
HAL Id: hal-00844753
https://hal.science/hal-00844753v2

Submitted on 21 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Empirical Evidence of Large-Scale Diversity in API
Usage of Object-Oriented Software

Diego Mendez, Benoit Baudry, Martin Monperrus

To cite this version:
Diego Mendez, Benoit Baudry, Martin Monperrus. Empirical Evidence of Large-Scale Diversity in
API Usage of Object-Oriented Software. International Conference on Source Code Analysis and Ma-
nipulation (SCAM’2013), Sep 2013, Eindhoven, Netherlands. pp.10, �10.1109/SCAM.2013.6648183�.
�hal-00844753v2�

https://hal.science/hal-00844753v2
https://hal.archives-ouvertes.fr

Empirical Evidence of Large-Scale Diversity in API
Usage of Object-Oriented Software

Diego Mendez, Benoit Baudry, Martin Monperrus
University of Lille & Inria

In Proceedings of the International Conference on Source Code Analysis and Manipulation (SCAM’2013)

Abstract—In this paper, we study how object-oriented classes
are used across thousands of software packages. We concentrate
on “usage diversity”, defined as the different statically observable
combinations of methods called on the same object. We present
empirical evidence that there is a significant usage diversity for
many classes. For instance, we observe in our dataset that Java’s
String is used in 2 460 manners. We discuss the reasons of this
observed diversity and the consequences on software engineering
knowledge and research.

I. INTRODUCTION

Gabel and Su [1] have published fascinating results, show-
ing that most pieces of code of less than 35 tokens are
redundant. They appear elsewhere in the same project, or,
for small sequences, elsewhere in the space of all ever-
written software. In ecology, a sister concept of redundancy
is diversity. In ecosystems, species are said to be redundant if
they have the same functional role, and are said to be diverse
if many different species occupy different niches.

There are many kinds of diversity in software [2]. In this
paper, we focus on one kind of diversity: the usage diversity
of classes of object-oriented code. Our main research question
reads as follows.

Do all developers use a given class in the same way?
or in diverse ways?’

By “usage diversity”, we mean ways of using a class
in terms of method calls. We consider software from the
viewpoint of type-usages, an abstraction introduced in [3],
[4]. This concept abstracts over tokens, control flow and
variables interplay. In a nutshell, a type-usage is a set of
method calls done on a variable, parameter or field in a code
base. For instance, Figure 1 presents a method body and three
corresponding type-usages.

From a dataset of hundreds of thousands of Java classes,
we have extracted millions of type-usages and measured their
diversity (as defined by the number of different type-usages
that can be observed). For instance, we have found that the
Java class “String” is used in 2 460 different ways. This is
not an exception, our experiment provides us with empirical
evidence that a large scale diversity exists in “API usage”1.

1We use the term “API usage” to reuse the same term as close work [5]. In
this case, “API” refers to “Application Programming Interface”, which at the
level of a class, is defined by the set of exposed methods (whether “exposed”
means public, documented of callable).

We provide original observations about the presence
of diversity of API usage, founded on novel diversity
measures about object-oriented code.

If the literature includes a large amount of work on the
synthesis of artificial diversity in software systems [2], to our
opinion, our work is the first study that empirically quantifies
the presence of diversity in object-oriented code. Thus, an
essential contribution of this paper is a set of new software
metrics, inspired by biodiversity metrics, that quantify the
amount and the structure of diversity of API usage. Hence,
our work can be classified as ecology-inspired software engi-
neering research [6], [7].

For most classes of our dataset, as expected, the API usage
is limited to a handful number of ways of using the class.
However, we observe a large number of classes for which
there are lots of different type-usages. For us, as well as for
many colleagues, this result is intriguing. It seems to contradict
with known design principles that recommend to minimize
the public interface and to strive for single responsibilities.
The second half of the paper discusses those “diverse classes”
(in particular the 748 classes that have more than 100 type-
usages).

What are the factors causing such a high API usage
diversity in object-oriented software?

To what extent does this diversity question software
engineering knowledge and research?

We provide answers related to success of software libraries,
API design, software repair and automated diversification. We
think that our pieces of evidence on API usage diversity shake
up some established ideas on the nature of software and how
to engineer it. Some of our points are of speculative nature, but
they aim at fostering a collaborative effort on understanding
the factors behind this API usage diversity. In particular, our
long term goal is to translate the knowledge of API usage
diversity into practice, by providing diversity-aware guidelines
and tools to developers.

The rest of the paper reads as follows. Section II gives some
background on object-orientation and type-usages. Section III
describes our experimental design. Section IV exposes our
empirical results and findings, while section V investigates the
deep structure of the observed diversity. Section VI discusses

Source Code:

void saveNames(String inputPath) {
ArrayList filenames = new ArrayList();
File inputFile = new File(inputPath);
if (inputFile.isDirectory()) {

for (File f : inputFile.listFiles()) {
filenames.add(f.getName()); }

}
}

Abstraction:
// type usage #1 corresponds to "inputFile"
type:File
calls:Constructor(String) isDirectory() listFiles()

// type usage #2 corresponds to "filenames"
type:ArrayList
calls:Constructor() add(String)

// type usage #3 corresponds to "f"
type:File
calls:getName()

Fig. 1. Illustration of the concept of “types-usage”. An extractor transforms the Java source code at the left hand-side into the abstraction at the right
hand-side. Type-usages abstract over tokens, control flow and variables interplay.

their implication. Finally, related work (Section VII) and
conclusion (Section VIII) close the paper.

II. BACKGROUND

A. Object-oriented software

In object-oriented software, a class defines a set of functions
(called methods) meant to be used in conjunction, in order
to perform computations in a certain problem domain. For
instance, in the problem domain of manipulating character
strings, the Java class String defines 76 methods to use and
transform strings in a variety of manners. The term “object”
refers to an instance of a class.

In object-oriented software, variables can point to objects,
and one “calls” methods on variables. Syntactically, this is
written with a dot. Calling method "getFirstLetter" on a string
variable is written a.getFirstLetter(). The method
operates on the data that is encapsulated within the object.
Designing the scope of methods and where to put them is all
the art of object-oriented design.

B. Type-Usages

We consider software from the viewpoint of type-usages,
an abstraction introduced in [3], [4]. A type-usage is a list of
method calls on the same variable of a given type occurring
somewhere within the context of a particular method body [4].
Type-usages abstract over tokens, control flow and variables
interplay.

An example is shown in Figure 1. A call consists of the
signature of the method to be called, that is, in Java, the
method name, the parameter types, and the return type. Calls
must be made on the same variable (whether local variable,
method parameter or class field), are unordered (the location in
source code is not taken into account) and unique (observing
several times the same call on the same variable is not taken
into account). For instance, the methods void init(String) and
void init(File) are considered as two different calls. In the
following, we will often refer to the type of a type usage as
“class”.

Importantly, many type-usages are of the same “kind” (same
declared type, same set of calls). In the following, when we use
“type-usage”, we mean this aggregated set of identical items.
To refer to a concrete type-usage (say, the one corresponding

to variable “conn” at line 318), we will use the term “type-
usage instance” (programming terminology) or “type-usage
specimen” (ecology terminology) .

III. EXPERIMENTAL DESIGN

Our experiment consists of collecting a large number of
type-usages across open-source Java code.

A. Dataset

We have collected all Jar files present on a machine used for
performing software mining experiments for 7 years. A Jar file
is an archive containing compiled Java code under the form
of a collection of “.class” files. We removed those duplicate
Jar files which contain the same set of classes. The resulting
dataset contains 3 418 Jar files. The dataset only contains real
code (mostly open-source code, but also binary proprietary
code and student project code) and no artificial code that may
have arisen along software mining. It represents 11 GB of
Java bytecode and refers to 382 774 different types (classes
or interfaces). The list of Jar files is given in the companion
web page [8] and the raw data is available upon request. In
this paper, for the ecological metaphor, we call this dataset the
“ecosystem” under study.

B. Extraction Software

The extraction software comes from our previous work [4].
It extracts type-usages (described in II-B) from Java code. It
uses the analysis library Soot [9]. It works at the method body
scope for local variables and method parameters and class
scope for method calls done on fields. The extractor takes
as input either Java source code or Java bytecode.

With Java source code, all dependencies must be known
and present during analysis (i.e. all Jar libraries must be in
the “class path”). With Java bytecode, thanks to Soot’s ability
to allow “phantom” references, the extractor can analyze Jars
with unresolved dependencies. According to our tests, having
unresolved dependencies does not yield imprecision in the
results. Whether mined from source code or bytecode, the
extracted type-usages are mostly equivalent, since the gap
between Java source code and Java byte code is low, and
quasi null at the abstraction level of type-usages. Since there
are “phantom” references for most projects of our dataset,

Abundance
abundanceproject(typeusage) is the number of type-usages instances of a given type-usage for a single project (in [0,∞[).
abundanceecosystem(typeusage) is the number of type-usages instances of a given type-usage in the ecosystem (in [0,∞[).
abundanceproject(class) is the sum of all type-usage instances that are typed by the same class in a given project

(
∑

abundanceproject(typeusage), in [0,∞[).
abundanceecosystem(class) is the sum of all type-usage instances that are typed by the same class in the ecosystem

(
∑

abundanceproject(class), in [0,∞[).
Diversity
diversityproject(class) is the number of different type-usages of a given class for a single project (in [0,∞[).
diversityecosystem(class) is the number of different type-usages of a given class in the whole ecosystem (in [0,∞[).

TABLE I
ECOLOGY-INSPIRED DIVERSITY METRICS FOR TYPES-USAGES.

the experiment is based on bytecode analysis. For sake of
replication, the extraction software is available upon request.

C. Metrics

The extraction of type-usages on our dataset yielded
9 022 262 type-usage specimen. We post-processed those type-
usages to compute the metrics described in Table I. There are
two groups of metrics: “abundance metrics” and “diversity
metrics”. Metrics have two dimensions: 1) Whether they are
computed at the type-usage or class level 2) Whether the are
computed for a single project or for the whole dataset.

Those metrics are inspired from ecology. The abundance of
species is the number of specimen, we define the abundance
at the level of type-usages and classes. The abundance of a
type-usage is the number of times it is observed in a given
scope, i.e. the number of type-usage instances.

The richness of an ecosystem is one measure of diversity, it
is the absolute number of species that can be observed in this
ecosystem. In our context, the richness of an object-oriented
class is the absolute number of different type-usages found in a
given domain. We call this metric diversityecosystem(class).
A more precise definition is given in table I.

IV. EVIDENCE OF API USAGE DIVERSITY

For us, a very intriguing question is: what is the diversity
of usages of object-oriented APIs? In other terms, do all
developers use a given class in the same way? More formally,
what are the values of diversityecosystem as defined in table I?
For us, a class would be “diverse” if we observe many different
type-usages of this type in the ecosystem under study.

A. Abundance and Diversity Distribution

Figure 2 shows the distribution of the abundance and
diversity at the level of classes in the ecosystem as boxplots
(abundanceecosystem(class) and diversityecosystem(class)
of Table I). The median abundance is 4 (an abundance of 4
means that we have collected 4 type-usages for this class). The
abundance boxplot shows that across our 382 774 classes of
our dataset, a large majority are used a small number of times.
This is due to the fact that many classes are only used in a
single project (Jar file) of the dataset and within this project
at most a handful of times.

The boxplot representing the distribution of diversity (sec-
ond boxplot starting from left) shows that classes have a

Abundance Diversity0

2

4

6

8

10

12

14

Fig. 2. The Type-usage Abundance and Diversity of All Classes of the
Dataset Under Study. The outliers are not represented for sake of scale.

median number of 3 type-usages2. The upper quartile is 5.
In other terms, for 75% of the classes, we observe between 1
and 5 ways of using of the class. However, the data contains
many extreme points that are not represented on the boxplot
since their order of magnitude dwarfes this low diversity.

B. Classes with High Usage Diversity

Let us now concentrate on the upper quartile of the diversity
metric, those classes with high usage diversity, In our dataset,
there are 748 classes for which we observe more than 100
different type-usages and 48 classes for which we observe
more than 500 type-usages. The extreme case is Java’s String.
For this class, we observe 2 460 type-usages for (among
394 959 type-usages specimen – instances – of type “String”).

Table II gives the diversity of 30 diverse classes. The first
column is the diversity as defined in III-C. The second column
is the number of called methods in the dataset. The columns
|TU | = n give the number of type-usages consisting of n
method calls (e.g.; there are 69 type-usages of one single
method calls for Java’s String). Those 30 classes come from
the following stratified sampling: the 10 most used classes of

2Note that the maximum diversity of a class is necessarily its abundance
in the case where each type-usage specimen is different. It thus makes sense
that the median diversity is 3 given a median abundance of 4.

Class Name Diversity # Methods |TU|=1 |TU|=2 |TU|=3 |TU|=4 |TU|=5 |TU|=6 |TU|=7 |TU|>7

java.lang.String 2460 69 69 529 638 614 396 145 51 18
java.io.File 2166 47 45 373 775 613 264 69 17 10
java.lang.StringBuffer 1312 51 41 142 238 316 290 176 83 26
java.util.ArrayList 1236 36 36 179 307 328 236 115 29 6
java.lang.Class 872 62 62 333 286 115 45 18 8 5
java.util.List 724 31 30 149 235 194 86 23 5 2
java.lang.StringBuilder 643 44 42 92 139 142 132 63 22 11
org.eclipse.swt.widgets.Composite 639 227 135 222 131 86 41 16 4 4
javax.swing.JButton 625 143 83 119 141 102 72 43 21 44
javax.swing.JLabel 570 101 76 145 153 108 47 16 13 12
org.w3c.dom.Element 534 60 60 198 165 76 19 9 4 3
javax.swing.JPanel 530 108 77 115 116 112 65 31 12 2
org.w3c.dom.Node 516 39 38 128 150 95 46 29 18 12
java.util.HashMap 471 22 20 92 125 123 74 30 6 1
org.eclipse.core.resources.IFile 456 68 59 167 120 55 30 12 6 7
java.util.HashSet 453 23 23 75 134 120 77 19 5 0
org.eclipse.core.runtime.IPath 360 36 34 148 114 43 14 4 2 1
org.eclipse.swt.widgets.Label 312 97 56 83 68 68 23 8 3 3
javax.swing.JScrollPane 308 105 73 77 77 45 18 11 4 3
org.eclipse.swt.widgets.Display 247 157 108 86 34 9 4 1 2 3
org.w3c.dom.Document 209 61 56 79 45 17 6 3 2 1
org.eclipse.core.runtime.Path 192 48 25 61 62 33 7 4 0 0
org.eclipse.emf.common.util.EList 128 29 29 50 31 10 4 3 1 0
org.eclipse.core.runtime.IConfigurationElement 119 21 20 31 46 16 5 1 0 0
org.osgi.framework.Bundle 115 33 33 55 22 4 1 0 0 0
org.eclipse.core.runtime.IStatus 100 13 12 25 31 17 7 5 3 0
org.xml.sax.XMLReader 100 15 15 20 20 21 13 6 4 1
org.w3c.dom.Attr 94 22 19 33 22 14 3 1 1 1
org.eclipse.core.resources.IWorkspaceRoot 88 37 37 39 7 5 0 0 0 0
java.lang.Object 31 10 10 16 5 0 0 0 0 0

TABLE II
THE DIVERSITY OF 30 WIDELY USED API CLASSES AND THEIR NUMBER OF TYPE-USAGES PER SIZE IN NUMBER OF METHOD CALLS. THE COLUMNS
|TU | = n GIVE THE NUMBER OF TYPE-USAGES CONSISTING OF n METHOD CALLS (E.G.; THERE ARE 69 TYPE-USAGES OF ONE SINGLE METHOD CALLS

FOR JAVA’S STRING).

the Java Development Kit (JDK) in number of projects, the 10
most used classes of Eclipse (an important sub-ecosystem of
our ecosystem) and the 10 most used classes that are neither
from Eclipse nor from the JDK. We refer to the latter as “non-
JDK classes”, we show them to show that usage diversity does
not only appear in JDK classes. For instance, there are 534
different type-usages for W3’s “Element” and 639 for Eclipse’s
Composite.

As programmers, we were really surprised by this richness.
Why were we surprised? Probably because of the implicit
principle of software engineering stating that an abstraction
(whether function, class or method) should do one single thing
(coined the “Single Responsibility Principle” by Robert Martin
[10]). In the perspective of type-usages, this principle reads
as: 1) a class should have a small number of methods; 2) all
methods should be used in the same way with some small
variations. However, in our opinion, having hundreds of type-
usages for certain classes is not a small variation.

Let us first deepen our understanding of this diversity before
exploring the factors behind it.

C. API Diversity Maps: A Graphical Visualization of OO
Usage Diversity

To help understand this diversity, we propose to represent
the type-usages of a given class as a graph. Each type-
usage is a node in the graph. The edges correspond to a
subset relationship. If all the method calls of type-usage x

are contained into type-usage y, there is an arrow from x
to y. The graph is laid out so that the largest type-usages
are at the top and the smallest at the bottom. We have seen
that for certain classes, there may be hundreds of type-usages,
hence hundreds of nodes in the graph, resulting in unreadable
maps. To overcome this issue, the map is parameterized with a
threshold, responsible for filtering certain nodes. The threshold
filters abundanceecosystem(typeusage): if a type-usage has
been observed in at least N times, it is represented, otherwise
it is discarded. The rationale is that if a type-usage often
appears, it is likely that the corresponding code has been
written by many developers. We call this visualization “API
diversity map”.

Figure 3 gives the diversity map of Java’s StringBuilder
showing all type-usages that appear at least 150 times of
the dataset. The values for each type-usage correspond to
abundanceecosystem(typeusage). StringBuffer is a class used
for manipulating strings in an efficient manner. The map
eventually contains 8 nodes which makes it very readable
(in practice diversity(StringBuilder) = 643 different type-
usages). This map is very layered, due to the semantics of
edges (“subset of”). One sees that there is a “master” type-
usage in which all common methods of StringBuffer are used
(“init” refers to a constructor call). One also sees that some
type-usages are more popular than others. For instance, {init,
append, toString} appears 2434 in our dataset. For developers

{append} (7300)

{append, toString} (179) {init, append} (5376)

{toString} (2218)

{init, toString} (243)

{init, append, toString} (2434)

{init, length, append, toString} (266)

{init} (320)

Fig. 3. API Diversity Map of “java.lang.StringBuilder”. The numbers in
bracket is abundanceecosystem(typeusage).

who know StringBuilder, this reflects well its different usages.
For instance, on one end of the usage spectrum, one often only
calls “append” on a StringBuilder passed as parameter. On the
other end of the usage spectrum, one uses all main methods
of StringBuilder in a same method.

Now consider the diversity map of Java’s “Class” repre-
sented in Figure 4, the class handling the reflection of any
object (the meta-object is obtained by calling “getClass”).
Compared to the diversity map of StringBuilder, we observe
that: first the map is divided in three separated trees; second,
the top layer of the map is composed of 5 different type-
usages. Both phenomena are due to the fact that Java’s “Class”
has different responsibilities: creating objects (“newInstance”),
proxying the current thread’s class loader (“getClassLoader”),
testing instance-of relationships (“isAssignableFrom”), han-
dling Java array special semantics (“isArray”), and subtyping
introspection (“getInterfaces, getSuperClass”). For this class,
the visualization conveys in one glimpse that the class has
different responsibilities.

D. Why Is There Such a Large API Usage Diversity?

Let us now discuss the reasons behind this API Usage
diversity.

1) An artifact in our extraction software?: When we ob-
served this phenomenon that has never been reported before
the first thing we did was to check our extraction software. We
carefully browse the list of type-usages for classes (Map and
String) to check whether 1) they make sense, 2) they actually
appear in code. The answer was positive. More generally,
during our experiments, we have browsed many extracted
type-usages and the corresponding source code for six months
and this gives us confidence in our results.

2) Type-usages Result From Combinations of Method Calls:
One reason behind this diversity is that type-usages are com-
binations of public methods. The second column of Table II is
the number of externally used methods on instances of those
classes (in-class and inherited methods). One sees that all
diverse classes have a large number of methods, and that most
methods appear in atomic type-usage with a single method
call (e.g. for String, there are 69 used methods and 69 type-
usages of size 1). To check whether the usage diversity only
depends on the number of methods for very diverse classes, we
compute the Spearman correlation between the usage diversity

and the number of public methods. The Spearman correlation
is based on the ranks hence is independent of the exponential
combinations of methods. On the 748 classes, the Spearman
correlation is 0.25, which is low. The Spearman correlation is
composed of numerical comparisons of the ranks of all pairs
of classes. A low value of 0.25 means that there are many pairs
of diverse classes whose diversity and number of methods go
in opposite directions. Indeed there are 40% of class pairs for
which diversity goes in opposite directions (less methods but
greater diversity). This shows that the usage diversity is driven
by more factors than only the number of public methods.

3) Objects are Used across Different Methods: Our anal-
ysis statically creates type-usages for local variables, method
parameters and fields. If at runtime, an object is passed from
methods to other ones, our analysis would output several type-
usages, while at the runtime object level, all method calls
would be done on the same object. For instance, let us consider
a developer who wants to create a list, add elements and print
them if the list is not empty. For some reasons, this developer
would initialize the list in the class constructor, declare a new
method for adding elements and a last one that prints the
elements in a method that also checks that the list is not
empty. As a result, we would have 3 different type-usages:
<init>, <add>, <isEmpty, get>. We call those type-usages
“type-usage fragments”. However, at the object level, the type-
usage would be: <init, add, isEmpty, get>. In the extreme case,
if 10 methods are called in ten different methods, we would
produce 10 type-usages, while there would be actually one.
In such case, our diversity measures would be artificially 10x
too big.

To explore this hypothesis, we propose to study the size
of type usages of a given class. The idea is that if we only
have very small type-usages, our static analysis has probably
only captured small, non atomic type-usage fragments. Let
us consider again the diversity map of Figure 3. To some
extent, the lower two layers of the diversity map correspond
to fragments, because the corresponding objects necessarily
all result from a call to the constructor.

Table II presents the distribution of type-usages per type-
usage size for the 30 reference classes. Recall that the columns
|TU | = n give the number of type-usages consisting of n
method calls. Hence, the left-hand side columns contain small
type-usages which are likely to be fragments. For instance,
for Java’s String (the first row), we observe in our dataset 69
different type-usages of size 1.

So if one discards those small type-usages, do we still
have a large diversity of type-usages? The answer is yes. We
observe many large type-usages, corresponding to method calls
done on the same variable (and likely to the same object).
Those type-usages are not artificial. Even with a conservative
assumption that small type-usages are artificial fragments, we
still observe a large diversity.

V. THE STRUCTURE OF TYPE-USAGE DIVERSITY

We have observed in Section IV that certain object-oriented
classes give birth to a large diversity of type-usages. Now we

{getName, newInstance} (213)

{isArray} (461)

{isArray, getComponentType} (218)

{getClassLoader} (1153)

{getName, getClassLoader} (223)

{getSuperclass} (375)

{getInterfaces, getSuperclass} (162)

{isAssignableFrom} (916)

{isAssignableFrom, getName} (231)

{getInterfaces} (218){getName} (2381) {getComponentType} (385){newInstance} (1105)

Fig. 4. API Diversity Map of “java.lang.Class”. The type-usage abstraction clearly captures different responsibilities.

would like to understand the structure of this diversity: Are
there type-usages that are much more used than the others?

Let us assume that we observe 1000 type-usage instances
spread over 100 different type-usages. If 800 of them are of the
same type-usage, this would mean that the type-usage diversity
is actually dominated by a single one. To reflect, we define
the dominance metric (called dom) as follows:
freqecosystem(typeusage) is the frequency of a type-usage

in the dataset (in [0, 1]).

=
abundanceecosystem(typeusage)∑
i abundanceecosystem(typeusagei)

domecosystem(class) is the maximum observed frequency
among type-usages referring to the same class (in [0, 1]).

domecosystem(class) = max({freqi)|type(i) = class})

A. Type-usage Dominance

We have computed the type-usage dominance of the 382 774
classes of our dataset. Figure 5 gives the distribution as an
histogram (the plain, unhatched bars). We observe two peaks
around 0.5 and around 1. A dominance of 1 means that all
type-usage specimens of a given class correspond to the same
type-usage, i.e. that there is no diversity at all. A dominance of
0.5 means that half of the type-usage specimens are identical.
Both cases are peculiarities of our dataset, corresponding to
classes for which we observe one or two type-usage specimen.
The rest of the distribution contains “dominated” classes
(dom > 0.5) as well as classes for which there is no observed
dominant type-usages (low dominance value, e.g. dom > 0.3).
The latter correspond to classes where there is a real API usage
diversity: nonetheless there are many type-usages but all of
them are used in equal proportion. Now, let us come back to
to the high diversity observed for certain classes.

Let us concentrate on those 748 classes for which we
have observed more than 100 different type-usages. Are those
classes really diverse? Java’s String has a dominance of 0.083,
the most frequent type-usage is indeed not dominant. Does
this hold for the other very diverse classes as well? The
hatched bars of Figure 5 give the dominance distribution of
those 750 very diverse classes. Most classes have type-usage
dominance lower than 0.2. The largest bin (the tallest hatched
bar) corresponds to a dominance in the interval [0, 0.1]. For
those classes, there is no “standard way” of using the class
and the type-usage diversity does not correspond to “exotic
variations”.

To further demonstrate this point, Figure 6 plots the diversity
and dominance values for each class of the ecosystem. The

0.0 0.2 0.4 0.6 0.8 1.0
domecosystem(class)

All classes

diversity≥100

Fig. 5. The Distribution of Dominance as an Histogram, for all classes of
the ecosystem and for very diverse ones. Diverse classes have no dominant
type-usages.

Fig. 6. Correlation between Diversity and Dominance. Each point of the
graphic is a class. The more diverse a class’ type-usage, the less dominance.

X axis is the diversity metric, the Y axis is the dominance
metric. Each dot is a class. We can clearly see that there
is a correlation between diversity and dominance: the more
diversity, the less dominance. This confirms the findings on the
748 most diverse classes. Those pieces of evidence converge to
state that the API usage diversity we have observed previously
is actually a true diversity.

B. Usage Entropy of Classes

The dominance metric reflects the skewness of the distri-
bution of the abundance of type-usages. However, it neglects
the distribution of the rest of the distribution, the 2nd most

abundant type-usage, the 3rd, etc. To compute the overall
skewness, we propose to use Shannon’s entropy. In ecology,
Shannon’s entropy is an established diversity metric [11] (“di-
versity index” in the ecological terminology). In our context,
the entropy formula reads as follows:

entropy(class) = −
∑

freq(i)ln2(freq(i))

where the i are all observed type-usages of a class and freq
is an abbreviation of freqecosystem(typeusage). The entropy
is correlated to diversity: the more entropy, the more diversity.

The entropy is maximum when all type-usages are equally
distributed (i.e. of equal importance, with no dominance at all).
In this case, maxentropy(class) = −ln2(diversity(class)).
This value is the theoretical maximum of the entropy, i.e. the
maximum level of diversity. For all classes of the ecosystem,
let us draw maxentropy(class) versus entropy(class), in or-
der to see whether the maximum diversity is often approached
or not.

Figure 7 is a scatter plot of the entropy(class) (X axis
on a logarithmic scale) versus maxentropy(class) (Y axis).
Those axes represent the two components of what ecologists
call “species evenness”. One dot is a class among the 382 774
classes of the ecosystem. The diagonal lines emerging from
the points correspond to the theoretical maximum entropy
(when the type-usages are uniformly distributed). There are
no point for which y > x for obvious theoretical reasons. The
vertical lines at the left-hand side of the figure correspond to
all classes with a small number of type-usages (one line is
ln(diversity = 3), one line is ln(diversity = 4), etc). The
main striking point of this figure is that the cloud of points
sticks to the maximum entropy.

First, it further validates the finding of Figure 6. While the
dominance only takes into account the most frequent type-
usages, the entropy reflects the skewness of the whole distribu-
tion. Since the points are grouped along the maximum entropy,
with no gap between, this also shows there is a tendency to real
diversity (the type-usages are all used frequently). We would
rephrase it as the API usage diversity is systematic.

Second, let us concentrate on classes which have the same
diversity value (according to metric diversity of Table I). This
corresponds to a vertical line of points. We see that those lines
can be quite high, especially for low values of diversity.
This means that there is a kind of a “meta-diversity”: the
distribution of type-usage abundance does not follow a simple
rule for all classes.

VI. DISCUSSION

We have observed a large-scale diversity in the usage
of object-oriented classes. Does this phenomenon impact
our software engineering knowledge, beliefs? Does it mean
something with respect to software engineering research and
innovation?

A. Diversity and Success

Innovators try to write “successful code”. In a commercial
perspective, to make a lot of money; in an open-source

Fig. 7. The Type-Usage Entropy of Classes (Y axis) as a function of the
API Usage Diversity (X axis). Each point of the graphic is a class. Most
classes are grouped just below the maximum entropy, i.e. the diversity is
almost systematic.

perspective , to gather a lot of users. For an object-oriented
library, “successful” means having many client pieces code.
For a class, “successful” means having many client type-
usages across many different software projects. Certain classes
of the Java Development Kit are successful, as are classes of
external libraries (e.g. the Apache Commons libraries).

How to write successful classes? There is no clear recipe
and there are probably many factors influencing the success:
technical, social and commercial. However, it is generally
accepted that a badly designed class has little chances to
survive and become popular.

We have observed many classes that are successful (widely
used across a large ecosystem), and that have a large number of
public methods as well as a large diversity of possible different
usages. Even if those characteristics are sometimes considered
as bad design (as a violation of the single responsibility
principle aforementioned), they do not prevent those classes to
become successful. This holds for JDK classes as well as for
non JDK classes (e.g. W3C’s Node). To sum up, according
to our results, a high API usage diversity does not prevent
success.

We are also tempted to go further: if a class supports a high
API usage diversity, it may favor its success. The following
section presents arguments in favor of diversity in API design.

B. Diversity and Design

Our results on API usage diversity raise many questions
in terms of object-oriented API design. We discuss in this
question some of them. For educators who try to teach
“What good code is”, as we are, our results question certain
conceptions and teach messages.

a) Diversity and Cognition: When programming with
object oriented APIs, the bulk of the cognitive load consists
of remembering identifiers related to tasks (whether package,
class or methods). With this respect, remembering one single
class name is easier than remembering three of them. If Java’s
String would have been split in several classes, each one han-
dling one fine-grain responsibility (one subset of type-usages),

this would have increased the cognitive load of developers.
This argument applies to all classes and is related to research
on API usability, in which we have not found studies about
diversity. This argument would mean that, in terms of object-
oriented API design, there is a trade-off between responsibility
decomposition and usability. We think that future research on
this point would be of great interest.

b) Diversity and Plasticity: Second, let us define “class
plasticity” as the ability of a class to be used in many different
ways. Many factors influence the “class plasticity”. First,
we have seen that the number of public methods increases
the number of possible method call combinations, hence is
correlated with the plasticity (although slightly as witnessed by
the Spearman coefficient). Second, all kinds of checks have an
impact on the plasticity as well. For instance, overly restrictive
pre-condition and post-condition checks hinder plasticity. We
tend to think that a high usage diversity reflects a high class
plasticity.

c) Diversity and Reusability: High usage diversity may
correlate with reusability. It can reflect the fact that client code
was able to use the class in ways that were unanticipated by
the class designer. For instance, if one high level method is
defined on three sub-routines, providing the subroutines as
public would probably provoke unanticipated reuse of those
routines, which would consequently increase the class API
usage diversity. Having maps of API diversity as proposed in
IV-C may guide reuse. With those maps, developers are aware
of whether certain type-usages are popular or not and can make
informed decisions on how to use a class. Future research on
how these api diversity maps impact a group of developers of
different areas such as students, industry -related and research-
related professionals would result of great interest to study.

d) Diversity and Immutability: It is to be noted that one
can add as many public methods to an immutable object
without breaking anything: there are neither state-changing
risks nor usage protocol issues. In other terms, an immutable
class easily gives birth to a high API usage diversity. Java’s
String being immutable, this argument probably contributes to
the massive usage diversity we have observed.

e) Diversity and Testability: Object-orientation has been
a major concern in the software testing community: does
it favor or hinder error finding? In particular, increased en-
capsulation, modularity and coupling issues brought by the
object-oriented paradigm led to a large amount of work that
discuss the impact on testability [12], [13], [14]. Today, there
is no doubt about the utility of object-orientation, and testers
have found effective ways to reveal and fix errors in object-
oriented code. However, the observations that we make in
this paper seem to raise new questions about testability and
maintainability of object-oriented libraries. How to ensure
that all possible type-usages are correct? Should there be
one test per observed API usage (i.e. 2 460 test cases for
Java’s String), or even one test per acceptable method call
combinations? This highlights a particularly intriguing relation
between diversity and oracles, which we would put as diversity
and correctness. Does API usage diversity reflect a fuzzier

notion of correctness? Does API usage diversity means that
we can only have “partial” oracles? This is an open question
calling for future research on software testing.

C. Diversity and Repair

The type-usage abstraction has been introduced for sake
of static bug detection [3], [4]. In this previous research, our
mantra was to find a definition of “anomaly” among type-
usages, a definition that yields a low number of false positive.
An intuitive threshold on the abundance, even drastic, does
not work. However, we achieved a false positive ratio to the
price of adding strong criteria in the definition of “type-usage
anomaly”: first, with respect to the context of the type-usage
(the enclosing method), second, with respect to a type-usage
distance expressed in terms of methods calls. The new results
presented in this paper illuminate our previous work: the
diversity of type-usages makes it impossible to easily define an
“anomaly”. When an observed world is too diverse, there is no
such thing as “anomaly” or “out of the norm”. In general, we
tend to think that the more diversity in code (resp. at runtime),
the less possible it is to define high confidence static (resp.
dynamic) bug detection rules.

However, beyond bug detection, for automated bug repair,
diversity may also as be a major opportunity. The existence of
a large number of similar, yet diverse type usages provides a
wonderful ‘reservoir’ of alternative code to fix bugs. This goes
in the direction of recent results by Carzaniga and colleagues
[15] showing that the API usage diversity and plasticity can be
used to fix certain bugs at runtime. In such cases, the diversity
gives a kind of mutational robustness [16].

D. Diversity and Diversification

In this work we make original observations about the
presence of large scale diversity in software. This diversity
is present and has emerged spontaneously through the devel-
opment of a large number of Java classes. One question that
emerges with the observation of this spontaneous emergence
of diversity is: should we support or encourage the diversity in
object-oriented software? Beyond the impact of diversity on
success discussed in VI-A, what about inventing techniques
that automatically diversify a class API, using novel code
synthesis mechanisms?

For example, let us imagine a developer who wants to use
a class X . The developer calls a number of methods of this
class’ API, based on previous experiences with this API and
a rather intuitive comprehension of what this class should do.
There is a chance that the developer calls a method that is
not part of the API, but that relates to the services offered
by this API. If this case happens, there may be a possibility
that the yet unknown method can be implemented in the as
a combination of existing methods. One way to automatically
diversify a class API would be to automatically synthesize
this new method, using the code provided by the developer as
the specification (if the code executes correctly, the generated
method is correct). This kind of code synthesis would, by
definition, increase the diversity of type usages over the API,

and its principles would be similar to the theories underlying
mediator synthesis for middleware interoperability [17], [18].

E. Recapitulation

We think that our observations on object-oriented API usage
diversity have questioned different parts of the software engi-
neering knowledge in particular with respect to the principles
of good API design. We also think that it opens new research
questions in terms of API usability and software testing.

VII. RELATED WORK

Gabel and Su [1] have studied the uniqueness and redun-
dancy of source at the level of tokens. Our study explores a
different facet: the diversity. In this paper, we have presented
results at the level of object-oriented type usages, future work
is needed to explore diversity at the level of tokens.

Baxter et al. [19] have studied the “shape” of Java software.
They discuss the empirical distribution of many software
metrics, in particular size based metrics. However, they don’t
discuss at all diversity metrics as we do in this paper.

At the level of object-oriented APIs, an early paper by
Michail [20] discusses object-oriented usage patterns that were
observed in a large-scale study. He did not mention “diversity”
although it was somehow implicit in the large reported number
of patterns mined (51308 only for KDE classes). On the
contrary, we focus on measuring, analyzing and understanding
this diversity.

Ma and colleagues [21] only focus on Java classes and
prevalence metrics. Laemmel et al. [5] talk about API foot-
print and coverage (the number of API classes and methods
used within client projects). They do not mention the usage
diversity.

To our knowledge, Veldhuizen [22] is the only one who has
looked at entropy in software in a similar meaning as we have.
However, his point on entropy and reuse is more theoretical
than empirical, and the presented results are at the level of low-
level C library. To our knowledge, we are the first to report on
the existence, with precise numbers, of large scale diversity at
the API usage level.

Recently, Posnett et al. [7] explored a facet of diversity in
software development. In their paper, they define the notions of
“artifact diversity” and “authorship diversity” and extensively
discuss the pros and cons of high diversity. For instance;
for a module, it is beneficial to have a high diversity of
contributors. Posnett et al. and we both specifically aim at
measuring and understanding diversity in software. But we
focus on different facets: “artifact diversity” and “authorship
diversity” are orthogonal to “API usage diversity”.

VIII. CONCLUSION

We have mined 9 022 262 type-usages which refer to
382 774 Java classes. In this data, we wanted to specifically
measure the diversity, in the sense of ecological biodiversity.
To our surprise, we observed a large-scale usage diversity of
API usage: 748 classes are used in more than 100 different

ways. To our knowledge, this phenomenon has never been
reported before.

We have started a discussion on the reasons and the impact
of this observation on software engineering knowledge. We
look forward to gathering other diverse opinions to deepen
the comprehension of this large-scale API usage diversity.
This paper reports on an empirical phenomenon, future work
hopefully will find practical applications. In particular, our
long term goal is to translate the knowledge of API diversity
into practice, by providing diversity-aware guidelines and tools
to developers.

Also, it would be interesting to define measures of “diver-
sity” at other levels of abstraction (e.g. tokens or control flow
structures) to analyze the scale effect of this software metric
[23]. Diversity may also vary depending on the application
domains, and programming languages. Furthermore, it is not
clear how much the diverse type-usages of the same class are
semantically different. To conclude, the diversity advocated
by Stephanie Forrest [2] may have already emerged at many
layers of the software stack and this work provides initial
empirical insights about this phenomenon.

ACKNOWLEDGMENTS

This work is partially supported by the EU FP7-ICT-2011-9
No. 600654 DIVERSIFY project and the INRIA Internships
program. We thank Benoit Gauzens for detailed feedback.

REFERENCES

[1] M. Gabel and Z. Su, “A study of the uniqueness of source code,” in
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering. ACM, 2010, pp. 147–156.

[2] S. Forrest, A. Somayaji, and D. Ackley, “Building Diverse Computer
Systems,” in Proceedings of the 6th Workshop on Hot Topics in
Operating Systems (HotOS-VI), ser. HOTOS ’97. Washington, DC,
USA: IEEE Computer Society, 1997, pp. 67–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=822075.822408

[3] M. Monperrus, M. Bruch, and M. Mezini, “Detecting Missing
Method Calls in Object-Oriented Software,” in Proceedings of
the 24th European Conference on Object-Oriented Programming.
Springer, 2010. [Online]. Available: http://www.monperrus.net/martin/
Detecting-Missing-Method-Calls-in-Object-Oriented-Software.pdf

[4] M. Monperrus and M. Mezini, “Detecting Missing Method
Calls as Violations of the Majority Rule,” ACM Transactions
on Software Engineering and Methodology, vol. 22, no. 1,
2012. [Online]. Available: http://www.monperrus.net/martin/
Detecting-Missing-Method-Calls-As-Violations-of-the-Majority-Rule.
pdf

[5] R. Lämmel, E. Pek, and J. Starek, “Large-scale, AST-based API-
usage Analysis of Open-source Java Projects,” in SAC’11 - ACM 2011
Symposium on Applied Computing, Technical Track on “Programming
Languages”, 2011.

[6] B. Baudry and M. Monperrus, “Towards Ecology-Inspired Software
Engineering,” arXiv preprint arXiv:1205.1102, 2012.

[7] D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov, “Dual Ecological
Measures of Focus in Software Development,” in Proceedings of ICSE,
2013.

[8] D. Mendez, B. Baudry, and M. Monperrus, “Companion Web
Page for "Empirical Evidence of Large-Scale Diversity in API Us-
age of Object-Oriented Software",” http://www.monperrus.net/martin/
companion-diversity-api-usages, 2013.

[9] R. Vallée-Rai, L. Hendren, V. Sundaresan, E. G. Patrick Lam, and
P. Co, “Soot - a Java Optimization Framework,” in Proceedings of
CASCON 1999, 1999, pp. 125–135. [Online]. Available: www.sable.
mcgill.ca/publications

[10] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[11] I. J. Good, “The population frequencies of species and the estimation
of population parameters,” Biometrika, vol. 40, no. 3-4, pp. 237–264,
1953.

[12] M. Bruntink and A. Van Deursen, “Predicting Class Testability using
Object-oriented Metrics,” in Source Code Analysis and Manipulation,
2004. Fourth IEEE International Workshop on. IEEE, 2004, pp. 136–
145.

[13] B. Baudry, Y. Le Traon, and G. Sunyé, “Testability analysis of a UML
class diagram,” in Software Metrics, 2002. Proceedings. Eighth IEEE
Symposium on. IEEE, 2002, pp. 54–63.

[14] J. Offutt, R. Alexander, Y. Wu, Q. Xiao, and C. Hutchinson, “A fault
model for subtype inheritance and polymorphism,” in Software Relia-
bility Engineering, 2001. ISSRE 2001. Proceedings. 12th International
Symposium on. IEEE, 2001, pp. 84–93.

[15] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezzè, “Au-
tomatic Recovery from Runtime Failures,” in Proceedings of ICSE’13,
2013.

[16] E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest, “Software
Mutational Robustness,” arXiv preprint arXiv:1204.4224, 2012.

[17] G. Blair, A. Bennaceur, N. Georgantas, P. Grace, V. Issarny, V. Nundloll,
and M. Paolucci, “The Role of Ontologies in Emergent Middleware:
Supporting Interoperability in Complex Distributed Systems,” Middle-
ware 2011, pp. 410–430, 2011.

[18] C. Canal, P. Poizat, and G. Salaun, “Model-based Adaptation of Be-
havioral Mismatching Components,” IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 546–563, 2008.

[19] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser,
H. Melton, and E. Tempero, “Understanding the shape of Java software,”
in Proceedings of Object-oriented Programming Systems Languages and
Applications (OOPSLA). ACM, 2006.

[20] A. Michail, “Data mining library reuse patterns using generalized
association rules,” in Proceedings of the International Conference on
Software Engineering, 2000, pp. 167–176.

[21] H. Ma, R. Amor, and E. Tempero, “Usage Patterns of the Java Standard
API,” in Proceedings of APSEC. IEEE, 2006, pp. 342–352.

[22] T. L. Veldhuizen, “Software Libraries and their Reuse: Entropy, Kol-
mogorov Complexity, and Zipf’s Law,” arXiv preprint cs/0508023, 2005.

[23] D. Posnett, V. Filkov, and P. T. Devanbu, “Ecological inference in
empirical software engineering,” in Proceedings of ASE, 2011, pp. 362–
371.

