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Informática, UNLP

50 y 120, S/N
1900 La Plata,

Argentina

ABSTRACT
DBpedia knowledge base has been built from data extracted
from Wikipedia. However, many existing relations among
resources in DBpedia are missing links among articles from
Wikipedia. In some cases, adding these links into Wikipedia
will enrich Wikipedia content and therefore will enable bet-
ter navigation. In previous work, we proposed PIA algorithm
that predicts the best link to connect two articles in Wikipedia
corresponding to those related by a semantic property in DB-
pedia and respecting the Wikipedia convention. PIA calcu-
lates this link as a path query. After introducing PIA results
in Wikipedia, most of them were accepted by the Wikipedia
community. However, some were rejected because PIA pre-
dicts path queries that are too general. In this paper, we report
the BlueFinder collaborative filtering algorithm that fixes PIA
miscalculation. It is sensible to the specificity of the resource
types. According to the conducted experimentation we found
out that BlueFinder is a better solution than PIA because it
solves more cases with a better recall.
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INTRODUCTION
The Semantic Web brings the ability to have better search
and navigability on the Web. It is mainly build from meta-
data extracted from the Social Web. DBpedia [8] knowl-
edge base is built from data extracted from Wikipedia [1] in-
foboxes and categories. The semantic capacities of DBpedia
enable SPARQL [16] queries to retrieve information that is
not present in Wikipedia [21]. For instance, it is possible to
make a query over DBpedia to find ”everyone in Wikipedia
that born in Boston”. This query produces a set of couples
(Boston, Person Name) which are related by the semantic
property of DBpedia ”is birth place of”. Surprisingly, the
list of people retrieved by the previous query could include
more people than those obtained by navigating from Boston1

article in Wikipedia.

This shows that some information existing in DBpedia is
missing in Wikipedia. The question now is: Is it really nec-
essary to add this information to Wikipedia? In some cases,
the missing links could be intentionally hidden for the sim-
plicity of the page content2. In other cases, adding these links
enables to enrich Wikipedia content and enables better nav-
igation. However, adding these missing links to Wikipedia
is not an easy task since it is necessary to respect Wikipedia
conventions3.

Wikipedia community has defined conventions that cover a
wide diversity of topics: writing style, context of the articles
and relations among articles. It is not always evident to
understand these conventions. Categories or list of pages are
the conventions to describe one-to-many relationships. At
first glance, the use of categories is the convenient convention
to represent the relationship ”is birth place of” in Wikipedia.
The category Cat:People from <cityName> is the
general rule of this relationship and it is usually subcategory
of Cat:<cityName>. For example, the ”is birth place of”
relation between Boston4 and Dona Summer5 is described
using the category People from Boston. Finally, the

1In the scope of this article we will use Boston instead of Boston,
Massachusetts
2http://en.wikipedia.org/wiki/Wikipedia:OVERLINK
3http://en.wikipedia.org/wiki/Wikipedia:
Conventions
4http://en.wikipedia.org/wiki/Boston
5http://en.wikipedia.org/wiki/Donna_Summer
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relation is represented by the navigational path Boston/
Cat:Boston/Cat:People from Boston/Dona Su-
mmer which must be read: ”from Boston article, the user
navigates through a link to the category Boston then he or
she can navigate to the People from Boston category and
then to the Dona Summer article”.

In previous work [21, 20], we proposed Path Index Algorithm
(PIA) that allows to discover the Wikipedia conventions.
PIA predicts the best representation in Wikipedia for a
given semantic property in DBpedia. To evaluate the results
obtained by PIA, we added manually the new discovered
links to Wikipedia, therefore, Wikipedia community was
able to evaluate these new added links. After two months,
we noticed that some of the added links were accepted
and other were rejected. When we analyzed the rejected
results, we noticed that these links were very general. For
example, the article Liverpool and Chris Lawler6 must
be connected, according to PIA, by the navigational path
Liverpool/Cat:Liverpool/Cat:People from -
Liverpool/Chris Lawler. In general, Wikipedia
conventions suggest to categorise people from Liverpool
with the category Cat:People from Liverpool but
there are exceptions. For example, the conventions propose
Cat:Sportspeople from Liverpool for an athlete
from Liverpool. Although this path query appears in the in-
dex generated by PIA, it is placed at the bottom of the index.
The main drawback of PIA is that it does not differentiate the
different types of people born in Liverpool. More generally,
PIA does not pay special attention to the specificity of the
resource and then, it can predict the specific category.

In this paper, we introduce the BlueFinder algorithm that fil-
ters the results of PIA to recommend better representation for
a DBpedia semantic property in Wikipedia. BlueFinder pays
special attention to the specificity of the resource types in DB-
pedia in order to fix PIA drawback. It follows a collaborative
filtering approach [13] to recommend a relation between a
given couple of Wikipedia pages and a given semantic prop-
erty.

The experimentations of the algorithm with real data from
Wikipedia and DBpedia showed that BlueFinder is better than
PIA. BlueFinder increases the number of correct path ob-
tained by the previous approach PIA.

The main contributions of this paper are: (1) the definition
of BlueFinder algorithm as a collaborative filtering recom-
mender system which is sensible to articles type specificity,
(2) a similarity function between pairs of related articles and
(3) an empirical evaluation of BlueFinder algorithm.

This paper is organized as follows: The next section presents
related works. Then, we introduce preliminaries definitions
used in our proposal. After that, the article describes the
problem statement. Then, BlueFinder section details the
BlueFinder approach and algorithms. Following, a section
presents experimentations and results. Finally, conclusions
and further work are presented.

6http://en.wikipedia.org/wiki/Chris_Lawler

RELATED WORK
In previous work, we introduced PIA algorithm [20] which
retrieves the best general representation in Wikipedia for
a given DBpedia semantic property. If we apply PIA to
the ”is birth place of” property, we will obtain the path
#from/Cat:#from/Cat:People from #from/#to
as the best answer. To obtain the most representative path,
PIA builds a path index where the paths are sorted by cover-
age of the connected path queries (more details are given in
the next section). A path query is a generalisation of similar
paths. Usually, regular expressions are used for expressing
path queries [5]. The path query that covers most of the cases
will be the most representative. Table 1 shows some results
of PIA. The analysis of the generated PIA index showed
us the following facts: (1) the most representative path is
#from/Cat:#from/Cat:People from #from/#to;
(2) the path #from/Cat:#from/Cat:People from -
#from/Cat:Sportspeople from #from/#to was
detected by PIA but it appears so far from the top of
the index (rank 1092); (3) in rank 75 appears a path that
contains the Cat:Sportspeople from #from at
penultimate position. This different paths with the same
ending confirm that the conventions are also present in
the development of category hierarchy. In some cases,
the Cat:Sportspeople from #from belongs to
Cat:People from #from and in other cases it belongs
to Cat:People from #from by occupation.

The work of Yan Wang et al. [22] introduces a ”collabora-
tive approach” to recommend categories to Wikipedia Arti-
cles. The approach consists of a two-step model. In the first
step, they collect similar articles to the uncategorized one in
terms of incoming and out coming links, headings and tem-
plates. The second step lies on rank the categories obtained
by the related articles and select the best ranked. In this work,
we deal with categorization of the article but in the context of
expressing a semantic property from DBpedia, this feature is
absent in Yan Wang et al. approach.

Less related to our approach but in the line of combin-
ing recommender systems and DBpedia,MORE is a recom-
mender system that uses DBpedia and Wikipedia to recom-
mend movies. MORE uses RDF datasets to compute seman-
tic similarity between movies. Panchenko et al. [15] intro-
duces an approach to extract semantic relations between con-

Rank Path Query
1 #from/ Cat:#from/

Cat:Peopel from #from/ #to
2 #from/ #to
... ...
75 #from/ Cat:#from/Cat:People from -

#from by occupation/Cat:Sportspeo-
ple from #from/#to

... ...
1092 #from/Cat:#from/Cat:People from -

#from/Cat:Sportspeople from #from/
#to

Table 1. Extract of PIA index for ”is birth place of” example.
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cepts in Wikipedia applying KNN algorithms called Serelex.
Serelex receives a set of concepts and returns sets where arti-
cles are semantically related according to Wikipedia informa-
tion and using Cosine and Gloss overlap distance functions.
Additionally to the lack of using DBpedia as semantic base,
Serelex cannot describe the way that two concepts are related
in Wikipedia according to a semantic property.

In the field of improving Wikipedia information, several re-
lated works can be mentioned. The articles of Adafre et al [3]
and Sunercan et al. [18] are aimed to fix missing direct links
in Wikipedia. Hoffman et al. [12] introduced an approach to
complete Wikipedia infobox links with information extracted
from Wikipedia by using Kylin. The main difference with our
work is that they do not use semantic Web features and also
our approach propose to fix more general relations than direct
links.

PRELIMINARIES
DBpedia and Wikipedia provide data sets for the BlueFinder
recommender system. In this section, we give formal defini-
tions for this two data sources.

DBpedia Knowledge base
The knowledge base of DBpedia has rich set of properties. In
addition to specific properties (birthPlace, city, . . .), each re-
source in DBpedia has types definition coming from DBpedia
ontology and Yago [17] ontology. For instance, the rdf:type
describes resources types. This knowledge provides datasets
for the BlueFinder recommender through SPARQL queries.
Basically, DBpedia knowledge base is an RDF graph without
Blank nodes. We recall the following RDF semantics defini-
tions [16] :

DEFINITION 1. The Sets I (IRI Identifiers), B (Blank
Nodes), L (Literals) and Υ (Variables) are four infinite and
pairwise disjoint sets. We also define T = I∪B∪L. An RDF-
Triple is 3-tuple (s, p, o) ∈ (I ∪B)× I × T . An RDF-Graph
is a set of RDF-Triples.

DEFINITION 2. A triple pattern is a tuple t ∈ (I ∪ Υ ∪
L) × (I ∪ Υ) × (I ∪ Υ ∪ L). A Basic Graph Pattern is a
finite set of triple patterns. Given a triple pattern t, var(t) is
the set of variables occuring in t, analogously, given a basic
graph pattern B, var(B) = ∪t∈Bvar(t). Given two basic
graph patterns B1 and B2, the expression B1 AND B2 is a
graph pattern.

DEFINITION 3. A mapping µ from Υ to T is a partial
function µ : Υ→ T . The domain of µ, dom(µ), is the subset
of Υ where µ is defined.

DEFINITION 4. Given a triple pattern t and a mapping µ
such that var(t) ⊆ dom(µ), µ(t) is the triple obtained by re-
placing the variables in t according to µ. Given a basic graph
pattern B and a mapping µ such that var(B) ⊆ dom(µ),
then µ(B) = ∪t∈Bµ(t).

DEFINITION 5. Two mappings µ1, µ2 are compatible (we
denote µ1 q µ2) iff for all ?X ∈ (dom(µ1) ∩ dom(µ2)), then
µ1(?X) = µ2(?X). This is equivalent to say that µ1 ∪ µ2 is
also a mapping.

Two important corollaries of this last definition are: i) two
mappings with disjoint domains are always compatible, ii) the
empty mapping (the one with empty domain) is compatible
with any other mapping.

DEFINITION 6. Let Ω1,Ω2 two sets of mappings. The join
between Ω1 and Ω2 is defined as: Ω1 1 Ω2 = {µ1∪µ2 |µ1 ∈
Ω1 ∧ µ2 ∈ Ω2 ∧ µ1 q µ2}

DEFINITION 7. Given an RDF-Graph G, the evaluation
of a triple pattern t over G corresponds to: [[t]]G =
{µ | dom(µ) = var(t)∧µ(t) ∈ G}. The evaluation of a basic
graph pattern B over G is defined as: [[B]]G =1t∈B [[t]]G.
The evaluation of a Graph Pattern B′ of the form (B1 AND
B2) over G is as follows: [[B′]]G = [[B1]]G 1 [[B2]]G

Consider the following SPARQL
query over a data set D: Q =
SELECT xi, yi WHERE x1p1y1 AND . . . AND xnpnyn

The answer for this query Q(D) is an assignment of distin-
guished variables (those variables in the SELECT part of the
query) i.e. the evaluation of a triple pattern t over D. For
instance, the following SPARQL query over DBpedia gives a
couple of Wikipedia pages of people and their birth place.

PREFIX o:< h t t p : / / d b p e d i a . o rg / o n t o l o g y />
PREFIX d:< h t t p : / / d b p e d i a . o rg / p r o p e r t y />
PREFIX f o a f :< h t t p : / / xmlns . com / f o a f /0 .1 / >

#Q1 : C i t i e s and Peop le born t h e r e .
SELECT ? wci ty , ? wperson WHERE{
? p e r s o n a o : P e r so n .
? c i t y a o : C i t y .
? p e r s o n d : b i r t h P l a c e ? c i t y .
? c i t y f o a f : i s P r i m a r y T o p i c O f ? w c i t y .
? p e r s o n f o a f : i s P r i m a r y T o p i c O f ? wperson .}

Listing 1. SPARQL query over DBpedia

In this work, we use SPARQL queries that have a triple pat-
tern of the form: s d:property o where d:property is a specific
DBpedia property for s. For instance, in the previous query
the property p is d : birthP lace, we denote the result of the
query by Qp(D).

Wikipedia Formal Definition
Wikipedia provides data set for the PIA algorithm. Path
queries [2, 5] are used to query Wikipedia. To define path
queries, we need to introduce the following definitions. Wiki-
pedia consists of a set of articles and hyperlinks among them.
The Wikipedia graph G can be defined as:

DEFINITION 8. G = {W,E} where W is a set of nodes
and E ⊆ W × W is a set of edges. Nodes are Wikipedia
articles (wiki pages) and edges are links between articles.

DEFINITION 9. A path P (w1, wn) between two Wikipedia
articles is a sequence of pages w1/ . . . /wn, s.t. ∀i wi ∈W ∧
∀i, j : 1 6 i < j 6 n, wi 6= wj , ∀i : 1 6 i 6 n − 1 where
(wi, wi+1) ∈ E is a link between wi and wi+1. w1 and wn

are called the source page and the target page respectively.
The length of a path is the number of articles in the sequence,
length P (w1, wn) = n.

3



Given a Qp(D), the set of all pairs (f, t) ∈ Qp(D) that are
connected in Wikipedia by a path with length up to l is defined
as:

DEFINITION 10. Cp(l) = {(f, t) ∈ Qp(D) s.t. ∃P (f, t)
and length(P (f, t)) <= l}
A path query is a generalization of similar paths. Usually,
regular expressions are used for expressing path queries [5].
Informally, the set of answers of a path query PQ(w1, w2)
over G is the set of all pairs of nodes in G connected by a
directed path such that the concatenation of the labels of the
nodes along the path forms a word that belongs to the lan-
guage denoted by L∗. Many works have been done on path
queries in different domains [2, 5, 6]. We adapt the path
query definition in [2, 5] to the context of Wikipedia.

Let Σ be an alphabet, a language over Σ is a sequence of el-
ements of Σ called words. Regular expressions can be used
to define language over Σ. We use regular expression pat-
terns [5] i.e. patterns that include variables. Let X be a set of
variables.

DEFINITION 11. The set of regular expressions R(Σ, X)
over Σ can inductively defined by: (1) ∀a ∈ Σ, a ∈ R(Σ, X);
(2) ∀x ∈ X,x ∈ R(Σ, X); (3) ε ∈ R(Σ, X) (4) If ∀A ∈
R(Σ, X) and ∀B ∈ R(Σ, X) then A.B, A∗ ∈ R(Σ, X);
such that A.B is the concatenation of A and B and A∗ denotes
the Kleene closure

The language defined by a regular expression pattern is:

DEFINITION 12. Let R,R′ ∈ R(Σ, X) two regular ex-
pression patterns. L∗(R) is the set of words of (Σ

⋃
X)∗

defined by: (1) L∗(ε) = {ε}; (2) L∗(a) = {a}; (3)
L∗(x) = Σ

⋃
X; (4) L∗(R.R′) = {w′.w |w ∈ L∗(R) and

w′ ∈ L∗(R′)}; (5)L∗ (R+) = {w1 . . . wk | ∀i ∈ [1...k], wi ∈
L∗(R) ;(6) L∗(R∗) = {ε}

⋃
L∗(R+).

A path query is a generalization of similar paths by regular
expressions patterns. The answer to a path query is defined
by:

DEFINITION 13. A Wikipedia path query (in short path
query) PQ ∈ R(Σ, X) is a regular expression pattern. A
pair of nodes (x, y) of G covers (or satisfies) a path query
PQ(x, y) over Σ and X if there exists a path P from x
to y in G and a map µ from Σ

⋃
X to term(G) such that

Λ(P ) ∈ L∗(µ(R)) where Λ(P ) = Λ(a1) . . .Λ(ak) over
(Σ
⋃
X)∗ is associated to the path P = (a1, ..., ak) of G

In the context of Wikipedia Σ = W . For the purpose of
this work, we limit X to two variables X = {#from,#to}.
Given a Qp(D), Cp(l) is the set of all pairs (f, t) ∈ Qp(D)
that are connected in Wikipedia by a path with length up to l.
The PIA algorithm uses path queries and computes the cov-
erage of path queries for a set of pairs of Wikipedia articles.

DEFINITION 14 (PIA INDEX). Given a Cp(l) , PIA in-
dex is a bipartite graph (PQ,Cp(l), I), it represents the cov-
erage of path queries for a set of pairs of Wikipedia arti-
cles that are related by a DBpedia property p. PQ is an
ordered set of path (descendent order by element degree),
I = PQ × Cp(l) is the set of edges relating elements from

PQ with elements from Cp(l); (pq, v) ∈ I ⇔ pq ∈ PQ∧ v ∈
Cp(l)∧ v covers pq. The first path query in PQ is the general
representation of the semantic property p in Wikipedia.

Table 1 gives the rank, degree and path queries of PIA index
for the property ”is birth place of” of the example given in the
introduction.

PROBLEM STATEMENT
In this section, we are going to define the problem of defin-
ing the best representation of missing links in Wikipedia as a
recommender system problem. According to Adomavicioius
and Tuzhilin [4], ”collaborative recommender systems try to
predict the utility of items for a particular user based on the
items previously rated by other users”. More formally, the
utility u(c, s) of item s for user c is estimated based on the
utilities u(cj , s) assigned to item s by those users cj ∈ C who
are ”similar” to user c. In the context of Wikipedia, we do not
directly transpose recommenders to suggest Wikipedia arti-
cles to users but to suggest links between articles. We want
to predict the utility of path queries for a particular pair of
Wikipedia articles based on those rated by Wikipedia com-
munity. In other words, the pairs of articles (from,to) will
play the role of users and the path queries will be the items.
Then, the utility u(c, pq) of a path query pq for a pair c re-
lated by a semantic property p is estimated based on the util-
ities u(cj , pq) assigned to pair c by those pairs cj ∈ Cp(l),
u : Qp(D)× PQ → R, where R is a totally ordered set and
l is the maximum length of the path queries7.

Given a property p in DBpedia, Cp(l) and PQ path queries
covered by the elements of Cp(l). Then, for a given pair
of Wikipedia articles (from, to), we have to recommend the
path query that maximise the utility function.

BLUEFINDER
BlueFinder is a collaborative filtering recommender system.
It uses a memory based algorithm [9] to make rating predic-
tions based on the entire collection of previously rated path
queries. The value of the unknown rating rc,s for a pair c
and path query s will be computed as an aggregate rating of
other k similar pairs for the same path query s. The rec-
ommender returns a set of recommended path queries that
can be used to represent the semantic property. The rec-
ommendations have to include at least one path query that
can represent the semantic relation following the conventions
of Wikipedia community. BlueFinder is based on the pop-
ular k-Nearest Neighbors(kNN) and Multi label kNN algo-
rithm [23] adapted to the context of DBpedia and PIA index.
The BlueFinder algorithm first identifies the k neighbors of
the unconnected pair (from, to), and then applies PIA algo-
rithm only for the k nearest neighbors. PIA results will be the
prediction set.

The K-Nearest Neighbors algorithm uses a similarity mea-
sure function to select the nearest neighbors. In this work we
use the well known Jaccard distance [19] to measure similar-
ity. The Jaccard distance measures the degree of overlap of
two sets and ranges from 0 (identical sets) to 1 (disjoint sets).
7We restrict the length for practical reasons.
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Figure 1. BlueFinder overview

In this work, we apply Jaccard distance to types of DBpedia
resources.

DEFINITION 15. Given two pairs of pages c1 = (a, b) and
c2 = (a′, b′) and the data type set for b and b′ in DBpe-
dia defined as B = {t/ b rdf : type t } ∈ DBpedia and
B′ = {t′/ b’ rdf:type t’} ∈ DBpedia }. The similarity mea-
sure jccD(c1, c2) is defined by

jccD(c1, c2) = Jaccard distance(B,B′) =
|B∪B′|−|B∩B′|
|B∪B′|

Now, we can define the kNN [14] in our context as:

DEFINITION 16. (KNN) Given a pair r ∈ Qp(D)
and an integer k, the k nearest neighbors of r denotes
KNN(r,Qp(D)) is a set of k pairs from Qp(D) where ∀o ∈
KNN(r,Qp(D)) and ∀s ∈ Qp(D)−KNN(r,Qp(D)) then
jccD(o, r) ≤ jccD(s, r).

The value for an unknown rating rc,s for unconnected pair in
Wikipedia c and a path query s ∈ Cp(l), can be computed as:

rc,s =degree of s in PQ,
where (PQ, V, I) = PIA(KNN(c, Cp(l))

In order to compute predictions for rc,s, we developed the
BlueFinder algorithm.

BlueFinder algorithm
The BlueFinder algorithm works as a pipeline process, it
takes DBpedia, Wikipedia and PIA as inputs. Figure 1 shows
the relations and pipe data flow among the artefacts. DBpedia
interacts with PIA and BlueFinder algorithm. The interaction
with PIA is done by providing the Qp(D) result set. On the
other hand, the BlueFinder algorithm asks DBpedia to obtain
the type definition for specific resources. For a particular re-
source, DBpedia returns a set with all the types describing the
resource.

The BlueFinder algorithm returns a set of recommended path
queries that can be used to represent the semantic property be-
tween two Wikipedia articles. The recommendations have to
include at least one path query that can represent the semantic
relation following the conventions of Wikipedia community.
This algorithm, applies PIA index algorithm to the k nearest
neighbours of a unconnected pair (from,to) and retrieves a set
of predicted path queries.

The BlueFinder algorithm 1 receives four inputs: (1) the num-
ber of k neighbours, (2) the maximum number maxRecom
of recommendations, (3) a PIA index for aQp(D) and (4) the
unconnected pair x of Wikipedia articles. For each connected
pair c ∈ Cp(l), the algorithm computes the jccD(c, x) dis-
tance. Then, the k nearest pairs of x is added to the setDk

x and
the PIA index is computed for Dk

x. Before returning the rec-
ommendations, BlueFinder cleans regular-user unreachable
paths (e.g. paths that include administrative categories) by
means of the noiseFilter (Algorithm 2) and groups similar
path queries (Algorithm 3). Finally, BlueFinder returns the
maxRecom best ranked path queries.

It is important to notice that Dk
x ⊆ Cp(l), therefore, when

PIA algorithm computes a new PIA index for the Dk
x set of

connected pairs, it does not need to traverse again Wikipedia
graph.

Algorithm 1 BlueFinder
Input: x = (s, t): unconnected pair, k: number of neighbours, maxRecom: max-

imum number of recommendation, PiaIndex: PIA index for a Qp(D) where
PiaIndex defined as (PQ(s), Cp(l) = {(source, target)}, I),

Output: M ⊆ PQ(s)
for all (source, target) ∈ Cp(l) : ∃(pq, (source, target)) ∈ I do

d= jccD(target, t)
res = (pq, (source, target), d)

end for
sort res in ascending order
Dk

x← k nearest pairs to x

(M,Cp(l)
′, I′)← PIA(Dk

x)
M ← noiseFilter(M)
M ← starGeneralization(M)
return first maxRecom path queries of M

The noiseF ilter algorithm 2 deletes all the paths queries
that are not accessible by a regular user. Wikipedia in-
cludes several administrative categories which are used by
administrators. Although the list is not exhaustive, the cat-
egories deleted by noiseF ilter are those that their names
begins with ”Articles ”, ”All Wikipedia ”, etc. For example
Cat:Articles to be merged.

Algorithm 2 noiseFilter
Input: PQ: set of path queries
Output: Set of regular user navigable path queries.
noise = {”Articles ”, ”All Wikipedia ”, ”Wikipedia ”, ”Non −
free”, ”All pages ”, ”All non”}
for all pq = (p1, .., pn) ∈ PQ; do

if pi contains any c ∈ noise; 1 ≤ i ≤ n then
PQ← PQ− {pq}

end if
end for
return PQ

BlueFinder filters path queries into star path queries in order
to reduce data sparsity.

DEFINITION 17. A star path query PQ*(f,t)) is a group of
similar path queries and it respects the following construc-
tion rules: (1) it starts with #from and ends with #to. (2)
The * element can only be placed between of #from and
#to variables. (3) The * can not be the penultimate element
in the path query.
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EXAMPLE 1. PQ∗(f, t) =#from/*/Cat:People-
from #from/ #to is a star path query.
PQ∗(f, t) =#from/*/#to is not a star path query.

starGeneralization algorithm 3 groups path queries into
star path query, if possible.

Algorithm 3 starGeneralization
Input: PQ: set of path queries
Output: PQ∗: set of star path queries
PQ∗ ← ∅
for all pq = (p1, .., pn−1, pn) ∈ PQ; do

if pn−1 starts with ”Cat:” then
PQ∗ ← PQ∗

⋃
{(p1, ∗, pn−1, pn)}

else
PQ∗ ← PQ∗

⋃
{pq}

end if
end for
return PQ∗

Discussion
Traditionally, the kNN-based methods have the advantage
of being relatively simple to implement and adapt quickly
to recent changes. When compared with other learning ap-
proaches, a relatively small number of ratings is sufficient to
make a prediction of reasonable quality [13]. kNN algorithms
are tolerant to a low sparsity data sets, however with high
level of sparsity the kNN starts failing as it is unable to form
reliable neighbourhoods [11]. In our approach, the problems
related with sparsity occur when the data type definition of
a resource in DBpedia is the basic one i.e. the resource has
no special type definition that differentiates it from other re-
sources. In this case, the jccD similarity measure is limited
in the neighbourhood discovery. In addition, as kNN is a lazy
algorithm, adding a new item (path query) or a new user (pair)
is not a problem. However, the addition of this new elements
require PIA algorithm to re-processing data.

EXPERIMENTATIONS
To evaluate the BlueFinder algorithm and to measure the im-
pact of the parameters,we conducted pragmatical experimen-
tations with real data. This evaluation mainly allows us to an-
swer the following three questions: What is the best combina-
tion of k and maxRecom values to get the best behaviour of
the BlueFinder algorithm? Does the algorithm retrieves path
queries that can fix missing relations in Wikipedia? Does the
retrieved path queries take in consideration Wikipedia articles
context?

We implemented BlueFinder in Java. It interacts with a PIA
index stored in a Mysql database (computed in previous work
[21, 20] ) using an off line version of English Wikipedia8 and
with a local version of DBpedia knowledge base. All the al-
gorithms were executed in a MackBook Pro with 8GB RAM
and a processor Intel core I7. During the evaluation, we also
computed the time processing for each data set.

In the next section, we detail the data sets, metrics, method-
ology and the evaluation results.

Data sets
8http://dumps.wikimedia.org/enwiki/20111007/

Data set |PQ| |Cp(l)| |I|
Qbirthplace(D) 8,118 65,200 211,654
Qcity(D) 6,623 9,497 31,623

Table 4. PIA index data sets used in the experimentation. Columns
shows the number of path queries, the number of connected pairs and
the number of edges

We choose two properties of DBpedia: birthPlace and city.
We run QbirthP lace and Qcity given in Listing 2. We used
one PIA index for QbirthP lace(D) and another for Qcity(D).
Table 4 details these index. We run the BlueFinder prototype
on the same data sets as in PIA.

PREFIX o:< h t t p : / / d b p e d i a . o rg / o n t o l o g y />
PREFIX p:< h t t p : / / d b p e d i a . o rg / p r o p e r t y />
PREFIX f o a f :< h t t p : / / xmlns . com / f o a f /0 .1 / >

# Q b i r t h p l a c e : C i t i e s and Peop le born t h e r e .
SELECT ? wci ty , ? wperson WHERE{
? p e r s o n a o : P e r so n .
? c i t y a o : C i t y .
? p e r s o n p : b i r t h P l a c e ? c i t y .
? c i t y f o a f : i s P r i m a r y T o p i c O f ? w c i t y .
? p e r s o n f o a f : i s P r i m a r y T o p i c O f ? wperson .}

# Q c i t y : C i t i e s and i t s u n i v e r s i t i e s .
SELECT ? wci ty , ? w u n i v e r s i t y WHERE{
? u n i v e r s i t y a o : U n i v e r s i t y .
? c i t y a o : C i t y .
? u n i v e r s i t y p : c i t y ? c i t y .
? c i t y f o a f : i s P r i m a r y T o p i c O f ? w c i t y .
? u n i v e r s i t y f o a f : i s P r i m a r y T o p i c O f ? w u n i v e r s i t y .}

Listing 2. Semantic Queries of the Evaluation

Metrics
We use precision, recall [7], and F1 score [10] as met-
rics. They compute the proportion between the BlueFinder
retrieved path queries (BFPQs) and the relevant or correct
path queries (CPQs). The precision is the proportion of re-
trieved path queries that are correct with respect to connected
Wikipedia articles (1), recall is the proportion of correct path
queries that are retrieved (2). Finally, F1 score is the combi-
nation of precision and recall (3).

(1)precision(CPQs,BFPQs) = |CPQs
⋂

BFPQs|
|BFPQs|

(2)recall(CPQs,BFPQs) = |CPQs
⋂

BFPQs|
|CPQs|

(3)F1 = 2× precision×recall
precision+recall

Additionally, we want to measure the number of cases where
BlueFinder recommends at least one correct path query that
can be fix the missing links. With this value we can obtain
a rate of cases where BlueFinder potentially fix the missing
connection in Wikipedia. This measure is defined by the pot
function:

pot(CPQs,BFPQs) =

{
0 if CPQs

⋂
BFPQs = ∅

1 otherwise

Methodology
To answer the questions above, we follow the steps below:

1. Evaluation setup. The first step defines the parameters to
exercise BlueFinder algorithm. We define different values of
k from 1 to 10 and different values of maxRecom=1;3;5,
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K 1 2 3 4 5 6 7 8 9 10

PIA
precisionk 0.587
recallk 0.518
F1k 0.550
potk 0.585

maxRecom=1
precisionk 0.487 0.515 0.520 0.527 0.541 0.525 0.551 0.558 0.562 0.571
recallk 0.453 0.483 0.487 0.5 0.506 0.510 0.516 0.524 0.527 0.535
F1k 0.453 0.483 0.487 0.500 0.506 0.510 0.516 0.524 0.527 0.535
potk 0.488 0.516 0.522 0.534 0.541 0.545 0.552 0.558 0.562 0.570

maxRecom=3
precisionk 0.479 0.456 0.423 0.393 0.376 0.358 0.346 0.337 0.326 0.321
recallk 0.462 0.596 0.653 0.678 0.697 0.697 0.695 0.693 0.695 0.698
F1k 0.453 0.483 0.487 0.500 0.506 0.510 0.516 0.524 0.527 0.535
potk 0.517 0.650 0.704 0.728 0.748 0.748 0.747 0.744 0.747 0.753

maxRecom=5
precisionk 0.479 0.455 0.421 0.385 0.362 0.339 0.323 0.307 0.289 0.280
recallk 0.601 0.708 0.758 0.785 0.807 0.820 0.828 0.832 0.828 0.828
F1k 0.533 0.554 0.541 0.517 0.500 0.480 0.465 0.449 0.429 0.417
potk 0.517 0.652 0.709 0.747 0.775 0.793 0.809 0.811 0.809 0.811

Table 2. Qbirthplace(D) data set experiment values.

K 1 2 3 4 5 6 7 8 9 10

PIA
precisionk 0.636
recallk 0.418
F1k 0.505
potk 0.642

maxRecom=1
precisionk 0.282 0.229 0.191 0.191 0.249 0.269 0.286 0.303 0.316 0.333
recallk 0.19 0.15 0.123 0.133 0.171 0.181 0.191 0,205 0,214 0.224
F1k 0.228 0.181 0.15 0.157 0.202 0.217 0.229 0.244 0.255 0.268
potk 0.284 0.232 0.194 0.211 0.253 0.281 0.298 0.312 0.326 0.343

maxRecom=3
precisionk 0.344 0.308 0.274 0.260 0.261 0.257 0.257 0.259 0.257 0.249
recallk 0.345 0.431 0.451 0.454 0.459 0.460 0.469 0.473 0.470 0.461
F1k 0.344 0.359 0.341 0.331 0.333 0.330 0.332 0.335 0.333 0.324
potk 0.486 0.583 0.604 0.607 0.604 0.611 0.621 0.625 0.625 0.618

maxRecom=5
precisionk 0.344 0.311 0.268 0.241 0.229 0.217 0.203 0.199 0.197 0.201
recallk 0.470 0.542 0.579 0.593 0.615 0.618 0.614 0.604 0.606 0.636
F1k 0.397 0.395 0.366 0.343 0.334 0.322 0.305 0.3 0.297 0.306
potk 0.486 0.607 0.645 0.652 0.666 0.670 0.652 0.642 0.659 0.708

Table 3. Qcity(D) data set experiment values.

N is the set of connected pairs in Wikipedia to evaluate
BlueFinder and the PIA index for each data set.

2. Exercise the BlueFinder on known cases. We eliminate
links that already exist in the PIA index and then we observe
if BlueFinder is able to recreate them. Concretely, for each
connected pair in N , we generate a mock PIA index without
the path queries of the pair i.e. we ”disconnect” the pair.
After that, we exercise BlueFinder to ”fix” the pair by using
the mock PIA index. Then, we compare the recommendations
with the path queries of PIA.

Consequently, the recall, precision and pot for the
BlueFinder using k neighbours and N is calculated with the
following functions:

recallk = 1
N

∑N
i=1 recall[i, k] where recall[i, k] is the re-

call value for the ith pair extracted by BlueFinder exercised
with k-nearest neighbours.

precisionk = 1
N

∑N
i=1 precision[i, k] where

precision[i, k] is the precision for the ith pair extracted by
BlueFinder exercised with k-nearest neighbours.

potk = 1
N

∑N
i=1 pot[i, k] is the pot value for the ith pair ex-

tracted by BlueFinder exercised with k-nearest neighbours.

For Qbirthplace(D) data set, we fix N = 1774 and for
Qcity(D) data set, we fix N = 288, in both cases the pairs
were randomly selected. We run BlueFinder and PIA on the
same datasets and we compare both approaches.

Results
In this section, we detail and compare the results obtained by
PIA and by BlueFinder.

For the data set Qbirthplace(D), the recall of
PIA is 0.518, the recommended path query is
#from/*/Cat:People from #from/ #to. This
means that around % 51 of pairs are connected by
the#from/*/Cat:People from #from/ #to. The
precision is 0.587 and the F1 score was 0.55.
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Figure 2. Evaluation for Qbirthplace(D) data set using different values
of K.

We run BlueFinder with the same data set. The first thing
we could observe was that BlueFinder recommend the
#from/*/Cat: Sportspeople from Boston/
#to, #from/*/#from F.C. players/#to and
#from/*/#from F.C. non-playing staff/#to
star path queries to the case of Chris Lawler from Liverpool.
This case is the example used in the Introduction of this
article and the three BlueFinder recommendations were
correct for the case.

Table 2 details BlueFinder precision, recall, F1 and pot for
the same data set. For instance, the best value of recall of
BlueFinder is 0.832 with k = 8 and maxRecom = 5, the
best value of pot is 0.811 with k = 8, 10 and maxRecom =
5 and the best value of precision is 0.571 k = 10 and
maxRecom = 1.

The worst value of recall is 0.453 with k = 1 and
maxRecom = 1, the worst value of precision is 0.28 with
k = 10 and maxRecom = 5 and the worst value of pot is
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Figure 3. Evaluation for Qcity(D) data set using different values of K.
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Figure 4. Comparison of pot values with the different configuration of
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Figure 5. Comparison of pot values with the different configuration of
BlueFinder and PIA in Qcity(D) data set.

0.488 with k = 1 and maxRecom = 1.

Figure 2 shows the curve of recall, precision and F1 for
maxRecom = 1; 3; 5 and different value of K. Figure 4
shows pot function for the previous values. We can observe
that for k between 7 and 10, the BlueFinder could fix near 80
% of pairs with maxRecom = 5 and nearly 75 % of pairs
with maxRecom = 3.

In comparison with BlueFinder, the PIA approach showed a
rate of potentially under 60 % fixed pairs. Finally, for all k,
the BlueFinder with maxRecom = 1 is under the potential
fixed rate than PIA approach.

For the data set Qcity(D), the recall of PIA is 0.418, the
recommended path query is #from/ #to. This means that
around % 41 of pairs are connected by the #from/ #to.
This path represents a direct link from the city page to the
university page. The precision is 0.636 and the F1 score was
0.505.

Table 3 details BlueFinder results for the same data set. For
instance, the best value of recall of BlueFinder is 0.636 and
the best value of pot is 0.708 with k = 10 andmaxRecom =
5 and the best value of precision is 0.344 with k = 1 and
maxRecom = 3; 3 .

The worst value of recall is 0.123 with k = 4 and
maxRecom = 1, the worst value of precision is 0.197 with
k = 9 and maxRecom = 5 and the worst value of pot is
0.194 with k = 3 and maxRecom = 1.

Figure 3 shows the curve of recall, precision and F1 for
maxRecom = 1; 3; 5 and different value of K. Fig-
ure 5 shows pot function for the previous values. For
maxRecom = 5, the potential fixed rate is nearly 65 % for
k between 3 and 9 and then climbs to 70 % for k = 10. In
the second position appears the PIA approach with a rate of
64 %.

The results show us that BlueFinder can correct more pairs
than the PIA approach. By analysing the pot values, we can
see that for both datasets BlueFinder with maxRecom = 5
had a better performance than PIA. By analysing precision,
recall and F1 score, we can see that maxRecom has more
impact than the value of k. However, if we compare preci-
sion and recall values with pot values, we can see that a big-

ger value of k increases the number of potentially fixed pairs.
This means that a value of k between 7 and 10 and a value of
maxRecom = 5 ensures for both datasets a high recall and
a high potentially fixed rate. However, the increasing number
of recommendations decreases the precision value. Finally,
when the maxRecom = 1 and the value of k is getting big-
ger, the BlueFinder behaves like PIA approach. This is a nat-
ural consequence, because when k is getting close to the total
of connected pairs, the set of neighbors will be similar to the
complete N set and it gives the most general path query.

In terms of processing time, the algorithm was executed
quickly. It took 50 seconds for the Qbirthplace(D) dataset
and it took 2 seconds for the second dataset. The main bottle-
neck in the computation is computing the PIA indexes. For
that, BlueFinder uses pre-computed PIA indexes.

CONCLUSIONS AND FURTHER WORK
In this article, we have introduced the BlueFinder algorithm
which is an improvement of the previous PIA algorithm.
PIA algorithm finds a path query that links two articles in
Wikipedia related by a property in DBpedia. Although PIA
respects Wikipedia conventions it only predicts the most gen-
eral path query. Instead, BlueFinder fixes this PIA’s draw-
back by paying special attention into the specificity of the
resources. BlueFinder algorithm filters the results from PIA
to recommend better representations for a DBpedia seman-
tic property in Wikipedia. It follows a collaborative filtering
strategy to recommend a the best path query between a given
couple of Wikipedia pages according to a given DBpedia se-
mantic property.

BlueFinder is based on the popular k-Nearest Neigh-
bors(kNN) and Multi label kNN algorithm [25] adapted to
the context of DBpedia and PIA index. It uses a similarity
function called jccD. jjcD is an adaptation of Jaccard distance
which measure similarity between Wikipedia pages by using
a DBpedia semantic property.

To validate BlueFinder, we have run an evaluation to compare
the new approach with the previous one. The analysis of the
evaluation showed us that BlueFinder algorithm obtains path
queries with more specificity to connect in a right way the
Wikipedia articles. This implies that BlueFinder has a better
recall than PIA.

Although this good levels of recall are an important help to
improve the Wikipedia content, it is necessary to continue
working to improve the filter steps in the recommendation
algorithm in order to improve the precision values in the rec-
ommendations. We plan to analyse other similarity measures
like using semantic properties. In other research line, we plan
to adapt this approach in combination with other languages
version of Wikipedia. Finally, we plan to extend the approach
to any property in DBpedia.
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