
Reachability Analysis of Innermost Rewriting

Thomas Genet∗ Yann Salmon†

February 10, 2014

Approximating the set of terms reachable by rewriting finds more and more
applications ranging from termination proofs of term rewriting systems, cryp-
tographic protocol verification to static analysis of programs. However, since
approximation techniques do not take rewriting strategies into account, they build
very coarse approximations when rewriting is constrained by a specific strategy.
In this work, we propose to adapt the Tree Automata Completion algorithm to
accurately approximate the set of terms reachable by rewriting under the inner-
most strategy. We prove that the proposed technique is sound and precise w.r.t.
innermost rewriting. The proposed algorithm has been implemented in the Timbuk
reachability tool. Experiments shows that it noticeably improves the accuracy of
static analysis for functional programs using the call-by-value evaluation strategy.
In particular, for some functional programs needing lazy evaluation to terminate,
the computed approximations are precise enough to prove the absence of innermost
normal forms, i.e. prove non termination of the program with call-by-value.

1. Introduction

For a Term Rewriting System (TRS) R and a set of terms L0 ⊆ T (Σ), the set of reachable terms
is R∗(L0) =

{
t ∈ T (Σ)

∣∣∣ ∃s ∈ L0, s→∗R t
}
. This set can be computed for specific classes of R but, in

general, it has to be approximated. Applications of the approximation of R∗(L0) are ranging
from cryptographic protocol verification [GK00, ABB+05], to static analysis of various pro-
gramming languages [BGJL07, KO11] or to TRS termination proofs [Mid02, GHWZ05]. Most
of the techniques compute such approximations using tree automata as the core formalism to
represent or approximate the (possibly) infinite set of terms R∗(L0). Most of them also rely on
a Knuth-Bendix completion-like algorithm to produce an automatonA∗ recognising exactly, or
over-approximating, the set of reachable terms. As a result, these techniques can be refered as
tree automata completion techniques [Gen98, TKS00, Tak04, FGVTT04, BCHK09, GR10, Lis12].

Surprisingly, very little effort has been paid to computing or over-approximating R∗strat(L0),
i.e. set of reachable terms when R is applied with a strategy strat. To the best of our knowledge,
Pierre Réty and Julie Vuotto’s work [RV02] is the first one to have tackled this goal. They give
some sufficient conditions on L0 and R for R∗strat(L0) to be recognised by a tree automaton A∗,

∗I.R.I.S.A., Campus de Beaulieu, 35042 Rennes Cedex, France, Thomas.Genet@irisa.fr
†I.R.I.S.A., Campus de Beaulieu, 35042 Rennes Cedex, France, Yann.Salmon@irisa.fr

1

where strat can be the innermost or the outermost strategy. Innermost reachability for shallow
TRSs was studied in [GGJ08]. However, in both cases, those restrictions on R are strong and
generally incompatible with programs seen as TRS. Moreover, the proposed techniques are
not able to over-approximate reachable terms when the TRS are outside of this class.

In this paper, we define a tree automata completion algorithm over-approximating the set
R∗in(L0) for all left-linear TRSs R and all regular set of input terms L0. As the completion
algorithm of [GR10], it is parameterised by a set of term equations E defining the precision
of the approximation. We prove the soundness of the algorithm: for all set of equation E, if
completion terminates then the resulting automaton A∗ recognises an over-approximation of
R∗in(L0). Then, we prove a precision theorem: A∗ recognises no more terms that the set of terms
reachable by innermost rewriting with R modulo equations of E. Finally, we show on a simple
example that the precision of this innermost completion can improve a lot the accuracy of the
analysis for functional programs.

This paper is organised as follows. Section 2 recalls some basic notions about TRSs and tree
automata. Section 3 defines tree automata completion. Section 4 explains how to adapt com-
pletion so as to take innermost strategy into account. Section 5 states and proves the soundness
of this method. Section 6 demonstrates how our new technique can effectively give more
precise results on functional programs thanks to the tool TimbukSTRAT, an implementation of
our method in the Timbuk reachability tool [Tim14]. Section 7 states a precision theorem.

2. Basic notions and notations

2.1. Terms

Definition 1 (Signature).
A signature is a set whose elements are called function symbols. Each function symbol has

an arity, which is a natural integer. Function symbols of arity 0 are called constants. Given a
signature Σ and k ∈ N, the set of its function symbols of arity k is noted Σk . 1J

Definition 2 (Term, ground term, linearity).
Given a signature Σ and a set X whose elements are called variables and such that Σ∩X = ∅,

we define the set of terms over Σ and X , T (Σ,X), as the smallest set such that :

1. X ⊆ T (Σ,X) and

2. ∀k ∈ N,∀f ∈ Σk ,∀t1, . . . , tk ∈ T (Σ,X), f (t1, . . . , tk) ∈ T (Σ,X).

Terms in which no variable appears, i.e. terms in T (Σ,∅), are called ground; the set of
ground terms is noted T (Σ).

Terms in which any variable appears at most once are called linear.1 2J

Definition 3 (Substitution).
A substitution over T (Σ,X) is an application from X to T (Σ,X). Any substitution is induc-

tively extended to T (Σ,X) by σ (f (t1, . . . , tk)) = f (σ (t1), . . . ,σ (tk)). Given a substitution σ and a
term t, we note tσ instead of σ (t). 3J

1In particular, any ground term is linear.

2

Definition 4 (Context).
A context over T (Σ,X) is a term in T (Σ ∪X , {�}) in which the variable � appears exactly

once. A ground context over T (Σ,X) is a context over T (Σ). The smallest possible context, �,
is called the trivial context. Given a context C and a term t, we note C[t] the term Cσt, where
σt :� 7→ t. 4J

Definition 5 (Position).
Positions are finite words over the alphabet N. The set of positions of term t, Pos(t), is

defined by induction over t:

1. for all constant c and all variable X, Pos(c) = Pos(X) = {Λ} and

2. Pos(f (t1, . . . , tk)) = {Λ} ∪
k⋃
i=1

{i}.Pos(ti). 5J

Definition 6 (Subterm-at-position, replacement-at-position).
The position of the hole in context C, Pos�(C), is defined by induction on C:

1. Pos�(�) =Λ

2. Pos�(f (C1, . . . ,Ck)) = i.Pos�(Ci), where i is the unique integer in J1 ; kK such that Ci is a
context.

Given a term u and p ∈ Pos(u), there is a unique context C and a unique term v such
that Pos�(C) = p and u = C[v]. The term v is noted u|p, and, given another term t, we note
u[t]p = C[t]. 6J

2.2. Rewriting

Definition 7 (Rewriting rule, term rewriting system).
A rewriting rule over (Σ,X) is a couple (`, r) ∈ T (Σ,X)× T (Σ,X), that we note `→ r, such

that any variable appearing in r also appears in `. A term rewriting system (TRS) over (Σ,X) is
a set of rewriting rules over (Σ,X). 7J

Definition 8 (Rewriting step, redex, reducible term, normal form).
Given a signature (Σ,X), a TRS R over it and two terms s, t ∈ T (Σ), we say that s can be

rewritten into t by R, and we note s→R t if there exist a rule `→ r ∈ R, a ground context C
over T (Σ) and a substitution σ over T (Σ,X) such that s = C[`σ] and t = C[rσ].

In this situation, the term s is said to be reducible by R and the subterm `σ is called a redex
of s. A term s that is not reducible by R is a normal form of R. The set of normal forms of R is
noted Irr(R).

We note→∗R the reflexive and transitive closure of→R. 8J

Definition 9 (Set of reachable terms).
Given a signature (Σ,X), a TRS R over it and a set of terms L ⊆ T (Σ), we note R(L) =

{t ∈ T (Σ) | ∃s ∈ L,s→R t} and R∗(L) =
{
t ∈ T (Σ)

∣∣∣ ∃s ∈ L,s→∗R t}. 9J

Definition 10 (Left-linearity).
A TRS R is said to be left-linear if for each rule `→ r of R, the term ` is linear. 10J

3

Definition 11 (Constructors and defined symbols, sufficient completeness).
Given a TRS R over (Σ,X), there is a partition (C,D) of Σ such that all symbols occurring

at the root position of left-hand sides of rules of R are in D. D is the set of defined symbols
of R, C is the set of constructors. Terms in T (C) are called data-terms. A TRS R over (Σ,X) is
sufficiently complete if for all s ∈ T (Σ), R∗({s})∩ T (C) ,∅. 11J

2.3. Equations

Definition 12 (Equivalence relation, congruence).
A binary relation over some set S is an equivalence relation if it is reflexive, symmetric and

transitive.
An equivalence relation ≡ over T (Σ) is a congruence if for all k ∈ N, for all f ∈ Σk, for all

t1, . . . , tk , s1, . . . , sk ∈ T (Σ) such that ∀i ∈ J1 ; kK, ti ≡ si , we have f (t1, . . . , tk) ≡ f (s1, . . . , sk). 12J

Definition 13 (Equation, ≡E).
An equation over (Σ,X) is a pair of terms (s, t) ∈ T (Σ,X)×T (Σ,X), that we note s = t. A set E

of equations over (Σ,X) induces a congruence ≡E over T (Σ) which is the smallest congruence
over T (Σ) such that for all s = t ∈ E and for all substitution θ : X → T (Σ), sθ ≡E tθ. The classes
of equivalence of ≡E are noted with [·]E . 13J

Definition 14 (Rewriting modulo E).
Given a TRS R and a set of equations E both over (Σ,X), we define the R modulo E rewriting

relation,→R/E , as follows. For any u,v ∈ T (Σ), u→R/E v if and only if there exist u′ ,v′ ∈ T (Σ)
such that u′ ≡E u, v′ ≡E v and u′→R v

′.
We define→∗R/E , (R/E)(L) and (R/E)∗(L) for L ⊆ T (Σ) as in Definitions 8 and 9. 14J

2.4. Tree automata

Definition 15 (Tree automaton, delta-transition, epsilon-transition, new state).
An automaton over Σ is someA = (Σ,Q,QF ,∆) where Q is a finite set of states, QF is a subset

of Q whose elements are called final states and ∆ a finite set of transitions. A delta-transition
is of the form f (q1, . . . , qk)� q′ where f ∈ Σk and q1, . . . , qk ,q

′ ∈Q. An epsilon-transition is of
the form q� q′ where q,q′ ∈Q. A configuration of A is a term in T (Σ,Q).

A state q ∈Q that appears nowhere in ∆ is called a new state. A configuration is elementary
if each of its subconfigurations at depth 1 (if any) is a state. A configuration is trivial if it is
just a state. 15J

Remark. We simply write A to denote an automaton, write QA for the set of states of A. We
assimilate an automaton with its set of transitions. When taking a “new state”, we silently
expand QA if needed. We are only rarely interested in QF , the set of final states.

Definition 16.
Let A = (Σ,Q,QF ,∆) be an automaton and let c,c′ be configurations of A. We say that A

recognises c into c′ in one step, and note c�
A
c′ if there a transition τ� ρ in A and a context

C over T (Σ,Q) such that c = C[τ] and c′ = C[ρ]. We note
∗
�
A

the reflexive and transitive closure

of�
A

and, for any q ∈Q, L (A,q) =
{
t ∈ T (Σ)

∣∣∣∣∣ t ∗�A q
}
. We extend this definition to subsets of

Q and note L (A) = L (A,QF). 16J

4

Example 17.
Let Σ be defined with Σ0 = {n,0}, Σ1 = {s,a, f }, Σ2 = {c} where 0 is meant to represent integer

zero, s the successor operation on integers, a the predecessor (“antecessor”) operation, n the
empty list, c the constructor of lists of integers and f intended to be the function on lists
that filters out integer zero. Let R = {f (n)→ n,f (c(s(X),Y))→ c(s(X), f (Y)), f (c(a(X),Y))→
c(a(X), f (Y)), f (c(0,Y))→ f (Y), a(s(X))→ X,s(a(X))→ X}. Let A0 = {n� qn,0� q0, s(q0)�
qs, a(qs)� qa, c(qa,qn)� qc, f (qc)� qf }. We have L (A0,qf) = {f (c(a(s(0)),n))} andR(L (A0,qf)) =
{f (c(0,n)), c(a(s(0)), f (n))}. 17C

Definition 18 (Determinism, Completeness, Accessibility).
An automaton is deterministic if it has no epsilon-transition and for all delta-transitions

τ� ρ and τ ′� ρ′, if τ = τ ′ then ρ = ρ′. An automaton is complete if each of its non-trivial
configurations is the left-hand side of some of its transitions. A state q of automaton A is
accessible if L (A,q) ,∅. An automaton is accessible if all of its states are. 18J

Remark. Transitions may have “colours”, like R for transition q
R
� q′. We will use colours R

and E.

Definition 19.
Given an automaton A and a colour R, we denote by A�R the automaton obtained from A by

removing all transitions coloured with R. 19J

Definition 20.
Given two states q, q′ of some automaton A and a colour E, we note q

E
��
A
q′ when we have

both q
E
�
A
q′ and q′

E
�
A
q. 20J

Remark. q
E,∗
��
A
q′ is stronger than (q

E,∗
�
A
q′ ∧ q′

E,∗
�
A
q).

E,∗
��
A

is an equivalence relation over QA.

This relation is extended to a congruence relation over T (Σ,Q). The equivalence classes are
noted with [·]E.

Definition 21.
Let A = (Σ,Q,QF ,∆) be an automaton and E a colour. We note A/E the automaton over Σ

whose set of states is Q/E, whose set of final states if QF/E and whose set of transitions is{
f ([q1]E , . . . , [qk]E)�

[
q′
]
E

∣∣∣ f (q1, . . . , qk)� q′ ∈ ∆
}

∪
{
[q]E�

[
q′
]
E

∣∣∣ q� q′ ∈ ∆∧ [q]E ,
[
q′
]
E

}
. 21J

Remark. For any configurations c,c′ of A, we have c
∗
�
A
c′ if and only if [c]E

∗
�
A/E

[
c′
]
E. So the

languages recognised by A and A/E are the same.

We now give notations used for pair automata, the archetype of which is the product of two
automata.

Definition 22 (Pair automaton).
An automaton A = (Σ,Q,QF ,∆) is said to be a pair automata if there exists some sets Q1 and

Q2 such that Q =Q1 ×Q2. 22J

5

Definition 23 (Product automaton).
Let A = (Σ,Q,QF ,∆A) and B = (Σ,P ,PF ,∆B) be two automata. The product automaton of A

and B is A×B = (Σ,Q × P ,QF × PF ,∆) where

∆ =
{
f (〈q1,p1〉 , . . . ,〈qk ,pk〉)�

〈
q′ ,p′

〉 ∣∣∣ f (q1, . . . , qk)� q′ ∈ ∆A ∧ f (p1, . . . ,pk)� p′ ∈ ∆B
}

∪
{
〈q,p〉�

〈
q′ ,p′

〉 ∣∣∣ q� q′ ∈ ∆A
}
∪

{
〈q,p〉�

〈
q,p′

〉 ∣∣∣ p� p′ ∈ ∆B
}
. 23J

Definition 24 (Projections).
Let A = (Σ,Q,QF ,∆) be a pair automaton, let τ � ρ be one of its transitions and 〈q,p〉 be

one of its states. We define Π1 (〈q,p〉) = q and extend Π1 (·) to configurations inductively:
Π1 (f (γ1, . . . ,γk)) = f (Π1 (γ1) , . . . ,Π1 (γk)). We define Π1 (τ� ρ) =Π1 (τ)�Π1 (ρ). We define
Π1 (A) = (Σ,Π1 (Q) ,Π1 (QF) ,Π1 (∆)). Π2 (·) is defined on all these objects in the same way for
the right components. 24J

Remark. Using Π1 (A) amounts to forgetting the precision given by the right components of
the states. As a result, L (Π1 (A) ,q) ⊇L (A,〈q,p〉).

2.5. Innermost strategies

In general, a strategy over a TRS R is a set of (computable) criteria to describe a certain
subrelation of→R. In this paper, we will be interested in innermost strategies. In these strate-
gies, commonly used to execute functional programs (“call-by-value”), terms are rewritten by
always contracting one of the lowest reducible subterms.

Definition 25 (Innermost strategy).
Given a TRS R and two terms s, t, we say that s can be rewritten into t by Rwith an innermost

strategy, and we note s→Rin
t, if s→R t and each strict subterm of the redex in s is a R-normal

form. We define→∗Rin
, Rin(L) and R∗in(L) as in Definitions 8 and 9. 25J

Example 26.
Let us go on with Example 17: Rin(L (A0,qf)) = {f (c(0,n))}. 26C

Remark. It is in fact sufficient to check whether subterms of s at depth 1 are in normal form
to decide whether s can be rewritten with an innermost strategy.

To deal with innermost strategies, we will have to discriminate normal forms. This is
possible within the tree automaton framework when R is left-linear.

Theorem 27 ([CR87]).
Let R be a left-linear TRS. There is a deterministic and complete tree automaton IRR(R)

whose states are all final except one, noted pred and such that L (IRR(R)) = Irr(R) and
L (IRR(R),pred) = T (Σ)r Irr(R). 27�

Remark. From determinism and the property of pred follows that for any state p different
from pred, L (IRR(R),p) ⊆ Irr(R).

Remark. If a term is reducible, any term built upon it is also reducible. Thus any transition
of IRR(R) where pred appears in the left-hand side will necessarily have pred as its right-hand
side. Therefore, for brevity, these transitions will always be left implicit when describing the
automaton IRR(R) for some TRS R.

6

Example 28.
In Example 17, IRR(R) needs, in addition to pred, a state plist to recognise lists of integers, a

state pa for terms of the form a(. . .), a state ps for s(. . .), a state p0 for 0 and a state pvar to recog-
nise terms that are not subterms of lhs of R, but may participate in building a reducible term by
being instances of variables in a lhs. We note P = {plist ,p0,pa,ps,pvar} and Pint = {p0,pa,ps}. The
interesting transitions are thus 0� p0,

⋃
p∈Pr{pa}{s(p)� ps},

⋃
p∈Pr{ps}{a(p)� pa} ; n� plist,⋃

p∈Pint ,p′∈P {c(p,p
′)� plist} ; f (plist)� pred, a(ps)� pred, s(pa)� pred. Furthermore, as re-

marked above, any configuration that contains a pred is recognised into pred. Finally, some
configurations are not covered by the previous cases: they are recognised into pvar . 28C

3. Classical equational completion

Equational completion of [GR10] is an iterative process on automata that is not guaranteed
to terminate. Each iteration comprises two parts: (exact) completion itself, then equational
merging. The former tends to incorporate descendants by R of already recognised terms
into the recognised language; this leads to the creation of new states. The latter tends to
merge states in order to ease termination of the overall process, at the cost of precision of the
computed result. Some transition added by equational completion will have colours R or E; it
is assumed that the transitions of the input automaton A0 do not have any colour and that A0
does not have any epsilon-transition.

3.1. Exact completion

Exact completion is about resolving critical pairs. A critical pair represents a situation where
some term is recognised by the current automaton, but not its descendants by R. Its resolution
consists in adding transitions to let the descendants be recognised as well. This process can
create new critical pairs.

Definition 29 (Critical pair).
A pair (`→ r,σ ,q) where `→ r ∈ R, σ : X →QA and q ∈QA is critical if (see Figure 1(a))

1. `σ
∗
�
A
q and

2. rσ
�
��
∗
�
A
q. 29J

`σ rσ

q q′

R

A ∗ A′∗

A′
R

(a) A critical pair

sθ tθ

q1 q2

E

A ∗ A∗
E

A′

(b) Situation of ap-
plication

Figure 1: A critical pair and a situation of application of an equation

7

We will want to close the square of Figure 2, that is to add transitions rσ � q′ and q′� q′.
However, doing the former is not generally possible in one step, as rσ might be a non-
elementary configuration. We will have to take steps and maybe introduce new states: this is
what normalisation does. Given an automaton A, a configuration c of A and a new state q, we
note NormA(c,q) the set of transitions (with new states) that we add to A to ensure that c is
recognised into q. The formal definition of normalisation is presented in Appendix A.

Example 30.
With a suitable signature, suppose that automaton A consists of the transitions c� q1 and

f (q1)� q2 and we want to normalise f (g(q2, c)) to the new state qN . We first have to normalise
under g: q2 is already a state, so it does not need to be normalised; c has to be normalised to
a state: since A already has transition c� q1, we add nothing and it remains to normalise
g(q2,q1). Since A does not contain a transition for this configuration, we must add a new state
q′ and the transition g(q2,q1)� q′. Finally, we add f (q′)� qN . 30C

Definition 31 (Completion of a critical pair).
A critical pair CP = (` → r,σ ,q) in automaton A is completed by first computing N =

NormA�R(rσ ,q′) where q′ is a new state, then adding to A the new states and the transitions

appearing in N as well as the transition q′
R
� q. If rσ is a trivial configuration (ie. r is just a

variable), only transition rσ
R
� q is added. 31J

Definition 32 (Step of completion).
Let P C be the set of all critical pairs of Ai . For pc ∈ P C, let Npc be the set of new states and

transitions needed under Definition 31 to complete pc. Then Ai+1 =Ai ∪
⋃
pc∈P C

Npc. 32J

Example 33.
Let Σ be defined with Σ0 = {n,0}, Σ1 = {s,a, f }, Σ2 = {c} where 0 is meant to represent

integer zero, s the successor operation on integers, a the predecessor (“antecessor”) operation,
n the empty list, c the constructor of lists of integers and f intended by some unwise person
to be the function on lists that filters out integer zero. Let R = {f (n) → n,f (c(s(X),Y)) →
c(s(X), f (Y)), f (c(a(X),Y)) → c(a(X), f (Y)), f (c(0,Y)) → f (Y), a(s(X)) → X,s(a(X)) → X}. Let
A0 = {n� qn,0� q0, s(q0)� qs, a(qs)� qa, c(qa,qn)� qc, f (qc)� qf }.
We have L (A0,qf) = {f (c(a(s(0)),n))} and R(L (A0,qf)) = {f (c(0,n)), c(a(s(0)), f (n))}.

There is a critical pair CP1 in A0 with the rule f (c(a(X),Y))→ c(a(X), f (Y)), the substitution
σ1 = {X 7→ qs,Y 7→ qn} and the state qf . It is resolved by adding transitions to recognise
c(a(qs), f (qn)) into qf . Normalisation finds and reuses the transition a(qs)� qa. It has to create
a new state qN1 such that f (qn)� qN1, and qN2 such that c(qa,qN1)� qN2. We then add

qN2
R
� qf , and have produced J (P C1)

R (A0).
Another critical pair is CP2 in A0 with the rule a(s(X))→ X, the substitution σ2 = {X 7→ q0}

and the state qa. It is resolved by adding to J (P C1)
R (A0) the transition q0

R
� qa, producing

J (P C1,P C2)
R (A0).

There is no more critical pair in A0: thus CR (A0) = J (P C1,P C2)
R (A0). There is a new critical

pair in CR (A0) with f (n)→ n, the empty substitution and state qN1. 33C

8

3.2. Equational merging

Since completion of a critical pair can create new critical pairs, the process fuels itself, which
is problematic for obtaining a fix-point. Equational merging is a way of countering this
phenomenon at the cost of precision that is parametrised by equations over T (Σ).

Definition 34 (Situation of application of an equation).
Given an equation s = t, an automaton A, a θ : X → QA and states q1 and q2, we say that

(s = t,θ,q1,q2) is a situation of application in A if (see Figure 1(b))

1. sθ
∗
�
A
q1,

2. tθ
∗
�
A
q2 and

3. q1
�
�
�E��
A
q2. 34J

Definition 35 (Application of an equation).
Given (s = t,θ,q1,q2) a situation of application in A, applying the underlying equation in it

consists in adding transitions q1
E
� q2 and q2

E
� q1 to A. This produces a new automaton A′

and we note A;E A′. 35J

Remark. In [GR10], q1 and q2 were merged by “renaming” q2 into q1, ie. removing q2 from
QA and replacing every occurrence of q2 by q1 in the transitions of A. This is equivalent to
applying our method, then considering automaton A/E (see definition 21) and finally choosing
a representative (here q1 for the class {q1,q2}) of each equivalence class of states.

Definition 36 (Simplified automaton).
Given an automaton A and a set of equations E, we call simplified automaton of A by E and

note SE (A) the automaton resulting from the successive application of all applicable equations
in A. 36J

Remark (;E is confluent). Indeed, there is a unique automaton A! that differs from A only
by its E-transitions and is such A�R ;∗E (A!)�R and there is no more situation of application of

equations in (A!)�R.

Definition 37 (Step of equational completion).
A step of equational completion is the composition of a step of exact completion, then

equational simplification: CER,E (A) = SE (CR (A)). 37J

The following notion is part of an easier discourse about the R/E-coherence notion of [GR10].

Definition 38 (Coherent automaton).
Let A0 = (Σ,Q,QF ,∆) be a tree automaton and E a set of equations. The automaton A0 is

said to be E-coherent if for all q ∈Q, there exists s ∈L (A0,q) such that L (A0,q) ⊆ [s]E . 38J

9

3.3. Known results

We now recall the two main theorems of [GR10].

Theorem 39 (Correctness).
Let A0 be some automaton. Assume the equational completion procedure defined above

terminates when applied to A0. Let A∗ be the resulting fix-point automaton. If R is left-linear,
then the calculated over-approximation is correct, that is

L (A∗) ⊇ R∗(L (A0)). 39�

We will make usage of E-coherence for the precision theorem.

Lemma 40.
Let A0 be a E-coherent automaton, R a left-linear TRS and A be an automaton obtained

from A0 after several steps of equational completion with R,E. Then A�R is E-coherent and
moreover, for all state q of A, there exists s ∈L (A�R,q) such that L (A,q) ⊆ (R/E)∗(s). 40�

Such an automaton is said to be R/E-coherent. The intuition behind this is the following: in
the tree automaton, R-transitions represent rewriting steps and transitions of A�R recognise
E-equivalence classes. More precisely, in a R/E-coherent tree automaton, if two terms s, t
are recognised into the same state q in A�R then they belong to the same E-equivalence class.
Otherwise, if at least one R-transition is necessary to recognise, say, t into q then at least one
step of rewriting was necessary to obtain t from s. In [GR10], the following theorem made an
assumption of R/E-coherence for A0, but, given that A0 does not have any R-transition, A0 is
R/E-coherent if and only if it is E-coherent.

Theorem 41 (Upper bound).
Let E be a set of equations, A0 a E-coherent tree automaton and R a left-linear TRS. If A is

an automaton produced from A0 after several steps of equational completion with R,E, then

L (A) ⊆ (R/E)∗(L (A0)) 41�

4. Adaptation to innermost strategies

4.1. Introduction

Our first contribution is an adaptation of the classical equational completion of [GR10].
The classical equational completion procedure with a left-linear TRS R produces a correct
over-approximaton of R∗(L0) whenever it terminates. As R∗in(L0) ⊆ R∗(L0), this is a correct
over-approximation of R∗in(L0) as well. Still, we would like to refine this procedure to deal more
precisely with Rin. Indeed, there are some critical pairs that we would not want to complete
because they do not correspond to any innermost rewriting situation.

Example 42.
Let us look at Example 33. The rewriting of f (c(a(s(0)),n)) into c(a(s(0)), f (n)) does not

conform to innermost strategy because a(s(0)) is not a normal form. We would like to abstain
from completing CP1 of Example 33. 42C

10

Due to the definition of innermost rewriting, we will need to discriminate between nor-
mal forms and terms reducible by R. To do so is possible using the automaton IRR(R) (see
Theorem 27). It is possible to build a product between A and IRR(R), the tree automaton
recognising the normal forms of R. Let A◦ be an automaton recognising the initial language.
Completion will start with A0 =A◦ ×IRR(R). This automaton enjoys the following property,
which we will be useful to prove correctness.

Definition 43 (Consistency with IRR(R)).
A pair automaton A is said to be consistent with IRR(R) if, for any configuration c and

any state 〈q,p〉 of A, Π2 (c) is a configuration and p is a state of IRR(R), and if c
∗
�
A
〈q,p〉 then

Π2 (c)
∗
�
IRR(R)

p. 43J

In the next subsections, we will restate the definitions used by equational completion to
adapt them to our new framework of pair automata. The TRS R is always supposed left-linear.
Some parts of them might look tricky, and they are indeed tricks to preserve the property of
consistency with IRR(R).

4.2. Exact completion

Definition 44 (Innermost critical pair).
A pair (`→ r,σ ,〈q,p〉) where `→ r ∈ R, σ : X →QA and 〈q,p〉 ∈QA is critical if

1. `σ
∗
�
A
〈q,p〉,

2. there is no p′ such that rσ
∗
�
A

〈
q,p′

〉
and

3. for each subconfiguration γ at depth 1 of `σ , the state
〈
qγ ,pγ

〉
such that γ

∗
�
A

〈
qγ ,pγ

〉
in

the recognition path of condition 1 is with pγ , pred. 44J

Remark. Because a critical pair denotes a rewriting situation, the p of definition 44 is neces-
sarily pred as long as A is consistent with IRR(R).

Example 45.
In the situation of Examples 17–28, consider the rule f (c(a(X),Y))→ c(a(X), f (Y)), the sub-

stitution σ1 = {X 7→ 〈qs,ps〉 ,Y 7→ 〈qn,pn〉} and the state
〈
qf ,pred

〉
: this is not an innermost crit-

ical pair because the recognition path is f (c(a(〈qs,ps〉),〈qn,pn〉))� f (c(〈qa,pred〉 ,〈qn,pn〉))�
f (〈qc,pred〉)�

〈
qf ,pred

〉
and so there is a pred at depth 1. But there is an innermost critical inA0

with the rule a(s(X))→ X, the substitution σ2 = {X 7→ 〈q0,p0〉} and the state 〈qa,pred〉. 45C

Normalisation is like in the classical case, except we deal with pairs 〈q,p〉 instead of just
q. Note that whenever we add a new transition c′ �

〈
q′ ,p′

〉
, only the q′ is arbitrary: the

p′ is always the state of IRR(R) such that projdroitec �
IRR(R)

p′. Again, the formal definition

presented in Appendix A, as it is technical and the details are not relevant to understanding
the tree automata completion process.

11

`σ rσ

f (q1, . . . , qk)

q q′

R

A ∗

A

A′∗

A′
R

(a) Classical

`σ rσ

f (〈q1,p1〉 , . . . ,〈qk ,pk〉)

〈q,pred〉
〈
q′ ,prσ

〉
〈q,prσ 〉

Rin

A ∗

A p1, . . . ,pk , pred

A′∗

A′
R

(b) Innermost

Figure 2: Comparison of classical and innermost critical pairs

Example 46.
With a suitable signature, suppose that automaton A consists of the transitions c� 〈q1,pc〉

and f (〈q1,pc〉) �
〈
q2,pf (c)

〉
and we want to normalise f (g(

〈
q2,pf (c)

〉
, c)) to the new state〈

qN ,pf (g(f (c),c))

〉
. We first have to normalise under g:

〈
q2,pf (c)

〉
is already a state, so it does

not need to be normalised; c has to be normalised to a state: since A already has transition
c� 〈q1,pc〉, we add nothing and it remains to normalise g(

〈
q2,pf (c)

〉
,〈q1,pc〉). SinceA does not

contain a transition for this configuration, we must add a new state
〈
q′ ,pg(f (c),c)

〉
and the tran-

sition g(
〈
q2,pf (c)

〉
,〈q1,pc〉)�

〈
q′ ,pg(f (c),c)

〉
. Finally, we add f (

〈
q′ ,pg(f (c),c)

〉
)�

〈
qN ,pf (g(f (c),c))

〉
.

Note that whenever we add a new transition c′ �
〈
q′ ,p′

〉
, only the q′ is arbitrary: the p′ is

always the state of IRR(R) such that projdroitec �
IRR(R)

p′. 46C

The following definition comprises two parts. The first set of operation formalises “closing
the square”; the supplementary operations ensure that any context that was recognised after
〈q,pred〉 will have a corresponding recognition path starting from 〈q,prσ 〉.
Definition 47 (Completion of an innermost critical pair).

A critical pair (` → r,σ ,〈q,p〉) in automaton A is completed by first computing N =

NormA�R(rσ ,
〈
q′ ,prσ

〉
) where q′ is a new state and Π2 (rσ)

∗
�
IRR(R)

prσ , then adding to A the new

states and the transitions appearing in N as well as the transition
〈
q′ ,prσ

〉 R
� 〈q,prσ 〉. If rσ is a

trivial configuration (ie. r is just a variable), only transition rσ
R
� 〈q,Π2 (rσ)〉 is added.

Afterwards, we execute the following supplementary operations. For any transition

f (. . . ,〈q,pred〉 , . . .)�
〈
q′′ ,p′′

〉
,

we add (if it is not present) a transition

f (. . . ,〈q,prσ 〉 , . . .)�
〈
q′′ ,p′′′

〉
with f (. . . ,prσ , . . .) �

IRR(R)
p′′′. These new transitions are in turn recursively considered for the

supplementary operations.2 47J

2We add no new state in these supplementary operations, so this necessarily terminates.

12

Definition 48 (Step of exact completion).
This is the same definition as Definition 32, but using Definition 47 instead of Definition 31

for each critical pair. 48J

4.3. Equational simplification

Definition 49 (Situation of application of an equation).
Given an equation s = t, an automaton A, a θ : X →QA and states 〈q1,p1〉 and 〈q2,p2〉, we

say that (s = t,θ,〈q1,p1〉 ,〈q2,p2〉) is a situation of application in A if

1. sθ
∗
�
A
〈q1,p1〉,

2. tθ
∗
�
A
〈q2,p2〉,

3. 〈q1,p1〉
�
�
�E��
A
〈q2,p2〉 and

4. p1 = p2. 49J

Definition 50 (Application of an equation).
Given (s = t,θ,〈q1,p1〉 ,〈q2,p1〉) a situation of application in A, applying the underlying

equation in it consists in adding transitions 〈q1,p1〉
E
� 〈q2,p1〉 and 〈q2,p1〉

E
� 〈q1,p1〉 to A.

We also add the supplementary transitions
〈
q1,p

′
1
〉 E
�

〈
q2,p

′
1
〉

and
〈
q2,p

′
1
〉 E
�

〈
q1,p

′
1
〉

where〈
q1,p

′
1
〉

and
〈
q2,p

′
1
〉

are variants that occur in the automaton. 50J

Lemma 51.
Applying an equation preserves consistency with IRR(R). 51�

Proof.
Let A be a consistent with IRR(R) automaton whose set of states is Q, let B result from the

adjunction of transition 〈q1,p1〉� 〈q2,p1〉 toA due to the application of some equation. Notice
that this is sufficient because of the symmetry between q1 and q2. We proceed by induction

on k, the number of times the transition 〈q1,p1〉� 〈q2,p1〉 occurs in the path c
∗
�
B
〈q,p〉 where

c is a configuration and 〈q,p〉 is a state of B. If there is no occurrence, then c
∗
�
A
〈q,p〉 and by

consistency of A, Π2 (c)
∗
�
IRR(R)

p.

Suppose the property is true for some k and there is a context C on T (Σ,Q) such that

c
∗
�
A
C[〈q1,p1〉]�

B
C[〈q2,p1〉]

∗
�
B
〈q,p〉 with the last part of the path using less than k times

the new transition. First, there is a configuration c1 such that c = C[c1] and c1
∗
�
A
〈q1,p1〉,

and therefore Π2 (c1)
∗
�
IRR(R)

p1. Second, by induction hypothesis, Π2 (C[p1])
∗
�
IRR(R)

p. Finally,

Π2 (c)
∗
�
IRR(R)

Π2 (C[p1])
∗
�
IRR(R)

p. �

13

Remark. The condition 4 (p1 = p2) of definition 49 is obviously necessary for this lemma.
Here is why consistency is important and what would happen if we allowed equations to be
applied without regard for condition 4 of Definition 49. Take R = {f (a)→ w,g(f (b))→ c},
E = {a = b} and A◦ = {a� qa,b� qb, f (qa)� qf a, g(qf a)� qgf a}. We have

IRR(R) = {a� pa,b� pb, c� pc,w� pc,

f (pa)� pred, f (pb)� pf b, f (pc)� pc,

g(pf b)� pred, g(pc)� pc}

We omit the transitions whose left-hand side contains pred: they always have pred as a right-
hand side.

Remark that c ∈ Rin(g(f (b))). However, g(f (b)) is not recognised by A◦ into any state and
thus not by A◦ × IRR(R) either, so we are not interested in its successors. But let us apply
the equation a = b without taking condition 4 of definition 49 into account: in particular,
we add the transition 〈qb,pb〉� 〈qa,pa〉. Therefore we now have g(f (b))� g(f (〈qb,pb〉))�
g(f (〈qa,pa〉))� g(

〈
qf a,pred

〉
)�

〈
qgf a,pred

〉
. We have g(f (b)) ∈L (A,

〈
qgf a,pred

〉
) and are thus

now interested in its successors: we would like to have some critical pair involving g(f (b)) and
c. But we do not, because the only recognition path of g(f (b)), the one we just created, does
not fulfil condition 3 of definition 44.

5. Correctness

Lemma 52.
Let A be an automaton obtained from some A◦ × IRR(R) after some steps of innermost

completion. A is consistent with IRR(R). 52�

Proof.
A◦ × IRR(R) is consistent with IRR(R) by construction. Lemma 51 shows that applying an

equation preserves this. It remains to show that a step of exact completion does so as well.
The first steps of normalisation are preserving because the new

〈
q′i ,p

′
i

〉
are precisely chosen

such that Π2

(
d|ξi

) ∗
�
IRR(R)

p′i . The last step of normalisation is preserving too, as well as the

remaining operations of the completion of a critical pair, because, again, we choose p′ such

that rσ
∗
�
IRR(R)

p′.

The same goes for the supplementary operations. �

Lemma 53.
Let A be an automaton consistent with IRR(R), (`→ r,σ ,〈q,p〉) a critical pair in A, let prσ be

the state of IRR(R) such that rσ
∗
�
IRR(R)

prσ and B be the automaton resulting from the completion

of this critical pair. Let C be a context on T (Σ) and 〈q1,p1〉 a state of A such that C[〈q,p〉]
∗
�
A

〈q1,p1〉. Then there exists a state p2 of IRR(R) such that C[〈q,prσ 〉]
∗
�
B
〈q1,p2〉. 53�

Proof.
Note that we have p = p1 = pred. We have to show that all the transitions used in the path

C[〈q,pred〉]
∗
�
A
〈q1,pred〉 have some counterpart starting from C[〈q,prσ 〉]. First, observe that all

14

transitions used to recognise subterms at positions of C that are parallel to the position of the
hole can remain unchanged. It remains to be shown that the transitions involving positions in
the branch of the completion of the considered critical pair also have their counterpart: they
exist thanks to the supplementary operations of definition 47. �

Remark. The supplementary operations are necessary for this lemma. Indeed, take R =
{g(f (b))→ g(f (a)), f (a)→ c},A◦ = {b� qb, f (qb)� qf b, g(qf b)� qgf b}. We have IRR(R) = {a�
pa,b� pb, c� pc, f (pa)� pred, g(pa)� pc, f (pb)� pf b, g(pf b)� pred, f (pc)� pc, g(pc)� pc}.
There is a critical pair P C1 = (g(f (b))→ g(f (a)),∅,

〈
qgf b,pred

〉
) inA◦×IRR(R), which is resolved

by adding transitions a� 〈qN1,pa〉, f (〈qN1,pa〉)� 〈qN2,pred〉, g(〈qN2,pred〉)� 〈qN3,pred〉 and
〈qN3,pred〉�

〈
qgf b,pred

〉
, thereby producing automaton A1. The supplementary operations do

not create any new transition here.
There is a critical pair P C2 = (f (a)→ c,∅,〈qN2,pred〉) in A1, which is resolved by adding

transitions c� 〈qN4,pc〉 and 〈qN2,pc〉, thereby producing automaton A\2. The supplementary
operations are detailed further down and produce automaton A2.

Now consider that g(c) ∈ Rin(g(f (a))) and g(f (a)) ∈L (A\2,
〈
qgf b,pred

〉
) because we completed

P C1. But all what we have is g(c)�
A\2
g(〈qN4,pc〉)�

A\2
g(〈qN2,pc〉), this last configuration being

not productive. As a result, g(c) <L (A\2,
〈
qgf b,p

′
〉
) for any p′.

The supplementary operations are made after completion of P C2. Since there is a transition
g(〈qN2,pred〉)� 〈qN3,pred〉, we add a transition g(〈qN2,pc〉)� 〈qN3,pc〉. Then, since qN3 <A◦
either, and there is a 〈qN3,pred〉 �

〈
qgf b,pred

〉
, we add 〈qN3,pc〉 �

〈
qgf b,pc

〉
. No further

transition needs to be added. These transitions allow g(c) ∈L (A2,
〈
qgf b,pc

〉
).

Definition 54 (Correct automaton).
An automaton A is correct wrt. Rin if for all state 〈q,pred〉 of A, for all u ∈L (A,〈q,pred〉)

and for all v ∈ Rin(u), either there is a state p of IRR(R) such that v ∈ L (A,〈q,p〉) or there
is a critical pair (` → r,σ ,〈q0,p0〉) in A for some 〈q0,p0〉 and a context C on T (Σ) such that

u
∗
�
A
C[`σ]

∗
�
A
C[〈q0,pred〉]

∗
�
A
〈q,pred〉 and v

∗
�
A
C[rσ]. 54J

Lemma 55.
Any automaton produced by innermost completion starting from someA◦×IRR(R) is correct

wrt. Rin. 55�

Proof.
Let A be such an automaton; it is consistent with IRR(R). Let 〈q,pred〉 be a state of A,

u ∈L (A,〈q,pred〉) and v ∈ Rin(u). By definition of innermost rewriting, there is a rule `→ r
of R, a substitution µ : X → T (Σ) and a context C such that u = C[`µ], v = C[rµ] and each
strict subterm of u is a normal form. Let u0 = `µ and v0 = rµ. There is a 〈q0,pred〉 such that

u0 ∈L (A,〈q0,pred〉) and C[〈q0,pred〉]
∗
�
A
〈q,pred〉.

Since ` is linear, there is a σ : X → QA such that `µ
∗
�
A
`σ

∗
�
A
〈q0,pred〉 and rµ

∗
�
A
rσ . This

entails that u
∗
�
A
C[`σ]

∗
�
A
C[〈q0,pred〉]

∗
�
A
〈q,pred〉 and v

∗
�
A
C[rσ].

Assume that there is no p0 such that v0 ∈L (A,〈q0,p0〉) and show that (`→ r,σ ,〈q0,pred〉) is

a critical pair in A. First, by assumption, there is no p such that rσ
∗
�
A
〈q0,p〉. Conditions 1

15

and 2 of definition 44 are thus met. Suppose ` = f (γ1, . . . ,γk) and show that condition 3 of

definition 44 holds.3 For each i ∈ J1 ; kK, let 〈qi ,pi〉 be the state of A such that γiµ
∗
�
A
γiσ

∗
�
A

〈qi ,pi〉 in the path of recognition of `σ . Then, by consistency with IRR(R), for each i ∈ J1 ; kK,
γiµ

∗
�
IRR(R)

pi . Since strict subterms of `µ are strict subterms of u as well, they are normal forms,

thus pi , pred, which validates condition 3 of definition 44.
Assume now that v0 ∈ L (A,〈q0,p0〉) and show that there is a p such that v ∈ L (A,〈q,p〉).

This is obvious at the initial step A◦ ×IRR(R), and this property is conserved by completion as
shown by lemma 53. �

Theorem 56 (Correctness).
Assuming R is left-linear, the innermost equational completion procedure defined above

produces a correct result whenever it terminates and produces some fixpoint Ain∗:

L (Ain∗) ⊇ R∗in(L (A◦ ×IRR(R))). 56�

Proof.
Let Ain∗ be the calculated fixpoint automaton. By lemma 52, Ain∗ is consistent with IRR(R),

and therefore, by lemma 55, Ain∗ is correct wrt. Rin. Since this automaton is a fixpoint, the
case of definition 54 where there remains a critical pair cannot occur, and therefore, for all
state 〈q,pred〉 of A, for all u ∈ L (Ain∗,〈q,pred〉) and for all v ∈ Rin(u), there is a p′ such that
v ∈ L (Ain∗,〈q,p〉). Thus, Ain∗ is Rin-closed: Rin(L (Ain∗)) ⊆ L (Ain∗). Since the completion
process only adds transitions, L (Ain∗) ⊇L (A◦ ×IRR(R)), which concludes the proof. �

6. Using innermost completion to improve accuracy of static

analysis

We made an alpha implementation of innermost completion. This new version of Timbuk,
named TimbukSTRAT, is available at [Tim14] along with several examples. On those examples,
innermost completion run within milliseconds. Sets of approximation equations, when needed,
are systematically defined [GS13].

We now explain two of those examples add and sumlist1 showing that this tool can improve
the accuracy of static analysis techniques. TRSs, and similar formalisms, have been shown
to be a convenient model for static analysis of functional programs [Jon87, KO11] and Java
programs [BGJL07]. In this setting, the static analysis tool itself only builds approximations of
terms reachable with the TRS encoding the semantics of the program.

6.1. More relevant analysis for TRSs encoding the Java semantics

In the Java semantics, the add bytecode performs an addition of two integers x and y of a stack.
Here is a simplified version of what should be the TRS encoding the effect of the add Java
bytecode on a stack of integers:
plus(0,X)→ X
plus(s(X),Y)→ s(plus(X,Y))
add(stack(X,stack(Y ,Z)))→ stack(plus(X,Y),Z)

3If ` is a constant, then condition 3 is vacuously true.

16

However, to be coherent with Java semantics, this TRS should ensure that the addition
x+y has been normalized before storing its result on the same stack. Since the tools building
the approximations of reachable terms are not strategy-aware, they build rough approxi-
mations containing stacks of non-reduced integer additions, which are not reachable w.r.t.
the Java semantics. In [BGJL07], the TRS representing the semantics of a Java programs
had to be transformed so as to encode, in the TRS, the call-by-value of Java. Furthermore,
a similar transformation is necessary for many of the Java bytecode operations, leading to
an unnecessarily complicated TRS. This is also the case with methods commonly used to
encode the innermost strategy into the program itself, such as continuation-passing-style
transformations [Plo75, DF92].

Using innermost completion can totally avoid this problem. On the above TRS, the set of
descendants computed by Timbuk STRAT with file add does not contain stacks of non-reduced
integer additions.

6.2. Improving static analysis of functional programs

There is a recent and renewed interest for Data flow analysis of higher-order functional
programs [OR11, KO11, KI13] that was initiated by [Jon87]. On examples taken from [OR11],
we showed in [GS13] that completion can compete with those techniques. None of those
techniques is strategy-aware: on Example 17, they all consider the term c(a(s(0)), f (n)) as
reachable, though it is not with innermost strategy. Example 17 also shows that this is not the
case with innermost completion.

Accuracy of innermost completion can benefit to static analysis of functional programs. To
illustrate this, we choose to show that approximations built with TimbukSTRAT are precise
enough to prove non-termination of functions using call-by-value evaluation strategy. First,
we recall how to prove non-termination using an approximation of reachable terms [Gen98].
Consider the following OCaml program, which can be represented as a TRS R:4

1 let hd= function x::_ -> x;;
2 let tl= function _::l -> l;;
3 let rec delete (e,l)=
4 if (l=[]) then []
5 else if (hd l=e) then tl l else (hd l):: delete (e,l);;

It is faulty: the recursive call should be (hd l)::delete(e, tl l). Any call delete(e, l)
will not terminate if l is not empty and hd l is not e. Since the language of such calls to delete
with l not empty is regular, completion can compute an automaton over-approximating of
the set of reachable terms from this language. Besides, we can compute the automaton IRR(R)
recognizing normal forms of R5. Then, computing the intersection between the two automata,
we obtain the automaton recognizing the set of reachable terms in normal form6: this set is
empty. This reflects the fact that the delete function does not compute any result, i.e. it is not
terminating.

Now, we perform the same kind of non-termination proof on a program which is terminating
with call-by-name but not with call-by-value strategy.7 The OCaml program sum x computes

4See file nonTerm1 under TimbukSTRAT at [Tim14].
5For functional programs, computing IRR(R) can be easier than for general TRS: it can consist of the simple

automaton recognising constructor terms [GS13].
6Computing IRR(R) and the intersection can be done using Timbuk.
7See file sumlist1.txt.

17

the sum of the x first natural numbers. It does not terminate because of OCaml’s call-by-value
evaluation. Strategy-unaware methods cannot show this: there are (outermost) reachable terms
that are in normal forms: the integer results obtained with a call-by-need or lazy evaluation.

1 let rec sumList (x,y)=
2 (x+y):: sumList (x+y,y+1);;
3 let rec nth i (x::l)=
4 if i <=0 then x else nth (i -1) l;;
5 let sum x= nth x (sumList (0 ,0));;

(1) 0 +X→ X
(2) s(X) +Y → s(X +Y)
(3) sumList(X,Y)→ cons(X +Y ,sumList(X +Y ,s(Y)))
(4) nth(0, cons(X,Y))→ X
(5) nth(s(X), cons(Y ,Z))→ nth(X,Z)
(6) sum(X)→ nth(X,sumList(0,0))

1 Ops sum :1 nth :2 sumList :2 cons :2 nil :0 zero :0 s:1 add :2
2 Vars X Y Z U
3

4 TRS R1
5 add(zero ,X) -> X
6 add(s(X),Y) -> s(add(X,Y))
7 sumList (X,Y) -> cons(add(X,Y), sumList (add(X,Y),s(Y)))
8 nth(zero ,cons(X,Y)) -> X
9 nth(s(X),cons(Y,Z)) -> nth(X,Z)

10 sum(X) -> nth(X, sumList (zero ,zero))

Assume that we want to over-approximate the set of results of the function sum for all
natural number i. Thus, our aim is to compute the automaton recognising the set of innermost
reachable terms from the initial regular language {sum(s∗(0))}. Let A = (Σ,Q,Qf ,∆) with Qf =
{q1} and ∆ = {0� q0, s(q0)� q0, sum(q0)� q1} be an automaton recognising this language.
Timbuk [Tim14] can compute the automaton IRR(R), whose description is then appended to
the definition of the TRS in sumlist1.txt. In this automaton, all transitions with top symbol
sum are mapped to pred. This is not surprising since the rule sum(X)→ nth(X,sumList(0,0))
rewrites any term rooted by sumList, i.e. they are all reducible. This is the same for all
transitions rooted by the sumList symbol.

On the opposite, terms built only on symbols s and 0 are all irreducible. Let us denote by pi
the state recognising them in IRR(R). Let us denote by A0,A1, . . . the tree automata obtained
by innermost completion. Let A0 =A◦ ×IRR(R) be the initial product automaton whose set of
transitions is: 0� 〈q0,pi〉, s(〈q0,pi〉)� 〈q0,pi〉, sum(〈q0,pi〉)� 〈q1,pred〉. The first completion
step solves only one critical pair which is:

sum(〈q0,pi〉) nth(〈q0,pi〉 , sumList(0,0))

〈q1,pred〉 〈q3,pred〉

R

A0 ∗ A1∗

A1

R

During the normalisation of the new transition nth(〈q0,pi〉 , sumList(0,0))� 〈q3,pred〉, the sub-
term 0 is normalised using the transition 0� 〈q0,pi〉 ofA0 and the subterm sumList(〈q0,pi〉 ,〈q0,pi〉)
is normalised using a new state 〈q2,pred〉. Thus, according to Definition 47, the set of transitions
added to A0 to obtain A1 is nth(〈q0,pi〉 ,〈q2,pred〉) � 〈q3,pred〉, sumList(〈q0,pi〉 ,〈q0,pi〉) �
〈q2,pred〉, and 〈q3,pred〉

R
� 〈q1,pred〉. Since no other critical pair with symbol sum will never

be solved, the language of reachable terms from sum(s∗(0)) is recognised by q1 and thus by
q3. For q3 to recognise irreducible terms, it necessary to discard the nth symbol by applying
either rule (4) or (5) of R, i.e. have an innermost critical pair between rules (4) or (5) and the

18

transition nth(〈q0,pi〉 ,〈q2,pred〉)� 〈q3,pred〉. However, this cannot happen because q2 does
not recognise any irreducible term. Furthermore, during all the following completion steps,
terms recognised by q2 will all be reducible. We can illustrate this on the second completion
step which only solves one critical pair:

sumList(〈q0,pi〉 ,〈q0,pi〉) cons(〈q0,pi〉+ 〈q0,pi〉 , sumList(〈q0,pi〉+ 〈q0,pi〉 , s(〈q0,pi〉)))

〈q2,pred〉 〈q6,pred〉

R

A1 ∗ A2∗

A2

R

Normalisation of the corresponding transition results in the following set of new transi-
tions to be added to A1: cons(〈q4,pred〉 ,〈q5,pred〉)� 〈q6,pred〉, 〈q0,pi〉 + 〈q0,pi〉� 〈q4,pred〉,
sumList(〈q4,pred〉 ,〈q0,pi〉)� 〈q5,pred〉 and 〈q6,pred〉

R
� 〈q2,pred〉. Note that right-hand side of

this critical pair is recognised by the state 〈q6,pred〉. In fact, as explained above, all terms rooted
by a sumList symbol will necessarily be recognised by pred. As a consequence, we will never
be able to perform an innermost completion step on the transition nth(〈q0,pi〉 ,〈q2,pred〉)�
〈q3,pred〉 because the state 〈q2,pred〉 and all its successors will only contain terms having
sumList symbols and thus being reducible. Using equations, it is possible to guarantee the ter-
mination of the completion (see [GS13]). On this example, having a set of equations containing
at least equations s(s(X)) = s(X) and add(0,X) = X is enough to have a terminating completion.
Rule (3) produces infinite lists with infinite sums of the form (((0+1)+3)+6)+. . .. The equations
are used to merge together all the integers. Completion with TimbukSTRAT terminates on an
automaton (see section B) where the only product state labelled by q1 is 〈q1,pred〉. This means
that terms of the form sum(s∗(0)) have no innermost normal form. Thus, this proves that the
function sum is not terminating in OCaml, which uses a call-by-value strategy.

On the same example, all aforementioned techniques [OR11, KO11, KI13, Jon87], as well as
all completion techniques [Tak04, GR10, Lis12], give a more coarse approximation and are
unable to prove non-termination with call-by-value. Indeed, those techniques approximate
all reachable terms, independently of the rewriting strategy. Their approximation will, in
particular, contain the integer results that are reachable by a call-by-need evaluation strategy.

7. Precision theorem

We showed that accuracy of the approximation has a great impact on the quality of the static
analysis. Now we formally quantify this accuracy w.r.t. rewriting modulo E. For this, we need
the hypothesis that the initial automaton does not mix different equivalence classes into the
same state.

Definition 57 (Separation of E-classes).
The pair automaton A separates the classes of E if for any q ∈Π1 (QA), there is a term s such

that for all p ∈Π2 (QA), L (A,〈q,p〉) ⊆ [s]E . 57J

The following definitions are internal to the proof. We first give a notation for the common
class of the terms recognised into a given state and extend this for configurations of the
automaton.

19

Definition 58 (Equivalence class of a configuration).
Let A be an automaton that separates the classes of E. Let q be a left-component of a state

(q ∈Π1 (A)). If there is a p ∈Π2 (A) such that L (A,〈q,p〉) ,∅, then the common E-class of all
terms recognised by A into states of the form 〈q, ·〉 is noted [q]AE . If there is no such p, we note
[q]AE =⊥.

We extend this notation to configurations of A as follows. First, we note [〈q,p〉]AE = [q]AE .
Then, let c = f (c1, . . . , ck) be a configuration of A. If there is an i ∈ J1 ; kK such that [ci]

A
E =

⊥, then let [c]AE = ⊥. Else, for each i ∈ J1 ; kK, let ti ∈ L (Π1 (A) ,Π1 (ci)). We note [c]AE =
[f (t1, . . . , tn)]E . 58J

Definition 59 (Total separation of classes).
Let A be an automaton separating the classes of E. We say that this separation is total if for

any configuration c of A, [c]AE ,⊥. 59J

Now, some purely technical remarks to make the proof more readable.

Definition 60 (Reflexivity equations).
For a signature (Σ,X), the set of its reflexivity equations is

Er = {f (x1, . . . ,xk) = f (x1, . . . ,xk) | k ∈ N∧ f ∈ Σk ∧ x1, . . . ,xk are distinct} . 60J

Remark. To ease the formulation of the proof, we will use a normalisation procedure that
does not reuse already existing states, thus always normalising to new states. To compensate
for this, we will add to E the set Er of reflexivity equations: equational simplification will
merge the superfluous states that were created by this modified normalisation procedure. On
the other hand, the equivalence classes of ≡E are the same as those of ≡E∪Er and equational
simplification makes recognised languages bigger, so this way of doing is valid.

Here follows the property that will be passed on to each completed automaton A1, etc.

Definition 61 (Rin/E-coherence).
An automaton A is Rin/E-coherent if

1. A�R totally separates the classes of E,

2. A is accessible, and

3. for any state 〈q,p〉 of A, L (A,〈q,p〉) ⊆ (Rin/E)∗
(
[q]A�

R

E

)
. 61J

The following two simple lemmas show that we do equational simplification or completion
“for a reason”.
Lemma 62.

Let A be an automaton that totally separates the classes of E. Let (s = t,θ,〈q1,p〉 ,〈q2,p〉) be
a situation of application of an equation of E in A. Then [q1]AE = [q2]AE . 62�

Proof.
It suffices to prove that [sθ]AE = [tθ]AE . Since the separation of the classes by A is total, for

each x in the domain of θ, there is a term xµ ∈L (Π1 (A) ,xθ). This builds an instance sµ ≡E tµ
of the considered equation. But [sθ]AE = [sµ]E and [tθ]AE = [tµ]E . �

20

Lemma 63.
Let A be a Rin/E-coherent automaton that is consistent with IRR(R), let (`→ r,σ ,〈q,pred〉)

be a critical pair that is to be completed by adding transition
〈
q′ ,prσ

〉 R
� 〈q,prσ 〉. We suppose

that the normalisation steps have just been performed and still noteA the resulting automaton.

We have L (A, rσ) ⊆ (Rin/E)∗
(
[q]A�

R

E

)
. 63�

Proof.
let t ∈ T (Σ) such that t

∗
�
A
rσ

∗
�
A�R

〈
q′ ,prσ

〉
. For each variable x of r, let xµ be the subterm of t at

the position where x occurs in r: we have thus t = rµ. For each variable y appearing in ` but not
in r, let yµ be any term in L (A, yσ). SinceA is consistent with IRR(R) and the critical pair fulfils
Condition 3 of Definition 44, each strict subterm of `µ is a normal form. So t = rµ ∈ Rin(`µ).

Moreover, `µ ∈L (A,〈q,pred〉) and A is Rin/E-coherent, so t ∈ (Rin/E)∗
(
[q]A�

R

E

)
. �

This is the main theorem of preservation.

Theorem 64.
Equational simplification preserves Rin/E-coherence. 64�

Proof.
Let (s = t,θ,〈q1,p0〉 ,〈q2,p0〉) be a situation of application of an equation of E in A and let B

be the automaton resulting from the merger of 〈q1,p0〉 and 〈q2,p0〉. Let 〈q,p〉 be a state.

Show that L (B�R,〈q,p〉) ⊆ [q]A�
R

E . Consider u = C[u0]
∗
�
A�R

C[〈q1,p0〉]
E
� C[〈q2,p0〉]

∗
�
A�R
〈q,p〉.

We have u0 ∈ [q1]A�
R

E , thus, by Lemma 62, u0 ∈ [q2]A�
R

E . Therefore u ∈ C[[q2]A�
R

E], which is just

[q]A�
R

E . Other cases are either trivial, symmetrical or reducible to this one.

Next, show that L (B,〈q,p〉) ⊆ (Rin/E)∗
(
[q]A�

R

E

)
. Consider u = C[u0]

∗
�
A
C[〈q1,p0〉]

E
� C[〈q2,p0〉]

∗
�
A

〈q,p〉. We have u0 ∈ (Rin/E)∗
(
[q1]A�

R

E

)
, i.e. u0 ∈ (Rin/E)∗

(
[q2]A�

R

E

)
. Thus u ∈ (Rin/E)∗

(
C[[q2]A�

R

E]
)
.

First, assume that C[〈q2,p0〉]
∗
�
A�R
〈q,p〉. Then C[[q2]A�

R

E] = [q]A�
R

E , therefore u ∈ (Rin/E)∗
(
[q]A�

R

E

)
.

Second, assume that C[〈q2,p0〉]
∗
�
A
〈q,p〉 with just one R-transition, that is C[〈q2,p0〉]

∗
�
A�R

D[rσ]
∗
�
A�R

D[
〈
q′3,p3

〉
]

R
� D[〈q3,p3〉]

∗
�
A�R
〈q,p〉. There is a corresponding critical pair (` →

r,σ ,〈q3,pred〉) and, by Lemma 63, L (A, rσ) ⊆ (Rin/E)∗
(
[q3]A�

R

E

)
. On the other hand, D[[q3]A�

R

E] =

[q]A�
R

E , so L (A,D[rσ]) ⊆ (Rin/E)∗
(
[q]A�

R

E

)
. Since (Rin/E)∗ is an operator that deals with equiv-

alence classes, every term equivalent to one of L (A,D[rσ]) is also a descendant of [q]A�
R

E by

Rin/E. Since C[[q2]A�
R

E] =D[[rσ]A�
R

E], u is a descendant of such a term, so u ∈ (Rin/E)∗
(
[q]A�

R

E

)
.

Finally, in the paragraph above, it suffices thatD[[q3]A�
R

E] ⊆ (Rin/E)∗
(
[q]A�

R

E

)
(we hadD[[q3]A�

R

E] =

[q]A�
R

E): this allows us to reuse this case as an induction step over the number of R-transitions

present in the path C[〈q2,p0〉]
∗
�
A
〈q,p〉. �

21

Because we decided to always use fresh states for normalisation, the step about completion
of a critical pair is simpler.

Lemma 65.
Normalisation preserves Rin/E-coherence. So do the supplementary operations performed

after completing a critical pair. 65�

Lemma 66.
Completion of a critical pair preserves Rin/E-coherence. 66�

Proof.
Let (`→ r,σ ,〈q,pred〉) be a critical pair and let it be completed by normalisation and adding

transition
〈
q′ ,p′

〉 R
�

〈
q,p′

〉
. Let B be the resulting automaton. It is enough to show that

L (B,
〈
q′ ,p′

〉
) ⊆ (Rin/E)∗

(
[q]A�

R

E

)
. Remember that we use a modified version of normalisa-

tion that never reuses existing states, so L (B,
〈
q′ ,p′

〉
) = L (A, rσ). We conclude thanks to

Lemma 63. �

Theorem 64 and Lemma 66 can be summed as follows.

Theorem 67.
Innermost equational completion preserves Rin/E-coherence. 67�

This shows that under the assumption thatA0 separates the classes of E, innermost completion
will never add to the computed approximation a term that is not a descendant of L (A0)
through R modulo E rewriting.

Theorem 68 (Precision).
Let E be a set of equations. Let A0A◦ × IRR(R), where A◦ has designated final states. We

prune A0 of its non-accessible states. Suppose A0 separates the classes of E. Let R be any left-
linear TRS. Let A be obtained from A0 after some steps of innermost equational completion.
Then

L (A) ⊆ (Rin/E)∗(L (A◦ ×IRR(R))). 68�

Proof.
Since A0 does not contain any R-marked transition, A�R0 =A0. Thus, the third condition of

(Rin/E)-coherence is trivial for A0 assuming the two first are met (for any TRS R). Plus, A0
separates the classes of E and is accessible, so it totally separates the classes of E, so A0 is
indeed (Rin/E)-coherent. Theorem 67 show that this property is passed to A, which yields the
result. �

8. Related work

All tree automata completion-like techniques [Gen98, TKS00, Tak04, FGVTT04, BCHK09,
GR10, Lis12] do not take evaluation strategies into account. They compute over-approximations
of all reachable terms. Our contribution here is to propose the first algorithm computing
over-approximations restricted to innermost reachable terms. Furthermore, the accuracy of
the approximation w.r.t. innermost rewriting has been shown on a practical and theoretical
point of view.

22

Dealing with reachable terms and strategies was first addressed in [RV02] in the exact case
for innermost and outermost strategies but only for some restricted classes of TRSs, and also
in [GGJ08]. As far as we know, the technique we propose is the first to over-approximate
terms reachable by innermost rewriting for any left-linear TRSs. For instance, the Examples 17
and of Section 6 are in the scope of innermost completion but are outside of the classes
of [RV02, GGJ08]. It is due to the fact that a right-hand side of a rule has two nested defined
symbols and is not shallow.

Data flow analysis of higher-order functional programs is a long standing research topic [KI13,
OR11, KO11, Jon87]. Used techniques ranges from tree grammars to specific formalisms:
HORS, PMRS of ILTGs and can deal with higher-order functions. Higher-order functions
are not in the scope of the work presented here, though it is possible with tree automata
completion in general [GS13]. None of [KI13, OR11, KO11, Jon87], takes evaluation strategies
into account and analysis results are thus coarse when program execution rely on a specific
strategy.

9. Conclusion

In this paper, we have proposed a sound and precise algorithm over-approximating the set of
terms reachable by innermost rewriting. As far as we know this is the first algorithm solving
this problem for any left linear TRS and any regular initial set of terms. It is based on tree
automata completion and equational abstractions with a set E of approximation equations. The
algorithm also minimises the set of added transitions by completing the product automaton
(between A◦ and IRR(R)). We proposed TimbukSTRAT [Tim14], a prototype implementation
of this method.

The precision of the approximations have been shown on a theoretical and a practical point
of view. On a theoretical point of view, we have shown that the approximation automaton
recognises no more terms than those effectively reachable by innermost rewriting modulo the
approximation E. On the practical side, unlike other techniques used to statically analyse
functional programs [KI13, OR11, KO11, Jon87], completion can take the call-by-value strat-
egy into account. As a result, for programs whose semantics highly depend on the evaluation
strategy, innermost completion yields more accurate approximations. This should open new
ways to statically analyse functional programs by taking evaluation strategies into account.

Approximations of sets of ancestors or descendants can improve existing termination tech-
niques [GHWZ05, Mid02]. In the dependency pairs setting, such approximations can remove
edges in a dependency graph by showing that there is no rewrite derivation from a pair to
another. Besides, it has been shown that dependency pairs can prove innermost termina-
tion [GTSKF06]. In this case, innermost completion can more strongly prune the dependency
graph: it can show that there is no innermost derivation from a pair to another. For instance,
on the TRS:
choice(x,y)→ x choice(x,y)→ y eq(s(x), s(y))→ eq(x,y)
eq(0,0)→ tt eq(s(x),0)→ f f eq(0, s(y))→ f f
g(0,x)→ eq(x,x) g(s(x), y)→ g(x,y) f (f f ,x,y)→ f (g(x,choice(x,y)),x,y)

We can prove that any term of the form f (g(t1, choice(t2, t3)), t4, t5) cannot be rewritten (inner-
most) to a term of the form f (f f , t6, t7) (for all terms ti ∈ T (Σ), i = 1 . . .7). This proves that,
in the dependency graph, there is no cycle on this pair. This makes the termination proof of
this TRS simpler than what AProVE [APr] does: it needs more complex techniques, including
proofs by induction. Simplification of termination proofs using innermost completion should

23

be investigated more deeply.
For further work, we want to improve and expand our implementation of innermost com-

pletion in order to design a strategy-aware and higher-order-able static analyser for OCaml.
We also want to study if the innermost completion covers the decidable classes of [RV02],
like standard completion does for many decidable classes [FGVTT04]. Another objective is to
define a completion for the outermost strategy and thus deal with the call-by-need evaluation
strategy, used in Haskell8.

Acknowledgements The authors thank René Thiemann for providing the example of in-
nermost terminating TRS submitted to AProVE, and Prof. Luke Ong, Jonathan Kochems and
Robin Neatherway for their remarks.

References

[ABB+05] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-
kes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santos Santiago, M. Turuani, L. Viganò, and L. Vi-
gneron. The AVISPA Tool for the automated validation of internet security
protocols and applications. In CAV’2005, volume 3576 of LNCS, pages 281–285.
Springer, 2005.

[APr] AProVE. Automated Program Verification Environment. http://aprove.
informatik.rwth-aachen.de/.

[BCHK09] Y. Boichut, R. Courbis, P.-C. Héam, and O. Kouchnarenko. Handling non left-
linear rules when completing tree automata. IJFCS, 20(5), 2009.

[BGJL07] Y. Boichut, T. Genet, T. Jensen, and L. Leroux. Rewriting Approximations for
Fast Prototyping of Static Analyzers. In RTA, volume 4533 of LNCS, pages 48–62.
Springer, 2007.

[CR87] H. Comon and Jean-Luc Rémy. How to characterize the language of ground
normal forms. Technical Report 676, INRIA-Lorraine, 1987.

[DF92] Olivier Danvy and Andrzej Filinski. Representing control: A study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[FGVTT04] G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis over Term
Rewriting Systems. Journal of Automated Reasonning, 33 (3-4):341–383, 2004.

[Gen98] T. Genet. Decidable approximations of sets of descendants and sets of normal
forms. In Proc. 9th RTA Conf., Tsukuba (Japan), volume 1379 of LNCS, pages
151–165. Springer-Verlag, 1998.

[GGJ08] Adria Gascon, Guillem Godoy, and Florent Jacquemard. Closure of Tree Automata
Languages under Innermost Rewriting. In 8th International Workshop on Reduction

8Note that in tree automata completion every computation is done only once, associated to a state and shared in
the tree automaton, as in call-by-need.

24

Strategies in Rewriting and Programming (WRS), volume 237 of ENTCS, pages
23–38, Hagenberg, Autriche, 2008. Elsevier.

[GHWZ05] A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that
certify termination of left-linear term rewriting systems. In RTA’05, volume 3467
of LNCS, pages 353–367. Springer, 2005.

[GK00] T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In Proc.
17th CADE Conf., Pittsburgh (Pen., USA), volume 1831 of LNAI. Springer-Verlag,
2000.

[GR10] T. Genet and R. Rusu. Equational tree automata completion. Journal of Symbolic
Computation, 45:574–597, 2010.

[GS13] T. Genet and Y. Salmon. Tree Automata Completion for Static Analy-
sis of Functional Programs. Technical report, INRIA, 2013. http://hal.
archives-ouvertes.fr/hal-00780124/PDF/main.pdf.

[GTSKF06] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improv-
ing dependency pairs. JAR, 37(3):155–203, 2006.

[Jon87] N. D. Jones. Flow analysis of lazy higher-order functional programs. In S. Abram-
sky and C. Hankin, editors, Abstract Interpretation of Declarative Languages, pages
103–122. Ellis Horwood, Chichester, England, 1987.

[KI13] N. Kobayashi and A. Igarashi. Model-Checking Higher-Order Programs with
Recursive Types. In ESOP, volume 7792 of LNCS, pages 431–450. Springer, 2013.

[KO11] J. Kochems and L. Ong. Improved Functional Flow and Reachability Analyses
Using Indexed Linear Tree Grammars. In RTA’11, volume 10 of LIPIcs. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011.

[Lis12] A. Lisitsa. Finite Models vs Tree Automata in Safety Verification. In RTA’12,
volume 15 of LIPIcs, pages 225–239, 2012.

[Mid02] A. Middeldorp. Approximations for strategies and termination. ENTCS, 70(6):1–
20, 2002.

[OR11] L. Ong and S. Ramsay. Verifying higher-order functional programs with pattern-
matching algebraic data types. In POPL’11, 2011.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor.
Comput. Sci., 1(2):125–159, 1975.

[RV02] P. Réty and J. Vuotto. Regular Sets of Descendants by some Rewrite Strategies.
In Proc. 13th RTA Conf., Copenhagen (Denmark), volume 2378 of LNCS. Springer-
Verlag, 2002.

[Tak04] T. Takai. A Verification Technique Using Term Rewriting Systems and Abstract
Interpretation. In Proc. 15th RTA Conf., Aachen (Germany), volume 3091 of LNCS,
pages 119–133. Springer, 2004.

25

[Tim14] Timbuk – reachability analysis and Tree Automata Calculations. IRISA / Univer-
sité de Rennes 1, 2012–2014. http://www.irisa.fr/celtique/genet/timbuk/.

[TKS00] T. Takai, Y. Kaji, and H. Seki. Right-linear finite-path overlapping term rewriting
systems effectively preserve recognizability. In Proc. 11th RTA Conf., Norwich
(UK), volume 1833 of LNCS. Springer-Verlag, 2000.

A. Normalisation

Here, we describe an algorithmic way to browse a configuration in order to normalise it, that is
to create all the necessary intermediate transitions and the required new states. The discourse
is quite fastidious and not unique, but this is not really important. Indeed, we either reuse
existing transitions, and thus do not change the behaviour of the automaton, or create new
states whose sole purpose is to recognise some subconfiguration of c. By definitions, these
new states only appear in the new transitions that we add, they do not influence the previous
behaviour of the automaton. The order in which they are added is therefore not important.

Definition 69 (NormA(c,〈q,p〉)).
Let A be an automaton, c be a non-trivial configuration and 〈q,p〉 be any state. Let Ξ =

(ξ1, . . . ,ξK) be a postfix traversal of c (ξK is the root position). With ∆ the set of transitions of
A, let us use an auxiliary function:

NormA(c,〈q,p〉) =NormAuxΞ,1∆ (c,〈q,p〉). (1)

Now let us define NormAuxΞ,i· . For i ranging from 1 to K − 1, for any set of transitions ∆ and
any configuration d such that d|ξi is an elementary configuration, let

NormAuxΞ,i∆ (d,〈q,p〉) = {d|ξi �
〈
q′ ,p′

〉
} ∪NormAuxΞ,i+1

∆∪{d|ξi�〈q
′ ,p′〉}(d

[〈
q′ ,p′

〉]
ξi
,〈q,p〉) (2)

where
〈
q′ ,p′

〉
is such that d|ξi �

〈
q′ ,p′

〉
in ∆/E (or, if there is no such state, q′ is a new state,

distinct from q, and p′ is the state such that Π2

(
d|ξi

) ∗
�
IRR(R)

p′). Also, for any set of transitions ∆

and any elementary configuration d, let

NormAuxΞ,K∆ (d,〈q,p〉) = {d� 〈q,p〉}. (3)

69J

Remark. It is necessary to consider equivalence by E when searching for an already existing

transition. Suppose we work with some f (q1) and have q1
E
��
∆
q2 and f (q2)�

∆
q′: we do not

want to create a new state here, but reuse q′ and set f (q1)� q′.

B. Completed automaton for the sum function

Let R be the TRS:

26

(1) 0 +X→ X
(2) s(X) +Y → s(X +Y)
(3) sumList(X,Y)→ cons(X +Y ,sumList(X +Y ,s(Y)))
(4) nth(0, cons(X,Y))→ X
(5) nth(s(X), cons(Y ,Z))→ nth(X,Z)
(6) sum(X)→ nth(X,sumList(0,0))

and E = {cons(x,cons(y,z)) = cons(y,z), (x+y)+z = x+y}. Starting from the product automaton
having transitions: 0� 〈q0,pi〉, s(〈q0,pi〉)� 〈q0,pi〉, sum(〈q0,pi〉)� 〈q1,pred〉. We successively
solve the following critical pairs.

B.1. First completion step

The first completion step solves only one critical pair which is:

sum(〈q0,pi〉) nth(〈q0,pi〉 , sumList(0,0))

〈q1,pred〉 〈q3,pred〉

R

A0 ∗ A1∗

A1

R

The set of transitions added to A0 to obtain A1 consists of nth(〈q0,pi〉 ,〈q2,pred〉)� 〈q3,pred〉,
sumList(〈q0,pi〉 ,〈q0,pi〉)� 〈q2,pred〉, and 〈q3,pred〉

R
� 〈q1,pred〉.

B.2. Second completion step

The second completion step solves one critical pair:

sumList(〈q0,pi〉 ,〈q0,pi〉) cons(〈q0,pi〉+ 〈q0,pi〉 , sumList(〈q0,pi〉+ 〈q0,pi〉 , s(〈q0,pi〉)))

〈q2,pred〉 〈q6,pred〉

R

A1 ∗ A2∗

A2

R

Normalisation of the corresponding transition results in the following set of new transi-
tions to be added to A1: cons(〈q4,pred〉 ,〈q5,pred〉)� 〈q6,pred〉, 〈q0,pi〉 + 〈q0,pi〉� 〈q4,pred〉,
sumList(〈q4,pred〉 ,〈q0,pi〉)� 〈q5,pred〉 and 〈q6,pred〉

R
� 〈q2,pred〉.

B.3. Third completion step

The third completion step solves two critical pairs. The first critical pairs are:

27

0 + 〈q0,pi〉 〈q0,pi〉

〈q4,pred〉

〈q4,pi〉

R

A2 ∗

A3

R s(〈q0,pi〉) + 〈q0,pi〉 s(〈q0,pi〉+ 〈q0,pi〉)

〈q4,pred〉 〈q7,pred〉

R

A2 ∗ A3∗

A3

R

For solving the second critical pair, since the transition 〈q0,pi〉+ 〈q0,pi〉� 〈q4,pred〉 already

belong to A2, it is enough to add the transitions: s(〈q4,pred〉) � 〈q7,pred〉 and 〈q7,pred〉
R
�

〈q4,pred〉. For solving the first critical pair, it is enough to add the transition 〈q0,pi〉
R
� 〈q4,pi〉

and to add supplementary transitions, as mentioned in Definition 47. Because of the separation
between states 〈q4,pred〉 and 〈q4,pi〉, it is necessary to add a copy of all transitions with a
state 〈q4,pred〉 in their left-hand side where we replace it by state 〈q4,pi〉 to . We thus add
the transitions: cons(〈q4,pi〉 ,〈q5,pred〉)� 〈q6,pred〉, sumList(〈q4,pi〉 ,〈q0,pi〉)� 〈q5,pred〉 and
s(〈q4,pi〉)� 〈q7,pi〉.

B.4. Fourth critical pair

The fourth completion step solves one critical pair and applies two equations. The critical pair
is:

sumList(〈q4,pi〉 ,〈q0,pi〉) cons(〈q4,pi〉+ 〈q0,pi〉 , sumList(〈q4,pi〉+ 〈q0,pi〉 , s(〈q0,pi〉)))

〈q5,pred〉 〈q8,pred〉

R

A3 ∗ A4∗

A4

R

The transitions added toA3 are thus: 〈q4,pi〉+〈q0,pi〉� 〈q9,pred〉, sumList(〈q9,pred〉 ,〈q0,pi〉)�
〈q10,pred〉, cons(〈q9,pred〉 ,〈q10,pred〉)� 〈q8,pred〉 and 〈q8,pred〉

R
� 〈q5,pred〉. Now, with equa-

tion (x+ y) + z = x+ y of E, we can find a first equational simplification position:

(〈q0,pi〉+ 〈q0,pi〉) + 〈q0,pi〉 〈q0,pi〉+ 〈q0,pi〉

〈q9,pred〉 〈q4,pred〉

E

A ∗ A∗
E

E

This results in the addition of transitions 〈q9,p〉
E
�� 〈q4,p〉 for all state p. Similarly the

equation cons(x,cons(y,z)) = cons(y,z) of E finds an equational simplification position:

28

cons(〈q4,pred〉 , cons(〈q9,pred〉 ,〈q10,pred〉)) cons(〈q9,pred〉 ,〈q10,pred〉)

〈q6,pred〉 〈q8,pred〉

E

A ∗ A∗
E

E

This results in the addition of transitions 〈q6,p〉
E
�� 〈q8,p〉 for all state p.

B.5. Fith completion step

Now all critical pairs on rules (1) and (2) are joinable:

0 + 〈q0,pi〉 〈q0,pi〉

〈q9,pred〉 〈q4,pred〉

〈q9,pi〉

R

A4 ∗ A4R

A4

E

s(〈q0,pi〉) + 〈q0,pi〉 s(〈q0,pi〉+ 〈q0,pi〉)

〈q9,pred〉 〈q4,pi〉 〈q7,pred〉

R

A4 ∗ A4∗

A4

R

A4

E

There remains a last critical pair which is:

sumList(〈q9,pi〉 ,〈q0,pi〉) cons(〈q9,pi〉+ 〈q0,pi〉 , sumList(〈q9,pi〉+ 〈q0,pi〉 , s(〈q0,pi〉)))

〈q10,pred〉 〈q8,pred〉

R

A4 ∗ A5∗

A5

R

However, using transitions of A4 the right-hand side of the critical pair can be recognised
into state 〈q6,pred〉. More in details, the subterm 〈q9,pi〉 + 〈q0,pi〉 can be normalised into
〈q4,pred〉 and the subterm sumList(〈q9,pi〉 , s(〈q0,pi〉)) can be normalised into 〈q5,pred〉. Finally

cons(〈q4,pi〉 ,〈q5,pred〉) � 〈q8,pred〉 belongs to transitions of A4. Furthermore, 〈q6,pred〉
E
�

〈q8,pred〉. Finally the only transition to add is thus 〈q8,pred〉
R
� 〈q10,pred〉. Since no new

transition is added on symbol sumList, this ends the completion. All remaining critical pairs
are joinable, in particular:

29

sumList(〈q9,pi〉 ,〈q0,pi〉) cons(〈q9,pi〉+ 〈q0,pi〉 , sumList(〈q9,pi〉+ 〈q0,pi〉 , s(〈q0,pi〉)))

〈q10,pred〉 〈q8,pred〉

R

A4 ∗ A4∗

A4

R

The transitions of the completed automaton are:
0� 〈q0,pi〉
s(〈q0,pi〉)� 〈q0,pi〉
sum(〈q0,pi〉)� 〈q1,pred〉
nth(〈q0,pi〉 ,〈q2,pred〉)� 〈q3,pred〉
sumList(〈q0,pi〉 ,〈q0,pi〉)� 〈q2,pred〉
〈q3,pred〉

R
� 〈q1,pred〉

cons(〈q4,pred〉 ,〈q5,pred〉)� 〈q6,pred〉
〈q0,pi〉+ 〈q0,pi〉� 〈q4,pred〉
sumList(〈q4,pred〉 ,〈q0,pi〉)� 〈q5,pred〉
〈q6,pred〉

R
� 〈q2,pred〉

s(〈q4,pred〉)� 〈q7,pred〉
〈q7,pred〉

R
� 〈q4,pred〉

〈q0,pi〉
R
� 〈q4,pi〉

cons(〈q4,pi〉 ,〈q5,pred〉)� 〈q6,pred〉
sumList(〈q4,pi〉 ,〈q0,pi〉)� 〈q5,pred〉
s(〈q4,pi〉)� 〈q7,pi〉
〈q4,pi〉+ 〈q0,pi〉� 〈q9,pred〉
sumList(〈q9,pred〉 ,〈q0,pi〉)� 〈q10,pred〉
sumList(〈q9,pi〉 ,〈q0,pi〉)� 〈q10,pred〉
cons(〈q9,pred〉 ,〈q10,pred〉)� 〈q8,pred〉
〈q8,pred〉

R
� 〈q5,pred〉

〈q9,p〉
E
�� 〈q4,p〉 for all p

〈q6,p〉
E
�� 〈q8,p〉 for all p

〈q8,pred〉
R
� 〈q10,pred〉

Note that this completed automaton recognises, in particular, all infinite list of natural
number, i.e. terms of the form cons(a,cons(b,cons(c, . . . sumList(d,e)))) where a,b,c,d,e are
any natural numbers. For instance, the term cons(0, cons(0, cons(0, cons(0, sumList(0,0))))) is
recognised in the following way:

cons(0, cons(0, cons(0, cons(0, sumList(0,0)))))
�∗ cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 , sumList(〈q0,pi〉 ,〈q0,pi〉)))))
R
� cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 , sumList(〈q4,pi〉 ,〈q0,pi〉)))))
R
� cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 , sumList(〈q4,pi〉 ,〈q0,pi〉)))))

30

E
� cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 , sumList(〈q9,pi〉 ,〈q0,pi〉)))))
� cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 ,〈q10,pred〉))))
� cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 ,〈q10,pred〉))))
R
� cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q4,pi〉 ,〈q10,pred〉))))
E
� cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q9,pi〉 ,〈q10,pred〉))))
� cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 ,〈q8,pred〉)))
R
� cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q0,pi〉 ,〈q5,pred〉)))
R
� cons(〈q0,pi〉 , cons(〈q0,pi〉 , cons(〈q4,pi〉 ,〈q5,pred〉)))
R
� cons(〈q0,pi〉 , cons(〈q0,pi〉 ,〈q6,pred〉))
E
� cons(〈q0,pi〉 , cons(〈q0,pi〉 ,〈q8,pred〉))
R
� cons(〈q0,pi〉 , cons(〈q0,pi〉 ,〈q5,pred〉))
R
� cons(〈q0,pi〉 , cons(〈q4,pi〉 ,〈q5,pred〉))
R
� cons(〈q0,pi〉 ,〈q6,pred〉)
E
� cons(〈q0,pi〉 ,〈q8,pred〉)
R
� cons(〈q0,pi〉 ,〈q5,pred〉)
R
� cons(〈q4,pi〉 ,〈q5,pred〉)
� 〈q6,pred〉
R
� 〈q2,pred〉

31

