can now build the derivation

A B

...
[T-PAIR]

u : Sm On ![JτK],y : Jτ1K ` y,u : Sm−m′ O(Jτ1K×Sm′ On′ ![JτK])
[T-OUT*]

u : Sm On ![JτK],x : !ω [Jτ1K×Sm′ On′ ![JτK]],y : Jτ1K ` x!〈y,u〉
[T-IN]

u : Sm On ![JτK],b : Sh′′ Ok′ ?[Jτ1K],x : JσK ` b?(y).x!〈y,u〉
[T-IN]

u : Sm On ![JτK],a : Sh Ok ?[JσK],b : Sh′′ Ok′ ?[Jτ1K] ` a?(x).b?(y).x!〈y,u〉
[T-PAR]

J∆K,u : Sm On ![JτK],a : Sh Ok #[JσK],b : Sh′′ Ok′ #[Jτ1K] ` JM1Ka | JM2Kb |a?(x).b?(y).x!〈y,u〉
[T-NEW]

J∆K,u : Sm On ![JτK],a : Sh Ok #[JσK] ` (νb)(JM1Ka | JM2Kb |a?(x).b?(y).x!〈y,u〉)
[T-NEW]

J∆K,u : Sm On ![JτK] ` (νa)(νb)(JM1Ka | JM2Kb |a?(x).b?(y).x!〈y,u〉)

26 Luca Padovani

where in the application of [T-OUT*] we use the fact that m′ ≤m by definition of m. ut

C Supplement to Section 6

Definition C.1. We write n < G if n < ord(`) for every ` occurring in G.

Lemma C.1. Let n < G and T(Σ,G,p,q,n) = t. Then:

1. p oq 6∈ Σ(G) implies t = nat;
2. p oq 6∈ G and p oq ∈ Σ(α) and α ∈ fv(G) implies t = Sh Ok αpq;
3. p oq ∈ G implies t = Sh Ok p[s] and T(Σ,G,q,p,n) = Sh Ok p[s] for some h > 0.

Proof. By induction on G.

– (G = α) We have:
1. (p oq 6∈ Σ(G)) Then t = nat by definition of T.
2. (p o q ∈ Σ(α)) Then t = Oαpq by definition of T and we conclude by taking

h = 0 and k = 1.
3. (p oq ∈ G) This case is impossible.

– (G = A→ B@`.G′) We have:
1. (p oq 6∈Σ(G)) Then p oq 6= A oB and p oq 6∈Σ(G′) and t = S`−n T(Σ,G′,p,q, `) =

S`−n nat= nat by definition of T, by induction hypothesis, and by equality on
types.

2. (p oq 6∈ G and α ∈ fv(G) and p oq ∈ Σ(G)) Then p oq 6= A oB and p oq 6∈ G′ and
α ∈ fv(G′). We have t = S`−n T(Σ,G′,p,q, `) = S`−n Sm Ok αpq = S`−n+m Ok αpq

by definition of T and by induction hypothesis. We conclude by taking h =
`−n+m.

3. (p oq ∈G) Then either p oq= A oB or p oq ∈G′. If p,q= A,B, then t = Sh Ok ![s]
where h = `−n and h = 0 and s = T(Σ,G′,q,p, `) and we conclude by observ-
ing that h> 0 from the hypothesis n<G. If p,q= B,A we conclude similarly. If
p oq 6= A oB, then by induction hypothesis we have T(Σ,G′,p,q, `) = Sm Ok p[s]
for some m > 0 and we conclude t = Sh Ok p[s] by taking h = `−n+m.

– (G = A→ B@`.[G1 +G2]) This case is similar to the previous one, the only inter-
esting sub-case is when p o q 6∈ G and α ∈ fv(G) and p o q ∈ Σ(G). By definition
of global type projection we have t = T(Σ,Gi,p,q, `) for every i = 1,2m therefore
we deduce α ∈ fv(G1)∩ fv(G2). We conclude by induction hypothesis as in the
previous case.

– (G = G1 ‖G2) Assume, without loss of generality, that p oq 6∈ Σ(G2) and that t =
T(Σ,G1,p,q,n). We have:
1. (p oq 6∈ Σ(G)) We conclude T(Σ,G1,p,q,n) = nat by induction hypothesis;
2. (p oq 6∈G and p oq ∈ Σ(α) and α ∈ fv(G)) Then p oq 6∈G1 and α ∈ fv(G1). By

induction hypothesis we conclude T(Σ,G1,p,q,n) = Sh Ok αpq.
3. (p oq ∈ G) Then p oq ∈ G1 and we conclude by induction hypothesis.

Yet Another Type System for Lock-Free Processes 27

– (G = µα.G′) Let

Σ′
def
= upd(Σ,α,G′)

tpq
def
= µαpq{αpq := T(Σ′,G′,p,q,n),αqp := T(Σ′,G′,q,p,n)}

tqp
def
= µαqp{αpq := T(Σ′,G′,p,q,n),αqp := T(Σ′,G′,q,p,n)}

and observe that Σ′ is a sort environment for G′ and t = O tpq = OT(Σ′,G′,p,q,n)σ
and T(Σ,G,q,p,n) = O tqp = OT(Σ′,G′,q,p,n)σ where σ = {tpq, tqp/αpq,αqp}. We
distinguish three sub-cases:
1. (p oq 6∈ Σ(G)) Then p oq 6∈ Σ′(G′) and we conclude t = nat.
2. (p o q 6∈ G and p o q ∈ Σ(β) and β ∈ fv(G)) Then p o q 6∈ G′ and β 6= α and

β ∈ fv(G′). By induction hypothesis we deduce T(Σ′,G′,p,q,n) = Sh Om βpq.
We conclude by taking k = m+1 and observing that t = Sh Ok βpq.

3. (p oq∈G) Then poq∈G′ and by induction hypothesis we deduce T(Σ′,G′,p,q,n)=
Sh Om p[s] and T(Σ′,G′,q,p,n) = Sh Om p[s] for some h > 0. We conclude by
taking k=m+1 and observing that t = Sh Ok p[sσ] and T(Σ,G,q,p,n)= Sh Ok p[sσ].

ut

Definition C.2 (Σ-substitution). A Σ-substitution is a finite map σ such that

1. dom(σ) = {αpq | α ∈ dom(Σ)∧p oq⊆R};
2. σ(αpq) = σ(αqp) = nat for every p oq 6∈ Σ(α);
3. σ(αpq) = Sm On p[t] and σ(αqp) = Sm On p[t] and m > 0 for every p oq ∈ Σ(α).

Lemma C.2. If Σ′ = Σ,α : Σ(µα.G), then Σ(µα.G) = Σ′(G).

Proof. We have

Σ(µα.G) = Σ(µα.G) ∪Σ(µα.G)︸ ︷︷ ︸
α∈fv(G)

property of set union

= sort(µα.G)∪
⋃

β∈fv(µα.G)Σ(β) ∪Σ(µα.G)︸ ︷︷ ︸
α∈fv(G)

definition of Σ(µα.G)

= sort(µα.G)∪
⋃

β∈fv(G)Σ
′(β) fv(µα.G) = fv(G)\{α}

= sort(G)∪
⋃

β∈fv(G)Σ
′(β) sort(µα.G) = sort(G)

= Σ′(G) definition of Σ′(G)

ut

Lemma C.3. Let

– σ be a Σ-substitution;
– n < G;
– Σ′ = Σ,α : Σ(µα.G);
– spq = µαpq.{αpq := T(Σ′,G,p,q,n),αqp := T(Σ′,G,q,p,n)};
– σ ′ = σ ,{spqσ/αpq}poq∈R .

Then σ ′ is a Σ′-substitution.

28 Luca Padovani

Proof. We must prove the three conditions of Definition C.2. The first condition is
satisfied because dom(σ ′) = dom(σ)∪{αpq | p oq⊆R}, so let us consider conditions
2 and 3. For every type variable β 6= α these conditions are trivially satisfied from
the hypothesis that σ is a Σ-substitution, therefore we focus on α . Observe that, by
Lemma C.2, we have Σ′(α) = Σ(µα.G) = Σ′(G).

Regarding condition 2 of Definition C.2, assume p oq 6∈Σ′(α)=Σ′(G). We conclude

σ ′(αpq) = spqσ by definition of σ ′

= T(Σ′,G,p,q,n){spq,sqp/αpq,αqp}σ by unfolding of spq
= nat{spq,sqp/αpq,αqp}σ by Lemma C.1
= nat by definition of type substitution

Regarding condition 3 of Definition C.2, assume p oq ∈ Σ′(α) = Σ′(G). We distin-
guish two sub-cases:

– (p oq 6∈ G and p oq ∈ Σ′(β) and β ∈ fv(G)) From p oq 6∈ G we deduce β 6= α , so

σ ′(αpq) = T(Σ′,G,p,q,n){spq,sqp/αpq,αqp}σ by definition of σ ′

= Sh Ok βpq{spq,sqp/αpq,αqp}σ by Lemma C.1(2)
= Sh Ok σ(βpq) because β 6= α

= Sh Ok Sh′ Ok′ p[s] because σ is a Σ-substitution
= Sh+h′ Ok+k′ p[s] equality on types

and similarly we obtain σ ′(αpq) = Sh+h′ Ok+k′ p[s].
– (p oq ∈ G) We have

σ ′(αpq) = T(Σ′,G,p,q,n){spq,sqp/αpq,αqp}σ by definition of σ ′

= Sh Ok p[t] by Lemma C.1(3)

and similarly we obtain σ ′(αqp) = Sh Ok p[t]. ut

Lemma C.4. Let n < G and σ be a Σ-substitution. Then:

– p oq 6∈ Σ(G) implies T(Σ,G,p,q,n)σ = nat;
– p oq ∈ Σ(G) implies T(Σ,G,p,q,n)σ = Sh Ok p[t] and T(Σ,G,q,p,n)σ = Sh Ok p[t]

and h > 0.

Proof. If p o q 6∈ Σ(G), then by Lemma C.1 we deduce T(Σ,G,p,q,n) = nat and we
conclude immediately. If p oq ∈ Σ(G), then we distinguish two sub-cases:

– (p oq∈G) By Lemma C.1 we have T(Σ,G,p,q,n)= Sh Ok p[s] and T(Σ,G,q,p,n)=
Sh Ok p[s] and h > 0. We conclude by taking t = sσ .

– (p oq 6∈G and α ∈ fv(G) and p oq∈Σ(α)) By Lemma C.1 we have T(Σ,G,p,q,n)=
Sh′ Ok′ αpq and T(Σ,G,q,p,n) = Sh′ Ok′ αqp. By definition of Σ-substitution we de-
duce σ(αpq) = Sh′′ Ok′′ p[s] and σ(αqp) = Sh′′ Ok′′ p[s] and h′′ > 0. We conclude by
taking h = h′+h′′ and k = k′+ k′′. ut

Yet Another Type System for Lock-Free Processes 29

We introduce the following abbreviations for referring to the environments used in
the typing derivations of the following lemma:

Θ[Σ,p]
def
= {cα : !ω [α[p]] | α ∈ dom(Σ)}

Γ[Σ,G,p,n]
def
= {xpq : T(Σ,G,p,q,n) | q ∈R \{p}}= x[p] : T(Σ,G, [p],n)

Lemma C.5. Let σ be a Σ-substitution and n<G. Then Θ[Σ,p]σ ,Γ[Σ,G,p,n]σ `P(Σ,G,p).

Proof. By induction on G. We omit the cases for choices, since they are analogous to
the ones for interactions.

G = α Let spq
def
= σ(αpq). We have:

P(Σ,G,p) = cα !〈x[p]〉
Θ[Σ,p]σ 3 cα : !ω [α[p]]σ = cα : !ω [s[p]]

Γ[Σ,G,p,n]σ = x[p] : T(Σ,G, [p],n)σ = x[p] : Os[p]

We derive:

Γ[Σ,G,p,n]σ ` x[p] : Os[p]
[T-OUT*]

Θ[Σ,p]σ ,Γ[Σ,G,p,n]σ ` cα !〈x[p]〉

where we use the fact that 0≤ S-rank(spq) which follows from the hypothesis that σ is
a Σ-substitution.

G = µα.G′ Let

Σ′
def
= upd(Σ,α,G′) = Σ,α : Σ(G)

s[p]
def
= spq1 ×·· ·× spqn

spq
def
= µαpq{αpq := T(Σ′,G′,p,q,n),αqp := T(Σ′,G′,q,p,n)}

σ ′
def
= σ ◦{s[p]/α[p]}

and observe that σ ′ is a Σ′-substitution by Lemma C.3. We have:

P(Σ,G,p) = (νcα)(cα !〈x[p]〉 | ∗cα ?(x[p]).P(Σ′,G′,p))
Θ[Σ′,p]σ

′ = (Θ[Σ,p],cα : !ω [α[p]])σ
′ = Θ[Σ,p]σ ,cα : !ω [s[p]]σ

Γ[Σ,G,p,n]σ = x[p] : T(Σ,G, [p],n)σ = x[p] : Os[p]σ
Γ[Σ′,G′,p,n]σ

′ = x[p] : T(Σ′,G′, [p],n)σ ′ = x[p] : s[p]σ

We derive:

Γ[Σ,G,p,n]σ ` x[p] : Os[p]σ
[T-OUT*]

cα : !ω [s[p]]σ ,Γ[Σ,G,p,n]σ ` cα !〈x[p]〉

...
IND.HYP.

Θ[Σ′,p]σ
′,Γ[Σ′,G′,p,n]σ

′ ` P(Σ′,G′,p)
[T-IN*]

Θ[Σ,p]σ ,cα : #ω [s[p]]σ ` ∗cα ?(x[p]).P(Σ′,G′,p)
[T-PAR]

Θ[Σ,p]σ ,cα : #ω [s[p]]σ ,Γ[Σ,G,p,n]σ ` cα !〈x[p]〉 | ∗cα ?(x[p]).P(Σ′,G′,p)
[T-NEW]

Θ[Σ,p]σ ,Γ[Σ,G,p,n]σ ` P(Σ,G,p)

30 Luca Padovani

G = A→ B@`.G′ and p= A We consider the case A oB ∈ Σ(G′), the other being anal-
ogous. Then, from Lemma C.4, we know that

T(Σ,G′,A,B, `)σ = Sh Ok p[s]
T(Σ,G′,B,A, `)σ = Sh Ok p[s]

for some h,k ∈ N, p ∈ {?,!} such that h > 0, and s. We have:

P(Σ,G,p) = (νa)(xAB!〈a〉 |let xAB = a in P(Σ,G′,p))
Γ[Σ,G,p,n]σ = {xpq : S`−n T(Σ,G′,p,q, `)σ}q6=B,xAB : S`−n ![Sh Ok p[s]]
Γ[Σ,G′,p,`]σ = {xpq : T(Σ,G′,p,q, `)σ}q6=B,xAB : Sh Ok p[s]

We derive A :

a : S`−n+h Ok+1 p[s] ` a : S`−n OSh Ok p[s]
[T-OUT]

xAB : S`−n ![Sh Ok p[s]],a : S`−n+h Ok+1 p[s] ` xAB!〈a〉

as well as B:

...
IND.HYP.

Θ[Σ,p]σ ,Γ[Σ,G′,p,`]σ ` P(Σ,G′,p)
[T-LIFT]

Θ[Σ,p]σ ,{xpq : S`−n T(Σ,G,p,q, `)σ}q6=B,xAB : S`−n+h Ok p[s] ` P(Σ,G′,p)
[T-LET]

Θ[Σ,p]σ ,{xpq : S`−n T(Σ,G,p,q,σ)}q6=B,a : S`−n+h Ok p[s] ` let xAB = a in P(Σ,G′,p)

From these we obtain:

A B
[T-PAR]

Θ[Σ,p]σ ,Γ[Σ,G,p,n]σ ,a : S`−n+h O2k+1 #[s] ` xAB!〈a〉 |let xAB = a in P(Σ,G′,p)
[T-NEW]

Θ[Σ,p]σ ,Γ[Σ,G,p,n]σ ` (νa)(xAB!〈a〉 |let xAB = a in P(Σ,G′,p))

G = A→ B@`.G′ and p= B We have:

P(Σ,G,p) = xBA?(xBA).P(Σ,G′,p)
Γ[Σ,G,p,n]σ = {xpq : S`−n T(Σ,G′,p,q, `)σ}q6=A,xBA : S`−n ?[T(Σ,G′,B,A, `)σ]
Γ[Σ,G′,p,`]σ = x[p] : T(Σ,G′, [p], `)σ

We derive:

...
IND.HYP.

Θ[Σ,p]σ ,Γ[Σ,G′,p,`]σ ` P(Σ,G′,p)
[T-IN]

Θ[Σ,p]σ ,{xpq : T(Σ,G′,p,q, `)σ}q6=A,xBA : ?[T(Σ,G′,B,A, `)σ] ` xBA?(xBA).P(Σ,G′,p)
[T-LIFT]

Θ[Σ,p]σ ,Γ[Σ,G,p,n]σ ` P(Σ,G,p)

where the application of [T-IN] uses Lemma C.4 for deducing that the subject priorities
of all the linear types in the environment are strictly positive.

Yet Another Type System for Lock-Free Processes 31

G = A→ B@`.G′ and p 6∈ A oB We have:

P(Σ,G,p) = P(Σ,G′,p)
Γ[Σ,G,p,n]σ = x[p] : T(Σ,G, [p],n)σ = x[p] : S`−n T(Σ,G′, [p], `)σ = S`−n Γ[Σ,G′,p,`]σ

We derive:

...
IND.HYP.

Θ[Σ′,p]σ ,Γ[Σ,G′,p,`]σ ` P(Σ,G′,p)
[T-LIFT]

Θ[Σ,p]σ ,Γ[Σ,G,p,n]σ ` P(Σ,G,p)

ut

Theorem C.1 (Theorem 6.1). Let G be realizable. Then {xpq : T(/0,G,p,q,0) | q ∈
R \{p}} ` P(/0,G,p) for every p ∈R.

Proof. Consequence of Lemma C.5 by taking σ = /0. ut

	Yet Another Type System for Lock-Free Processes

