
HAL Id: hal-00842714
https://nantes-universite.hal.science/hal-00842714

Submitted on 9 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GroupDiv: Formalizing and Computing Group
Divergence Awareness in Multi-Synchronous Distributed

Collaborative Systems
Khaled Aslan-Almoubayed, Hala Skaf-Molli, Pascal Molli

To cite this version:
Khaled Aslan-Almoubayed, Hala Skaf-Molli, Pascal Molli. GroupDiv: Formalizing and Computing
Group Divergence Awareness in Multi-Synchronous Distributed Collaborative Systems. 2013. �hal-
00842714�

https://nantes-universite.hal.science/hal-00842714
https://hal.archives-ouvertes.fr

GroupDiv: Group Divergence Awareness for Distributed
Multi-Synchronous Collaborative Systems

Khaled Aslana,∗, Hala Skaf-Mollia, Pascal Mollia

a LINA, Nantes University, BP 92208, 44322 Nantes Cedex 03, France
Phone: +33 2 51 12 58 17 Fax: +33 2 51 12 58 97

Abstract

Collaboration can be synchronous, asynchronous or multi-synchronous. In multi-synchronous collaboration,
participants work in parallel on their own copies and synchronize periodically to build a consistent state.
A multi-synchronous collaboration introduces divergence between copies of shared objects; collaboration is
cycles of convergence/divergence.

In existing divergence awareness systems, divergence is viewed as conflicts introduced by concurrent
modifications. However, divergence can exist without conflict, whenever an operation is produced by a
participant and not consumed by other ones, divergence exists. In this paper, we propose a generic model
to formalize multi-synchronous collaboration. Using this model, we formalize existing divergence awareness
and we define an original divergence metric GroupDiv that quantifies divergence as the editing distance of
the group to the next potential convergence point. This metric enables users to control cycles of conver-
gence/divergence i.e. they cannot control the magnitude of divergence and the frequency of synchronization
to achieve convergence. The evaluation shows that GroupDiv enables participants to manage the cycle of
convergence/divergence.

Keywords: Awareness in Collaboration Systems, Collaboration Enabling Technologies, Platforms,
Artifacts and Tools for Collaboration, Coordination and Cooperation Mechanisms, Simulation of
Collaboration Systems, Web Infrastructure for Collaborative Applications

1. Introduction

Distributed collaborative systems allow people to work distributed in time, space and across organi-
zations. Collaboration can be synchronous, asynchronous or multi-synchronous [1]. In multi-synchronous
collaboration, participants work in parallel on their own copies and synchronize periodically to build a con-
sistent state. Version control systems (CVS, SVN, git) and synchronizers (Dropbox, isync) are examples of
multi-synchronous collaboration software. The multi-synchronous collaboration introduces divergence be-
tween copies of shared objects. If working in parallel can potentially reduce completion time, it induces blind
modifications [2]. The overhead of solving conflicts introduced by concurrent modifications can overwhelm
the expected gain [3, 4, 5]. Divergence awareness [6] makes participants aware of the quantity and the loca-
tion of divergence in shared objects. It allows to answers the following questions: is there any divergence?
With whom? Where? And how much? Divergence awareness is an implicit coordination mechanism [7, 8],
it incites participants to coordinate their actions to reduce divergence. It can be provided by different sys-
tems, relying on different metrics with different ad-hoc visualizations like: State Treemap [9], Operational
Transformation Divergence [6], Palantir [10], Edit Profile [11], Concurrent modifications [12], CollabVS [13],
and Crystal [14].

∗Principal corresponding author
Email addresses: khaled.aslan-almoubayed@univ-nantes.fr (Khaled Aslan), hala.skaf@univ-nantes.fr (Hala

Skaf-Molli), pascal.molli@univ-nantes.fr (Pascal Molli)

Preprint submitted to Elsevier May 27, 2013

Different approaches exist for computing divergence: estimating the size of conflicts [6], estimating the
difference between users’ copies and a reference copy [9], or estimating divergence according to multiple
copies of reference [14]. Some systems only consider published operations [11], others consider unpublished
operations [2]. In both cases, metrics can be projected according to different perspectives such as the
structure of documents, the users, or across the time. This generates different kinds of visualization.

A first issue concerns divergence quantification. Even if existing divergence metrics are able to notify users
about the presence of divergence and where it is located, they fail to clearly quantify divergence. If multi-
synchronous collaboration systems are characterized by cycles of convergence/divergence, then a divergence
metric should be able to measure the magnitude and frequency of these cycles. Such metric enables user to
monitor convergence/divergence cycles i.e. fix thresholds, control frequency of convergence, and estimate at
each time the effort required by the group to converge. In this paper, we define the GroupDiv divergence
as the editing distance for a group to the next potential convergence state. This distance is expressed in
number of operations to execute by the group. It is possible for each member to know her contribution to
this distance, therefore, any member is aware of her own position in the group. Consequently, the proposed
metric allows a group to measure its cohesion during collaboration.

Once a group divergence metric is defined, a second issue arises concerning the computation of this metric.
Computing group divergence is challenging for several reasons. First, it requires to maintain membership
informations. If this is trivial in centralized systems with small groups, such information is more complex
to maintain in highly dynamic large groups with no central authority as in distributed version control
systems or P2P wikis [15, 16]. Second, Divergence metric computation itself has to be efficient and scalable.
If the divergence computation is slow then delivered informations are out-of-date and can be confusing. If
divergence computation is not scalable then the quality of delivered information will depend of the size of the
group. In this paper, we detailed how it is possible to compute GroupDiv efficiently in a fully decentralized
multi-synchronous distributed collaborative system.

This paper contains the following contributions: i) we define a generic formal model for multi-synchronous
collaboration ii) we demonstrate how this model can be used to give semantic to existing divergence awareness
metrics. iii) we define the GroupDiv divergence metric that is able to quantify divergence, iv) we evaluate
GroupDiv divergence with a group of users.

This paper is structured as follows: Section 2 presents background and a motivating example. Section 3
presents related work. Section 4 defines a formal model for multi-synchronous collaboration and defines
the group divergence metric. Section ?? details how we used gossiping algorithms to compute a real-time
divergence metrics for fully decentralized deployment of multi-synchronous systems. Section ?? details the
validation of the proposed algorithm. The last section concludes the paper and points out future work.

2. Background and Motivation

Collaboration can be synchronous, asynchronous or multi-synchronous. Multi-synchronous collaboration
is defined by Dourish [1] as:

Working activities proceed in parallel (multiple streams of activity), during which time the
participants are disconnected (divergence occurs); and periodically their individual efforts will
be integrated (synchronization) in order to achieve a consistent state and progress the activity
of the group.

Multi-synchronous collaboration is widely used because parallel activities can potentially reduce comple-
tion time. However when divergence occurs it could generate conflicts where the overhead of solving these
conflicts can overwhelm the expected gain [3, 4, 5]. For example, take a scenario of blind modifications [2]:
let us consider the collaboration task of editing a book by two users. Each user has a copy that he/she can
work on it in isolation. They periodically synchronize and integrate each others’ modifications into their
own copies. Let us assume that one user is working on a paragraph, while another user is deleting the
paragraph. This will waste the work done by the first user, since he/she does not know a priori what the
other user is doing.

2

S1 : developer1 S2 : developer2 S3 : developer3

step1 op1,1=create isReal()

publish(op1,1)

pull(S1):[op1,1]

mm

pull(S1):[op1,1]

nn

op1,2=delete isReal()
...

op2,1=update isReal()
...

op3,1=create TestIsReal()
...

step2 publish(op1,2)

pull(S1):[op1,2]

mm

pull(S1):[op1,2]

nn

op2,2=create isReal()
...

op3,2=delete TestIsReal()
...

step3 publish(op2,1,op2,2)

pull(S2):[op2,1;op2,2]

ll

op3,3=create TestIsReal()

step4 publish(op3,1,op3,2,op3,3)

pull(S3):
[op2,1;op2,2;op3,1;op3,2;op3,3]

11

pull(S3):
[op3,1;op3,2;op3,3]

22

step5

Figure 1: Three developers multi-synchronous collaboration scenario

Several approaches exist to reduce the cost of divergence in multi-synchronous collaborative systems.
Planning and coordination can be used to avoid conflicts [17]. By good planning, one can create different
parallel tasks that will modify disjoint and independent objects. But fine grained planning can be very
costly, and it is not always possible to define disjoint tasks. Furthermore, in the open source development
communities, people often collaborate without knowing each other. The development environment is open
for any contributor and it is not possible to plan and coordinate in advance. Commit often policy is a best
practice for reducing the probability of conflicts [18]. Commit often is not always possible because users
commit their modifications after they complete the requested tasks, this means that commit depends on
the task completion time. Even if planning and commit policies are good practices, conflicts still exist as
detailed in [19, 14]. Zimmermann [19] analyzed CVS repositories, and concluded that, 23% to 47% of all
merges had textual conflicts. Brun et al. [14] found that conflicts between developers’ copies are rather the
norm, they persist on average ten days and they often result in compile, build and test failures.

Planning and coordination can be completed by divergence awareness. Divergence awareness detect
divergence and visualize it in order to help users answering the following questions: is there any divergence?
With whom? Where? And how much? If existing systems [9, 6, 10, 11, 12, 13, 14] provides some answers
to the first three questions, they fail to answer the last one.

Consider a scenario involving three software developers developer1, developer2 and developer3 collabo-
rating on the source code of the same project . This scenario is presented in figure 1 and inspired from [2].
Although at the beginning they divide their work according to predefined tasks, their modifications will
overlap later on during their isolated work since their tasks involve some common classes. Each developer
works in her/his private workspace respectively S1, S2 and S3. At step1, all workspaces are strictly identical
and the group is convergent.

After step1, developer1 adds the method isReal() to the class Integer by generating and applying locally
operation op1,1. As op1,1 is only applied on S1 divergence exists between S1, S2 and S3, it is localized on

3

class Integer, and developer1 produced this operation. Then she makes her modifications available for other
developers by publishing her operation using publish(op1,1). This change nothing for divergence except
that now S2 and S3 can be aware that a new operation is available from S1. Consequently, developer2
and developer3 decide to pull op1,1 using pull(S1) and integrate them into their working copy by calling
an arbitrary merge tool. At this precise instant, all workspaces should be strictly identical and the global
system is convergent again.

Next, developer1 decides to remove the method isReal() from the class Integer. Concurrently, developer2
updates the method isReal() from class Integer such that it returns false instead of real. developer3 tests
the class Integer by creating the test class IntegerTest. One of the added methods in that class is the test
method for isReal(). Just before step2, three concurrent operations are existing in the system and represent
all the divergence present in the system: op1,2, op2,1, op3,1

After step2, developer1 publishes op1,2 and developer2 and developer3 pull the missing operation and
integrate it. developer2 decides to (re)insert the method isReal(), and developer3 decides to remove the
test method since the isReal() has been deleted. From the divergence point of view, we can see that op1,1
and op1,2 are now consumed by all sites and represent some common prefix for 3 sites. Divergence is now
represented by unpublished operation of sites S2 and S3: op2,1, op2,2, op3,1, op3,2

After step3, developer2 publishes his modifications for other developers but only developer3 integrates
it and re-create TestIsReal (op3,3). At this instant, S3 has all the seven operations produced in the system,
S2 has just seen four operations, and S1 two operations.

After step4, developer3 publishes his modifications. developer1 and developer2 pulles from the workspace
of developer3 operations done by the later and all preceding operations missing from their respective
workspaces. For instance, developer1 will pull the sequence of five operations missing in her workspace.
At step5, the whole group is convergent again.

In this scenario, divergence can be seen as an history of conflicts. developer1 deleted the method isReal()
while developer2 and developer3 was using it. This can be viewed as a conflict. When they are aware of
deletion, they react differently, developer2 reinserts the method while developer3 deletes the test. In fact,
after observing the conflict in their own context, each user solved it differently, generating another conflict
i.e. a conflict of conflict. When developer3 observed that developer2 reinserted the ”isReal method”, then
he decided to reinsert his test again.

In this scenario, most divergence awareness systems will warn users about concurrent modifications just
before step2 as in State Treemap [9]. They will try to estimate size of conflicts as in Palantir [10], and
maybe switch to synchronous mode to help solving conflicts as in CollabVS [13] and thus avoid a conflict of
conflict.

If a conflict-based approach of divergence makes sense, we think it captures only a part of divergence.
Conflicts are characterized by incompatible concurrent write operations that can be performed on the same
object or on different object (direct or indirect conflict). However, divergence starts to exist from the
moment an operation has been produced on one site and has not been consumed by the others. Therefore,
divergence can exist even without any conflict. In the previous scenario, divergence appears just after step1
when op1,1 is created and it disappears just after op1,1 is consumed by S2 and S3. This raises the issue of a
formal definition of divergence. Conflict-based approach of divergence leads to define divergence as the lack
of convergence, nearly a boolean value. That’s why we argue that conflict-based approach of divergences
fail to answer the ”how much?” question.

To answer this question, we come back on the Dourish definition of Multi-synchronous systems. Dourish
suggests the existence of cycles of divergence and convergence within the group. We think that if divergence
can be quantified, groups should be able to compute and display these cycles. Once quantified, groups are
able to fix divergence threshold and constraints convergence frequency. More important, such divergence
metric should be able to maintain group cohesion during activity progress i.e. the ability for a group to see
if everyone follows the change at the same speed.

For example, imagine just two people working on a document, but only one is writing, the other is just
reading and give feedback by mail (see figure 2). There is no conflicts created by this activity i.e. there is no
concurrent operations, however, divergence exists between the workspace of the writer and the workspace
of the reader. What can be important in this scenario is to keep divergence under a predefined threshold

4

S1 : user1 S2 : user2

step1 op1,1=update(doc)

publish(op1,1)

pull(S1):[op1,1]

ll

step2 op1,2=update(doc)

op1,3=update(doc)

publish(op1,2, op1,3)

pull(S1):[op1,2; op1,3]

ll

step3

Figure 2: Writer/reader scenario

such as the writer has continuous feedbacks according to her writing speed.
For this purpose, we defined divergence in a multi-synchronous collaborative system as the editing

distance of a group to the next potential state of convergence i.e. the minimal number of operations to be
performed by the group to reach convergence. We define GroupDiv formally in section 4. A corollary of
this definition, is that each group member is able to know how much she contributes to this distance. So it
is possible to know for each group member if she/he is walking at the head of the group and if the group is
waiting for her/him. Therefore, quantifying divergence allows each group member to adapt her/his speed.

In the previous scenario of writer/reader, the divergence will be the number of operations produced by the
writer to integrate in the workspace of the reader. Writer can estimate reader speed by observing evolution
of this metric. Reader can also evaluate the writer speed with same observation. In the scenario of figure 1,
divergence at step2 should be 6 because each member has to integrate at least two concurrent operations to
reach convergence. Before step4, S1 has to integrate 5 operations, S2 has to integrate 3 operations, and S1

is the head. 8 operations has to be integrated by the group to reach the nearest point of convergence and
S1 has the longest path to do.

In the following section, we present related work. Then we present our group divergence metric in
sections 4, and its computations is detailed in sections ?? and ??.

3. Related Work

Existing divergence awareness systems are characterized by divergence metric, when and how they are
computed.

Edit Profile [11] makes users aware of ”hot areas” and also who is or has been active in various parts
of the document. The different contributions of users are quantified and distributed at different levels:
document, paragraph, sentence, word and character. It is possible to observe who contributed where, and
how much. We compute EditProfile for the scenario in figure 1 considering the extreme case where we have
only one document (one node). At step2, Edit Profile will give the following values (2,1,1) for the sites (S1,
S2, S3). At step3, the values become (2,2,2), then at step4 (2,2,3), and finally at step5 (2,2,3). This clearly
shows that Edit Profile does not give any indication on the group cohesion, nor the work needed in order to
achieve convergence. It only gives an indication of the users’ past activity.

Concurrency awareness [12] helps users to quickly find where automatic merges have been performed for
a P2P network of synchronized wikis and consequently facilitates the verification of final results. Concur-
rency awareness relies on plausible clocks to detect concurrency a posteriori. On the scenario of figure 1,
concurrency awareness will warn nothing before step2. It will highlight op1,2 and op2,1 after pull(S1) on
S2, and op1,2 and op3,1 after pull(S1) on S3. Concurrency awareness is computed on already integrated

5

Figure 3: Crystal widget for divergence awareness

operations, so the primary objective is to alert people where concurrency occurred, not where divergence is
currently present.

Crystal [14] is a speculative analysis tool that provides concrete information and advice about pending
conflicts while remaining largely unobtrusive. It provides developers with information about their develop-
ment states and the relationships between their repositories and collaborators’ repositories. It shows the
developer if she is in advance over the other’s or if she is behind, which means that modifications have been
made to the shared project and she did not consume them yet. It also alerts the developer of the potential
conflicts in case she consumes the remote operations (see figure 3). Crystal tracks divergence by checking
the state of all workspaces according to a master copy. It helps to locate where divergence is located and
with who. For the scenario in figure 1 at step1, Crystal will give the following states (same, same, same)
for the three sites (S1, S2, S3) respectively. At step2, the states become (conflict, conflict, conflict). At
step3, the states become (behind, conflict, conflict). At step4, the states become (behind, behind, ahead).
At step5, the states become (same, same, same).

This clearly shows that divergence is not really quantified, it is impossible to measure the total amount
of divergence in the system.

State Treemap [9] shown in figure 4 is an example of divergence awareness widget. It informs participants
about the states of shared documents stored in a file system. Different states are defined for a document:
LocallyModified, RemotelyModified, PotentialConflict, etc. When a document is modified by a participant,
it will be marked as LocallyModified in her own workspace, while in the others participants’ workspaces it
will be marked as RemotelyModified. Divergence awareness is delivered as a Treemap where each rectangle
is colored with the state of the shared object. For instance, if the whole Treemap is white, it means that
there is no divergence in the system. If some parts are colored, then users know who changed the file i.e.

6

Figure 4: State Treemap

owner ”foo” in figure 4. The Treemap itself helps users to know where divergence is located. The number
of rectangles of different colors can be seen as a quantification of the divergence in the system.

For the scenario in figure 1 if we consider that we have only one shared object then at step1, State
Treemap will give the following states (up-to-date, up-to-date, up-to-date) for the three sites (S1, S2, S3)
respectively. At step2, the states become (potential conflict, potential conflict, potential conflict). At step3,
the states become (remotely modified, potential conflict, potential conflict). At step4, the states become
(remotely modified, remotely modified, locally modified). At step5, the states become (up-to-date, up-to-
date, up-to-date).

In State Treemap, different users do not see the same Treemap (see figure 4). So the quantification
of divergence as the number of rectangle of different colors will be different. The quantity of divergence
in the global system should not depend of the workspace the user is working in, it should estimate the
entropy relative to global state of the system with all its workspaces. In this paper, we propose a group
divergence metric that aims to quantify divergence as the editing distance to next potential convergence
point. Furthermore, State Treemap relies on a central server for performing metrics computations. Users
must open a session on this server and send in real-time all local changes in order to get awareness. This
kind of architecture can hardly be transposed to more decentralized multi-synchronous collaborative systems
such as distributed version control systems or P2P wikis. These systems have been designed to avoid single
point of failure, or central authority. They do not maintain membership. Sites just follow the updates of
other sites as in social network and generate complex networks of synchronization. In such conditions, how
to deliver divergence awareness that needs to build a global knowledge about the system?

Another approach of divergence awareness based on operational transformation [20] is described in [6].
For convenience reason, we will call it OT divergence awareness. In this approach, sites are synchronized on
demand but they exchange unpublished operations in real-time as in a distributed real-time editor. An OT
algorithm simulates the integration of remote operations in real-time and computes conflict objects. The
size of all conflict objects determines the quantity of divergence on each site. Next, this quantification can
projected on objects as described in figure 5.

We compute OT divergence at step2 of the scenario presented in figure 1. First op1,2 is integrated on
S2 and site S3. On S2, op2,1 is transformed according to op1,2. We suppose that a conflict is detected by
transformation function and op2,1 is transformed into an operation op′2,1 = conflict(op1,2, op2,1). On S3,
with the same reasoning, op3,1 is transformed into op′3,1 = conflict(op1,2, op3,1). Finally, op′2,1 is integrated
on S3 and op′3,1 is transformed into op′′3,1 = conflict(conflict(op1,2, op2,1), conflict(op1,2, op3,1)). At the
end of the process, each site will have computed the sequence [op1,2; op′2,1; op′′3,1]. The divergence in the
system is the size of conflict objects produced by this sequence. As the computed sequence is the same
for all sites, the OT divergence metric ensures that all sites will see the same value of the metric. OT
divergence awareness has been designed for measuring conflicts introduced by concurrent writes. If there

7

Figure 5: Operational Transformation divergence awareness (OT)

8

Figure 6: Ghost operations result for the scenario in figure 1

is no concurrent writes, no divergence will be detected. Therefore, OT divergence awareness cannot detect
divergence for the writer/reader scenario presented in figure 2.

Ghost operations [2] provides awareness on concurrent ongoing activities to prevent blind modifications
while preserving privacy. Ghost operations represent real unpublished operations, some parameters of op-
erations can be blurred according to user preferences to better preserve privacy. Running ghost operations
on the scenario presented earlier in figure 1 would give the results shown in figure 6. From this results, we
can clearly see that the class Integer has blind modifications, and we can also see that these modifications
are in the method isReal(). Figure 6 shows that ghost operations only notify users where is divergence but
it fails answering the question: how much divergence exists in the system?

Palantir [10] is a workspace awareness designed for configuration management systems. It enables early
detection of potential conflicts arising from concurrent changes to the same file or dependency violations in
ongoing parallel work (see figure 7). For instance in step2 of the motivating scenario of the figure 1, Palantir
will detect conflicts between S1 and S2 and dependency conflicts between S1 and S3. Palantir measures the
severity of changes based on ratio of lines changed, added or deleted according to total number of lines. The

9

Figure 7: Palantir divergence awareness

Figure 8: CollabVS Concurrent activity notification

heart of Palantir are the events on ongoing activities in each workspace.
FASTDash [21] is another awareness system designed for small teams of 3-8 collaborating programmers.

It provides contextual awareness information such as which code files are changing, who is changing them
and how they are being used. This awareness mechanism does not scale for large-scale decentralized systems.
Furthermore, this awareness system fails answering the question: how much divergence exists in the system?

CollabVS [13] proposes a semi-synchronous collaboration model in which editing phases are asynchronous
and conflict detection and recovery phases can be asynchronous or synchronous. On detecting conflicts,
CollabVS displays a notification balloon (see figure 8), user can ignore the notification or go further to have
more information about the conflicts and can start a collaborative session with other developers for reviewing
and fixing conflicts. CollabVS does not quantify divergence, for instance, in step2 of the motivating scenario
of the figure 1, CollabVS will detect conflict between S1 and S2 and indirect conflict between S1 and S3.
CollabVS enables collaborative resolution of conflicts.

All previous divergence awareness systems do not formally define the underlying formula they use to
calculate their metrics. Existing divergence awareness systems keep users aware of the presence of divergence,

10

potential conflicts and where conflicts are located, but they poorly quantify divergence in a multi-synchronous
collaborative system and they are not suitable for fully decentralized systems. Our proposal completes the
existing divergence metrics with a group divergence metric. This original metric is formally defined and can
be efficiently computed in fully decentralized systems.

4. Group Divergence Awareness Formal Model

We observed that existing multi-synchronous collaborative systems behave like optimistic replication
systems [22]. An optimistic replication model considers N sites where any kind of objects are replicated.
We can say that a site corresponds to a stream of activity in Dourish definition [1]. Objects can be modified
anytime, anywhere by applying an update operation locally. According to the optimistic replication models,
every operation follows the following lifecycle:

1. An operation is generated in one site, in isolation. It is executed immediately without any locking,
even if the local site is off-line. This is the disconnection phase of the multi-synchronous collaboration where
divergence is growing.

2. It is broadcasted to all other sites. The broadcast is supposed reliable. All generated operations
will eventually arrive to all sites. Pairwise synchronization of sites is a way to broadcast operations to
all sites. There is no constraint about how operations are disseminated (broadcast, anti-entropy, pairwise
synchronization, gossiping, etc.). We just suppose that a graph of dissemination exists between sites. This
graph represents a collaboration network.

3. Received operations are integrated and re-executed. This is the synchronization phase of the multi-
synchronous collaboration. Integration relies on merge algorithms such as those used in operational transformation[20].
In this paper, we suppose that the merge algorithm is deterministic, commutative, and associative i.e. merg-
ing operations produce the same state in all sites whatever the order of reception of concurrent operations.

Different consistency models can be applied at this stage, causal consistency, eventual consistency, in-
tention preservation etc. We made no hypothesis about the consistency model used. However, divergence
awareness relies on concurrent operations analysis and two operations are concurrent if there is no causal
relation between them. Causal relations aka ”happened-before” relations are defined in [23], we use these
definitions for multi-synchronous collaboration systems.

The general idea of the group divergence awareness is:

• Following the optimistic replication model, each site builds a causal history of operations i.e. an history
that ensure causal order with causality relation as defined by Lamport [23]

• If all these causal histories are merged, we obtain a maximal causal history, we call it Hmax.

• If every local causal history is equal to Hmax, then the convergence is achieved.

• Otherwise, there is a divergence in the system. This divergence is the number of operations to be
integrated by the group to reach convergence i.e. the number of operations that belongs to Hmax and
not in the local history of all sites. Consequently, our vision of divergence has to be understood as a
group divergence and not as an editing distance between two members of this group. This divergence
metric makes all members aware of the minimal distance for the group to reach the next potential
convergence point represented by Hmax. It is possible for each member to know how she contributes
to this distance, so any member is aware of her own position in the group.

• Computing such divergence metric requires to determine the membership; who is in the group? An-
swering this question is challenging because multi-synchronous models have no clear procedure for
joining and leaving the group. Next, computing the number of operations to be integrated by the
group to reach convergence requires a global knowledge of the state of all sites. Membership and
global knowledge are not a problem for building a divergence model, however, they are challenging for
metric computation at run-time.

11

HS1
HS2

HS3

step1 ∅ ∅ ∅

step2

op1,2

op1,1

OO
op2,1

op1,1

OO
op3,1

op1,1

OO

step3

op1,2

op1,1

OO

op2,2

op1,2

OO

op2,1

bb

op1,1

bb OO

op3,2

op1,2

66

op3,1

OO

op1,1

bb <<

Figure 9: Causal history for three sites at step1, step2 and step3

In the following, we define S as the set of sites in the system at the divergence awareness computation
time, and N = |S| as the number of sites. Each site is uniquely identified by a unique identifier id, and
it maintains a counter cid that increments when the site generates a new operation. An operation op is
uniquely identified by the pair (id, cid), where id is the identifier of the generating site and cid is its counter
value when it generated the operation. The operation can be annotated with meta-data such as author,
timestamp, modified object, position, operation type, etc.

As in [20], following Lamport [23] we define a causal (partial) ordering relation on operations in terms
of their generation and execution sequences as follows.

Definition 1 (Causal Ordering Relation “→”). Given two operations opa and opb generated respectively at
sites i and j then opa → opb iff (1) i = j and the generation of opa happened before the generation of opb;
(2) i 6= j and the execution of opa at j happened before the generation of opb; (3) ∃opx such that opa → opx
and opx → opb

For example in the collaboration scenario in figure 1, operations op1,1 and op1,2 are generated on site
S1 and op1,1 is generated before op1,2, so we can express that op1,1 → op1,2, op1,1 → op3,1, the execution of
op1,1 at site S3 happened before the generation of op3,1 at site S3. Remember according to the optimistic
replication model an operation generated on a site is executed immediately.

Definition 2 (Concurrent operations “‖”). Given any two operations opa and opb, opa and opb are said
concurrent iff ¬(opa → opb) ∧ ¬(opb → opa), which is expressed as opa ‖ opb.

For example, op1,2 ‖ op2,1 and op1,2 ‖ op3,1 in figure 1 .
We associate a local causal history HSi

to every site Si in the system, HSi
is defined as follow.

Definition 3 (Local Causal history “HSi
”). Let HSi

the causal history of the site Si, for any operation
opb ∈ HSi

if opa → opb then opa ∈ HSi
.

In other words, HSi corresponds to all operations generated and received by the site Si. The definition
implies that if an operation belongs to the local history, then all operations that causally precede this
operation belongs also to the local history. Consequently, the history is complete.

Figure 9 shows the evolution of the causal history of sites S1, S2 and S3 at the different steps of the
scenario in the figure 1. The causal history is modeled as a directed acyclic graph with the operations as
nodes and causal ordering relations as arcs. For instance, in step2 in site3, op1,1 → op1,3 and op1,2 ‖ op3,1.

A site has only one function to manipulate its causal history, this function inserts new operation into
the causal history. There is no function that deletes an operation from the causal history.

In order to compute the group divergence awareness, we need to calculate the maximal causal history
Hmax of the sites participating in the system at the computation moment. We define Hmax as follow.

12

Definition 4 (Maximal causal history “Hmax”).

Hmax =
⋃
i

HSi
: ∀Si ∈ S

Hmax represents the next potential state of the system i.e. as state where the group divergence is null.
From Hmax we can deduce the total number of unique operations in the system.

Definition 5 (Total number of operations “optot”).

optot = |Hmax|

We define the global divergence of a site as the the number of operations in Hmax that are not in its
local causal history.

Definition 6 (A site global divergence “GD(Si)”). Let Si ∈ S, HSi its local causal history and Hmax is the
maximal causal history in the system then

GD(Si) = |Hmax \HSi |

This corresponds to the number of concurrent operations that site Si has to integrate to reach the next
potential convergence state represented by Hmax.

In the figure 10, we compute the GD(S1), GD(S2) and GD(S3) at each step of the scenario of the
motivating example. For instance, at the beginning, site S1, GD(S1) = 0 therefore S1 is convergent wrt
to S2 and S3. In step2, GD(S1) = 2, S1 needs to integrate two operations to re-establish convergence. In
step3, GD(S1) = 4, divergence is increased, in step4, GD(S1) = 5 more divergence, in step5, GD(S1) = 0,
convergence is re-established.

Now we can define the group divergence metric, as the total number of operations to be consumed in
the system to reach the next potential convergence state. And we note it: GDtot, formally it corresponds
to the sum of operations in Hmax that are not in HSi

of every site Si in the system.

Definition 7 (Group divergence “GDtot”).

GDtot =
∑
i

|Hmax \HSi
| : ∀Si ∈ S

Figure 10 shows the results of calculating Hmax, GD(Si) and the group divergence GDtot for the scenario
of figure 1. For example, at step4, every user knows that the group divergence is GDtot = 8. This represents
the distance for next potential convergence state. Every user knows her own contribution to this distance. S1

has to integrate five operations: {op2,1, op2,2, op3,1, op3,2, op3,3}, S2 has to integrate three operations:{op3,1,
op3,2, op3,3} and S3 is up-to-date. Figure 11 shows a possible visualization of GDtot on the scenario of three
developers based on results presented in figure 10.

As defined in definition 7, GDtot requires to compute the difference between sets.
However, given HSi

⊆ Hmax we can rewrite global divergence GD(Si) for a site Si using the total number
of operations in the system optot as follow.

Definition 8 (Site global divergence using aggregation “GD(Si)”).

optot =

N∑
i=1

cSi
: ∀Si ∈ S

GD(Si) = optot − |HSi
|

Consequently, we can rewrite the computation of group divergence GDtot in the system with only ag-
gregation functions as follows.

13

HS1 HS2 HS3 Hmax

step1
∅

GD(S1) = 0
∅

GD(S2) = 0
∅

GD(S3) = 0
∅

GDtot = 0

step2

op1,2

op1,1

OO

GD(S1) = 2

op2,1

op1,1

OO

GD(S2) = 2

op3,1

op1,1

OO

GD(S3) = 2

op1,2 op2,1 op3,1

op1,1

bb OO <<

GDtot = 6

step3

op1,2

op1,1

OO

GD(S1) = 4

op2,2

op1,2

OO

op2,1

bb

op1,1

bb OO

GD(S2) = 2

op3,2

op1,2

66

op3,1

OO

op1,1

bb <<

GD(S3) = 2

op2,2 op3,2

op1,2

OO 66

op2,1

bb

op3,1

OO

op1,1

bb OO <<

GDtot = 8

step4

op1,2

op1,1

OO

GD(S1) = 5

op2,2

op1,2

OO

op2,1

bb

op1,1

bb OO

GD(S2) = 3

op3,3

op2,2

<<

op3,2

bb

op1,2

OO 66

op2,1

bb

op3,1

OO

op1,1

bb OO <<

GD(S3) = 0

op3,3

op2,2

<<

op3,2

bb

op1,2

OO 66

op2,1

bb

op3,1

OO

op1,1

bb OO <<

GDtot = 8

step5

op3,3

op2,2

<<

op3,2

bb

op1,2

OO 66

op2,1

bb

op3,1

OO

op1,1

bb OO <<

GD(S1) = 0

op3,3

op2,2

<<

op3,2

bb

op1,2

OO 66

op2,1

bb

op3,1

OO

op1,1

bb OO <<

GD(S2) = 0

op3,3

op2,2

<<

op3,2

bb

op1,2

OO 66

op2,1

bb

op3,1

OO

op1,1

bb OO <<

GD(S3) = 0

op3,3

op2,2

<<

op3,2

bb

op1,2

OO 66

op2,1

bb

op3,1

OO

op1,1

bb OO <<

GDtot = 0

Figure 10: Max causal history and group divergence for three sites

14

 0

 1

 2

 3

 4

 5

 6

 7

 8

step1

step2

step3

step4

step5
nb

 o
f o

pe
ra

tio
ns

 to
 in

te
gr

at
e

by
 th

e
gr

ou
p

site1 site2 site3 GDtot

Figure 11: Divergence evolution on scenario of three developers

Step ∇(S1, S2) ∇(S1, S3) ∇(S2, S3) DIV∇ GDtot

step1 0 0 0 0 0
step2 2 2 2 6 6
step3 2 2 4 8 8
step4 2 5 3 10 8
step5 0 0 0 0 0

Table 1: Comparing divergence using ∇ to group divergence GDtot

Definition 9 (Group divergence using aggregation ‘GDtot”).

GDtot = optot ×N −
N∑
i=1

|HSi |

To better understand GDtot definition, we will compare it with two common strategies for existing
divergence awareness metrics. The first one relies on comparing the causal histories of sites pairwise. The
second one relies on a copy of reference for comparing the causal histories. Suppose we define divergence
between two sites as the number of missing operations in their respective local causal histories. We note
divergence between two sites ∇. This corresponds to the editing distance between the two sites.

Definition 10 (Divergence between two sites ”∇”). ∇ : S×S→ N, ∇(Si, Sj) = |(HSi \HSj)∪ (HSj \HSi)|

Definition 11 (Group divergence using ∇). DIV∇ =
∑
i,j

∇(Si, Sj)

We calculate the divergence between the sites in the scenario in figure 1, the results are shown in the
table 1.

In order to calculate the group divergence, it is incorrect to only rely on ∇. As shown in figure 1, at step4
S3 has consumed op2,1 and op2,2 from S2. These two operations will be calculated twice: 1) in ∇(S1, S3)
and 2) in ∇(S1, S2) this is incorrect.

From this example, we can easily deduce that:

GDtot 6=
∑
i,j

∇(Si, Sj)

This illustrates that group divergence awareness cannot rely on distance between sites. GDtot prevents
overlapping while counting operations to integrate and keeps the group divergence metric safe.

15

Step DIVref GDtot

step1 0 0
step2 4 6
step3 4 8
step4 7 8
step5 0 0

Table 2: Comparing divergence using a reference copy DIVref to group divergence GDtot

State S1 S2 S3

Locally Modified false true true
Remotely Modified true true true
Potential Conflict false true true
Locally Up-to-date false false false

Table 3: Computing State Treemap for the scenario shown in figure 1 (at step4)

Now we define the divergence based on a copy of reference Href , as the sum of operations missing from
the local site and present in the reference copy, plus the sum of operations missing from the reference copy
and present in the local site, we call it DIVref .

Definition 12 (Group divergence using a reference copy DIVref). DIVref =
∑
i

|(HSi
\Href)∪(Href \HSi

)|

In order to calculate DIVref for the scenario in figure 1, we choose the first site’s causal history as the
reference copy i.e. Href = HS1

the results are shown in table 2.
We clearly see that DIVref underestimates the work needed for the group to reach the next potential

point of convergence.
Most existing divergence awareness systems use a copy of reference to compute divergence and focus

on specific kind of operations in the causal histories i.e. conflicts operations, local operations and remote
operations.

Awareness can be interpreted as the projection of Hmax according to these operations. Therefore, we
believe that GroupDiv formalism can be used to define existing divergence awareness.

For instance, we can rewrite State Treemap for one object using GroupDiv model as follows:

Definition 13 (Locally-modified). The site Si is in a locally-modified state if LM(Si) = ∃op ∈ HSi
,∀Sj 6=i ∈

S : op /∈ HSj

Definition 14 (Remotely-modified). The site Si is in a remotely modified state if RM(Si) = ∃Sj 6=i ∈
S,∃op ∈ HSj : op /∈ HSi

Definition 15 (Potential-conflict). The site Si is in a potential-conflict state if PC(Si) = LM(Si)∧RM(Si)

This formalization demonstrates that State Treemap only relies on causal histories for computing its
states. Suppose, there is only one shared object and we run State Treemap on the scenario shown in figure 1
(at step4). We will obtain:

At the same state, the group divergence metric will give a distance GDtot = 4 + 2 + 2 = 8. This clearly
demonstrates that State Treemap allows user to perceive divergence and where it is located, but not really
to quantify it.

We can also rewrite Palantir states using GroupDiv formal model as follows: If we annotate the operation
with a type, then we can check if a document has been created on a site using the operation type create
document. This corresponds to Palantir populated state. Or we can check if a document has returned to its
original state if we find an operation type undo. This corresponds to the change reverted state of Palantir.

16

State S1 S2 S3

Change in Progress true true true
Change Severity 5 5 5

Table 4: Computing Palantir for the scenario shown in figure 1 (at step4)

Definition 16 (Populated). A document has been created on a site. Pop(Si) = ∃op ∈ HSi : op.type =
”createdocument”

Definition 17 (Change In Progress). This state is similar to the Locally-Modified or Remotely-Modified
states already mentioned in State Treemap. CP (Si) = LM(Si) ∨RM(Si)

Definition 18 (Change Reverted). The document has returned to its original state. CR(Si) = ∃op ∈ HSi :
op.type = ”undo”

Definition 19 (Change Severity). The number of operations that have been done on a document. CS(Si) =
|{op | ∀Sj 6=i ∈ S : (op ∈ Hi \Hj) ∨ (op ∈ Hj \Hi)}|

If we interpret Palantir system with GroupDiv, sharing events containing operations between all partic-
ipants in real-time is like building Hmax in each workspace. Next, different projections according to various
meta-data can be performed locally such as conflict interpretation and impact analysis. If we compute
Palantir states on the scenario shown in figure 1 (at step4). We will obtain:

Compared to GroupDiv, Palantir does not allow to observe the cycle of divergence/convergence, it focuses
on estimating size of direct or indirect conflict as in OT divergence awareness [6]. Next, we proposed an
efficient algorithm to compute the group metric that does not require to flood the network to build Hmax

in each workspace.
Concurrent awareness [12] can be defined using GroupDiv as follows:

Definition 20 (Concurrent Modification). The site Si is in a concurrent modification state if CM(Si) =
∃op1, op2 ∈ Hi : op1 ‖ op2

If we compare with Edit Profile with GroupDiv, Edit Profile can be as the projection of Hmax according
to the structure of the shared document in order to deliver localized awareness.

5. Evaluation

We conducted two-tiered experimentation that evaluated the effectiveness and usability of GroupDiv
through a collaborative writing task. We present and analyze our experiment results by addressing three
research questions :

1. Does group divergence awareness affect participants behavior ?

2. Does group divergence awareness affect the group cohesion ?

3. Does group divergence awareness affect the time-to-completion for tasks with divergence?

The first question is answered through analysis the actions of participants after a divergence occurrence.
The second question is answered through a quantitative analysis of the divergence. If the divergence is
under a threshold then the group cohesion is maintained. The third question is answered by comparing task
completion time when using GroupDiv or not.

17

5.1. Experiment Setup

The goal of the experiments was to mimic a collaborative writing of a book with writer and reader roles
[?]. In this collaborative writing, a participant is responsible of writing a section and another one can
review it and and add comments..

We designed a simple text-based experimentation and not a development one to avoid the individual
difference in technical skills that could impact the result of the evaluation. The designed experimentation
is without conflicts because we want to show that divergence can exist without conflicts and because the
impact of the conflicts on parallel activities have studied in several works [? ?].

Two experimentations were conducted. As a multi-synchronous collaborative system we use g it. The
first experimentation uses g it with GroupDiv (called Experimental group) and the second uses g it without
GroupDiv (called Normal group). A short tutorial about g it were given to participants to ensure that they
could understand pull and commit commands of g it. A short description for GroupDiv widget was given
for the experimental group.

The experiments were conducted at the University of Nantes. All experiment participants were and
undergraduate and PhD students in computer sciences. We had twenty participants totally, teen in each
group.

5.2. Experiment results

6. Conclusion and Future Work

In this paper, we proposed a clean formal definition of divergence in multi-synchronous collaboration
model. This definition overwhelm previous ad-hoc definitions and is not limited to the detection of concurrent
conflicting write operations. To the best of our knowledge, GroupDiv is the first metric that allows to
quantify divergence in multi-synchronous system opening new opportunities for divergence management:
monitoring cycles of convergence/divergence, fix thresholds for divergence, fix frequency for convergence
and give awareness about group cohesion during activity progress. We also explained how GroupDiv basic
concepts can be used to give clean semantic to existing divergence awareness systems.

Next, we demonstrated how GroupDiv can be efficiently computed even in a fully decentralized multi-
synchronous system. The simulation demonstrates that aggregate gossip protocols approximate GroupDiv
in few seconds even for a network of 10000 edges.

This work opens several perspectives. First, in this paper we focused on defining and computing the
group divergence metric. We have, of course, to experiment how this metric can be understood by users and
how users react to divergence in usage studies. Second, GroupDiv is built on causal histories where only
write operations are present. Somehow, GroupDiv deduces read operations by comparing local histories. We
think that integrating read operations directly in the causal history can improve GroupDiv model. Third,
we used an overlay network for membership and metrics computations. We think the overlay network can be
used to fully host the multi-synchronous system itself and consequently propose a new kind of architecture
of multi-synchronous distributed systems.

References

1. Dourish, P.. The Parting of the Ways: Divergence, Data Management and Collaborative Work. In: 4th European
Conference on Computer Supported Cooperative Work. Kluwer Academic Publishers; 1995, p. 215–230.

2. Ignat, C.L., Oster, G., Molli, P., Skaf-Molli, H.. A Collaborative Writing Mode for Avoiding Blind Modifications. In:
Ninth International Workshop on Collaborative Editing Systems, GROUP’07. 2007, p. 1–6.

3. de Souza, C., Redmiles, D., Dourish, P.. Breaking the code, moving between private and public work in collaborative
software development. In: Proceedings of the 2003 International ACM SIGGROUP conference on Supporting group work.
ACM. ISBN 1-58113-693-5; 2003, p. 105–114.

4. Perry, D., Siy, H., Votta, L.. Parallel changes in large-scale software development: an observational case study. ACM
Transactions on Software Engineering and Methodology (TOSEM) 2001;10(3):308–337.

5. Prudêncio, J.a.G., Murta, L., Werner, C., Cepêda, R.. To lock, or not to lock: That is the question. Journal of Systems
and Software 2012;85(2):277–289.

6. Molli, P., Skaf-Molli, H., Oster, G.. Divergence awareness for virtual team through the web. In: Integrated Design and
Process Technology, IDPT 2002. Pasadena, CA, USA: Society for Design and Process Science; 2002, p. 1–10.

18

7. Gutwin, C., Greenberg, S.. Effects of awareness support on groupware usability. In: Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM Press/Addison-Wesley Publishing Co. ISBN 0-201-30987-4;
1998, p. 511–518.

8. Gross, T., Stary, C., Totter, A.. User-centered awareness in computer-supported cooperative work-systems: Structured
embedding of findings from social sciences. International Journal of Human-Computer Interaction 2005;18(3):323–360.

9. Molli, P., Skaf-Molli, H., Bouthier, C.. State Treemap: an awareness widget for multi-synchronous groupware. In: Seventh
International Workshop on Groupware - CRIWG. IEEE Computer Society. ISBN 0-7695-1351-4; 2001, p. 106–114.

10. Sarma, A., Redmiles, D., der Hoek, A.V.. Palantir: Early Detection of Development Conflicts Arising from Parallel
Code Changes. IEEE Transactions on Software Engineering 2011;99.

11. Papadopoulou, S., Ignat, C., Oster, G., Norrie, M.. Increasing Awareness in Collaborative Authoring through Edit Pro-
filing. In: IEEE Conference on Collaborative Computing: Networking, Applications and Worksharing - CollaborateCom
2006. ISBN 1-4244-0429-0; 2006, p. 1–9.

12. Alshattnawi, S., Canals, G., Molli, P.. Concurrency awareness in a P2P wiki system. In: International Symposium on
Collaborative Technologies and Systems. IEEE. ISBN 978-1-4244-2248-7; 2008, p. 285–294.

13. Dewan, P., Hegde, R.. Semi-synchronous conflict detection and resolution in asynchronous software development. In:
The Sixth European Conference on Computer-Supported Cooperative Work, ECSCW2007. Springer; 2007, p. 159–178.

14. Brun, Y., Holmes, R., Ernst, M.D., Notkin, D.. Proactive detection of collaboration conflicts. In: ESEC/FSE 2011:
The 8th joint meeting of the European Software Engineering Conference (ESEC) and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE). 2011, p. 168–178.

15. Rahhal, C., Skaf-Molli, H., Molli, P., Weiss, S.. Multi-synchronous Collaborative Semantic Wikis. In: 10th International
Conference on Web Information Systems Engineering - WISE ’09 ; vol. 5802 of LNCS. Springer; 2009, p. 115–129.

16. Aslan, K., Skaf-molli, H., Molli, P.. Connecting Distributed Version Control Systems Communities to Linked Open
Data. In: The 2012 International Conference on Collaboration Technologies and Systems (CTS 2012). Denver, Colorado,
USA; 2012, .

17. Estublier, J., Garcia, S.. Process model and awareness in SCM. In: Proceedings of the 12th international workshop on
Software configuration management ; vol. 12. ACM; 2005, p. 59–74.

18. Wloka, J., Ryder, B., Tip, F., Ren, X.. Safe-commit analysis to facilitate team software development. In: Proceedings
of the 31st International Conference on Software Engineering; ICSE ’09. Washington, DC, USA: IEEE Computer Society.
ISBN 978-1-4244-3453-4; 2009, p. 507–517.

19. Zimmermann, T.. Mining Workspace Updates in CVS. In: Proceedings of the Fourth International Workshop on Mining
Software Repositories, ICSE Workshops MSR’07. 2007, p. 11–11.

20. Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.. Achieving convergence, causality preservation, and intention
preservation in real-time cooperative editing systems. ACM Transactions on Computer-Human Interaction (TOCHI)
1998;5(1):63–108.

21. Biehl, J.T., Czerwinski, M., Smith, G., Robertson, G.G.. Fastdash: a visual dashboard for fostering awareness
in software teams. In: Proceedings of the SIGCHI conference on Human factors in computing systems. ACM. ISBN
978-1-59593-593-9; 2007, p. 1313–1322.

22. Saito, Y., Shapiro, M.. Optimistic replication. ACM Computing Surveys 2005;37(1):42–81.
23. Lamport, L.. Times, Clocks, and the Ordering of Events in a Distributed System. Communications of the ACM 1978;

21(7):558–565.
24. Hartig, O., Bizer, C., Freytag, J.C.. Executing SPARQL Queries over the Web of Linked Data. In: International

Semantic Web Conference. Springer Berlin, Heidelberg. ISBN 978-3-642-04929-3; 2009, p. 293–309.
25. Le Merrer, E., Straub, G.. Distributed Overlay Maintenance with Application to Data Consistency. In: Globe 2011, 4th

International Conference on Data Management in Grid and P2P Systems. ISBN 978-3-642-22946-6; 2011, p. 25–36.
26. Ganesh, A.J., Kermarrec, A.M., Massoulié, L.. Peer-to-peer membership management for gossip-based protocols. IEEE

Trans Comput 2003;52(2):139–149.
27. Kempe, D., Dobra, A., Gehrke, J.. Gossip-based computation of aggregate information. In: Proceedings of the 44th

Annual IEEE Symposium on Foundations of Computer Science; FOCS ’03. Washington, DC, USA: IEEE Computer
Society. ISBN 0-7695-2040-5; 2003, p. 482–491.

28. Montresor, A., Jelasity, M.. PeerSim: A scalable P2P simulator. In: 2009 IEEE Ninth International Conference on
Peer-to-Peer Computing; 214412. Ieee. ISBN 978-1-4244-5066-4; 2009, p. 99–100.

29. Erdos, P., Rényi, A.. On the evolution of random graphs. Akad. Kiadó; 1960.
30. Albert, R., Barabasi, A.. Statistical mechanics of complex networks. Reviews of modern physics 2002;74(1):47.

19

