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The introduction of a thermo-Viscous Fluid (TVF) between two skins, produces a 
sandwich with high dissipation. This was studied by Hussain and Guyader1 leading to 
equivalent material properties depending on skins and fluid core properties. An important 
result is that contrary to standard sandwich panels with polymers cores, the damping loss 
factor of such TVF sandwich is constant with frequency. When applying damping 
treatment on structures, bonded patches are generally used. In this paper the use of TVF 
sandwich patches on a panel is described through a model of heterogeneous plate, the 
predicted vibration response of the structure shows an increase of damping due to the 
patch. Estimation of modal damping loss factors for the plate with TVF sandwich patches 
are given depending on the patch size and TVF thickness. 

 

1. Introduction 

 A method has been developed by Hussain and Guyader1 to predict the damping behavior of an 
equivalent plate formed out of sandwich panels with thermoviscous fluid core, which is based on an 
asymptotic approach. The technique works on the breakup of the basic physical quantities of the 
fluid core such pressure, temperature and particle velocities as constants and linear functions of the 
z coordinate which signifies the perpendicular direction from the plate mid surface. The asymptotic 
modeling is performed in a very thin and highly thermoviscous fluid layer on the full set of 
linearized Navier Stokes equations. The use of highly viscous fluid layers yields high damping 
coefficients in all the frequency range and not strongly variable with temperature. Experimental 
validation provides a good agreement. 

2. Equivalent thin plate equation  

In order to consider the plate and the thermo-viscous fluid layer as a single structure, Hussain 
and Guyader1 developed an asymptotic analysis of a double plate system with internal thermo-
viscous fluid. In the limit of thin fluid film, the transverse vibrations of both plates are identical and 
the fluid film motion can be expressed from that of the plate in order that a global plate equation 
can be derived:  
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( ){ } ( ){ } 0,, =+ yxWLyxWL FP     (1) 

 

Where the plate displacement is ( )yxW ,  (identical for both skins of the sandwich),  
( ){ }yxWLP ,  (resp. ( ){ }yxWLF , ) is the operator associated to the plates (to the thermo-viscous fluid 

film).  
Considering harmonic motions of angular frequency ω , these operators are expressed as:  
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Where ∆ is the Laplacian, the skin plates thicknesses are 1h and 2h , and the fluid film  

thickness is δ . The mass per unit volume of the plates and the fluid are 1ρ , 2ρ and 0ρ  , the 

bending rigidity of skin  plates are1D and 2D . The thermo-viscous fluid has a coefficient of shear 

viscosity (resp. Bulk viscosity) µ  (resp. Bµ ) and µµχ 3
1+= B  . 

 
 
The equation (1) corresponds to that of an equivalent thin damped plate which is expressed as: 
 
( ) ( ){ } 0,22 =∆+∆+− yxWjDM eqeqeq ωλω       (4) 

Where ( )δρρρ 02211 ++= hhM eq  , ( )21 DDDeq += and 
( ) δµχλ +

+
=

2
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eq   

 
The equivalent mass is the sum of that of plates( )2211 hh ρρ +  and of the added fluid mass 

δρ0 . The equivalent rigidity is the sum of the plates bending stiffnesses ( )21 DD + . The damping 

term is associated to a Laplacian operator that does not appear in the standard plate equation. So, 
the equation for the equivalent sandwich plates with thermo-viscous fluid core is different from the 
standard Love Kirchhoff bending plate equation. The equivalent plate damping effect is related to 
the skin plate thicknesses and viscosity of the visco-thermic fluid. 

3. Equivalent structural damping 

In order to find out the structural damping factor of the equivalent plate let us consider a one 
dimensional plate solution of progressive wave form in the x direction whose displacement function 
given as: 

 
( ) jkxAeyxW =,           (5) 

 
Substituting this expression in the homogeneous equivalent plate equation yields: 
 
 

0242 =++− kjkDM eqeqeq ωλω        (6) 
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 Eq. (6) can be resolved for k giving the two values. 
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With these values, Eq. (6) can be rewritten as: 
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Eq. (8) supposes that ∆  is real, this is true in the majority of cases however for very light 

materials with low rigidity,  ∆  becomes imaginary and the following calculations must be changed 
accordingly.  Let η be the loss factor due to the viscous layer, then this factor is identified as the 
ratio of the imaginary and the real stiffness: 
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Where eqeqeq DM42 +−=Γ λ  

 

In the case where eqeqeq DM2<<λ a simpler expression of the damping loss factor can be derived: 

 
eqeq

eq

DM

λ
η ≈           (10) 

 
One important tendency appears here; the damping loss factor is not frequency dependant contrary 
to sandwich plates with visco-elastic cores, in addition the coefficients of viscosity of thermo-
viscous fluids are generally not temperature dependant in a wide range of temperature and the loss 
factor remains identical in a larger range of temperatures.  

In the following numerical results are presented in order to show the efficiency of sandwich 
plates with thermo-viscous fluid core to get highly damped panels. Results are compared to 
standard sandwich panels with viscoelastic cores and the case of partial and total coverage of panels 
is discussed.  

4. Modal Loss Factors of Sandwich Plates 

Modal damping levels of a simply supported rectangular aluminum plate treated with a 
constrained layer damping (CLD) patch of a thermoviscous fluid core are computed, and the results 
are compared to the same plate structure of a viscoelastic polymer core. Dimensions of the base 
plate and the patch are 0.5*0.6*0.0005 (m3) and 0.16*0.25 (m2) respectively, and the location of the 
patch is arbitrarily selected. Aluminum and High-Density PolyEthylene (HDPE) are considered for 
the constraining layer materials, and their thicknesses are varied. The base plate thickness is kept 
constant (0.5 mm) for all cases. The modal damping loss factor of the composite layer is deduced 
from the equivalent single layer modeling developed by Guyader et al2. This methodology is 
implemented in MOVISAND software which computes the equivalent moduli of a single layer 
plate model for an infinite plate, and then obtained parameters are used to compute the modal 
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damping loss factor of finite plate models. Nastran software is used to render the modal analysis of 
the finite plate models. Note that the complex moduli of viscoelastic polymer, which considers the 
Williams-Landel-Ferry model i.e. the temperature dependence of viscosity, are taken into the 
calculations.   
 

Table 1. Mechanical properties of Aluminum and Polymer 

 Aluminum Polymer 
E (Pa) 7.2E+10 E (f) 
ρ     (kg/m3) 2790 1500 
ν 0.33 0.45 
η 0.002 η (f) 
 
 
 

 

Figure 1. Schematic of CLD (Constrained Layer Damping). (a) Infinite sandwich panel with a 
core material (thermoviscous or viscoelastic). (b) Equivalent single layer modelling of a simply 
supported rectangular plate damped with a CLD patch. 

 

4.1 High density rigid constraining layer 
 

The CLD patch with an aluminum constraining layer of 0.5 mm applied on a base plate is 
considered for two plate models with a thermoviscous core and a polymer core. Both cores have the 
same thickness (δ) of 0.2 mm. For the thermoviscous core, Rhordsil™ 47 500,000 is considered, 
and its viscosity is 486 kg/s·m. Equivalent moduli (Young’s modulus, density, Poisson’s ratio and 
damping loss factor) of the sandwich plate models with both core materials are calculated.  
 
 

Table 2. MOVISAND calculation: equivalent parameters for infinite plate models. 
Thicknesses of Aluminum (h1 and h2), Rhodorsil™ 47 (δ) and Polymer layers (δ) are 0.5 mm, 
0.2 mm and  0.2 mm respectively. 

 Sandwich plate 
 
Equivalent parameters 

Aluminum 
Rhodorsil™ 47 500,000 
Aluminum 

Aluminum 
Polymer 
Aluminum 

E (Pa) 1.04E+10 E(f) 
ρ     (kg/m3) 2487.2 2575 
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ν 0.32 0.35 
η 0.0795 η(f) 
 

 

 

Figure 2. Equivalent moduli of the Aluminum-Polymer-Aluminum sandwich infinite plate 
model at different temperatures. (a) Young's modulus, (b) Loss factor.   

 
The composite layer of a polymer core displays the frequency/temperature dependent 
characteristics. These parameters are taken for calculating finite plate models, and the results are 
shown in Fig. 3. At 20 oC, the CLD patch with a polymer core has higher damping levels 
throughout the frequency range. The polymer core gives almost twice higher damping than the 
thermoviscous core for the same thickness applied.  
 

 

Figure 3. The 1/3 octave band averaged modal loss factor of finite plate models damped with a 
CLD patch at 20 oc: Aluminum-Rhodorshil ™-Aluminum and Aluminuim-Polymer-
Aluminuim.  
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4.2 Low density elastic constraining layer 
 

The constraining layer of aluminum is replaced with a HDPE (High-Density PolyEthylene) 
layer of 0.5 mm. Thicknesses of the base plate (h2) and the core (δ) for both plate models are kept 
0.5 mm and 0.2 mm respectively. The mechanical properties of HDPE taken from Ege et al.3 are  
E = 850 MPa, ρ = 945 kg/m3

 and η = 15%. The damping loss factor of the infinite thermoviscous 
composite plate is clearly seen higher than the polymer for computed range of frequency, and this is 
consistent for finite plate models. 
 

Table 3. MOVISAND calculation: equivalent parameters for infinite plate models. 
Thicknesses of HDPE (h1), Rhodorsil™ 47 (δ) and Polymer layers (δ) are 0.5 mm, 0.2 mm and 
0.2 mm respectively. 

 Sandwich plate 
 
Equivalent parameters 

HDPE 
Rhodorsil™ 47 500,000 
Aluminum 

HDPE 
Polymer 
Aluminum 

E (Pa) 5.34E+10 E(f) 
ρ     (kg/m3) 1718.4 1806.25 
ν 0.31 0.337 
η 0.1345 η(f) 
 
 

 

Figure 4. The 1/3 octave band averaged modal loss factor of finite plate models damped with a 
CLD patch at 20 oc: HDPE-Rhodorshil™-Aluminum and HDPE-Polymer-Aluminuim. 

  
Since a density of polymer is higher than that of the thermoviscous fluid, a thickness (δ) of 

the thermoviscous core is increased to 0.31 mm in order to apply the same total mass of core 
materials to the composite plate models. Rhodorsil™ 47 1,000,000 oil is used for the computation, 
and its viscosity is 972 kg/s·m. A thickness (δ) of the polymer core is kept constant as 0.2 mm. As 
seen in figure 5, modal damping levels of the thermoviscous CLD patch are significantly higher for 
both infinite and finite plate models.  
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Table 4. MOVISAND calculation: equivalent parameters for infinite plate models. 
Thicknesses of HDPE (h1) and Rhodorsil™ (δ) are 0.5 mm and 0.31 mm respectively. 

 Sandwich plate 
 
Equivalent parameters 

HDPE 
Rhodorsil™ 47 1,000,000 
Aluminum 

E (Pa) 4.10E+09 
ρ     (kg/m3) 1621.47 
ν 0.31 
η 0.3445 
 
 

 

Figure 5. The octave band averaged modal loss factor of finite plate models damped with a 
CLD patch at different temperatures: HDPE-Rhodorshil™-Aluminum and HDPE-Polymer-
Aluminuim. Rhodorshil ™ 47 oil is temperature-independent.  

 

5. Conclusion 

 
Rectangular plates partially treated with a CLD patch have been investigated for two different 

core materials: thermoviscous and viscoelastic. Rhodorsil™ 47 oil and a polymer layer are 
considered for their damping loss factors. It is shown that the damping provided by the 
thermoviscous fluid is proportional to its viscositiy (Rhodorsil™ 47, 500,000 and 1,000,000). The 
thermoviscous fluid can yield higher damping than the polymer layer for the same core thickness 
applied if the constraining layer is a light-weight elastic material. With such a material, the 
thermoviscous fluid guarantees significantly higher damping loss factors than the polymer layer at 
different temperatures if the same total mass is applied. The main advantage of the thermoviscous 
fluid core compared to the viscoelstic one is that the high damping property of the sandwich is not 
frequency and temperature dependent.  
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