
HAL Id: hal-00800180
https://hal.science/hal-00800180

Preprint submitted on 13 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model selection and clustering in stochastic block
models with the exact integrated complete data

likelihood
Etienne Côme, Pierre Latouche

To cite this version:
Etienne Côme, Pierre Latouche. Model selection and clustering in stochastic block models with the
exact integrated complete data likelihood. 2013. �hal-00800180�

https://hal.science/hal-00800180
https://hal.archives-ouvertes.fr


Model selection and clustering in stochastic block models

with the exact integrated complete data likelihood
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Abstract

The stochastic block model (SBM) is a mixture model used for the clustering of

nodes in networks. It has now been employed for more than a decade to analyze

very different types of networks in many scientific fields such as Biology and social

sciences. Because of conditional dependency, there is no analytical expression for the

posterior distribution over the latent variables, given the data and model parameters.

Therefore, approximation strategies, based on variational techniques or sampling,

have been proposed for clustering. Moreover, two SBM model selection criteria exist

for the estimation of the number K of clusters in networks but, again, both of them

rely on some approximations. In this paper, we show how an analytical expression

can be derived for the integrated complete data log likelihood. We then propose

an inference algorithm to maximize this exact quantity. This strategy enables the

clustering of nodes as well as the estimation of the number clusters to be performed

at the same time and no model selection criterion has to be computed for various

values of K. The algorithm we propose has a better computational cost than existing

inference techniques for SBM and can be employed to analyze large networks with

ten thousand nodes. Using toy and true data sets, we compare our work with other

approaches.

Keywords: Random graphs, stochastic block models, integrated classification

likelihood.

1. Introduction

There is a long history of research on networks which goes back to the earlier work

of Moreno [1]. Because they are simple data structures yet capable of representing
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complex systems, they are used in many scientific fields [2, 3]. Originally considered

in social sciences [4] to characterize relationships between actors [5, 6], networks

are also used to describe neural networks [7], powergrids [8], and the Internet [9,

10]. Other examples of real networks can be found in Biology with the use of

regulatory networks to describe the regulation of genes by transcriptional factors

[11] or metabolic networks to represent pathways of biochemical reactions [12]. As

the number of networks used in practice has been increasing, a lot of attention has

been paid on developing graph clustering algorithms to extract knowledge from their

topology. Existing methods usually aim at uncovering very specific patterns in the

data, namely communities or disassortative mixing. For an exhaustive review, we

refer to [13].

Most graph clustering algorithms look for communities, where two nodes of the

same community are more likely to be connected than nodes of different commu-

nities. These techniques [14, 15] often maximize the modularity score proposed by

Girvan and Newman [16] for clustering. However, recent work of Bickel and Chen

[17] showed that they were asymptotically biased and tended to lead to the discovery

of an incorrect community structure, even for large graphs. Alternative strategies,

see for instance [18], are generally related to the probabilistic model of Handcock,

Raftery and Tantrum [19] which generalizes the work of Hoff, Raftery and Handcock

[20]. Nodes are first mapped into a a latent space and then clustered depending on

their latent positions. Community structure algorithms are commonly used for af-

filiation network analysis. As mentioned in [21], other graph clustering algorithms

aim at uncovering dissasortative mixing in networks where, contrary to community

structure, nodes mostly connect to nodes of different clusters. They are particularly

suitable for the analysis of bipartite or quasi bipartite networks [22].

In this paper, we consider the stochastic block model (SBM) proposed by Nowicki

and Snijders [23] which is a probabilistic generalization [4, 5] of the work of White,

Boorman and Breiger [24]. As pointed out by Daudin, Picard and Robin [25], SBM

can be seen as a mixture model for graphs. It assumes that nodes are spread into

K clusters and uses a K × K matrix Π to describe the connection probabilities

between pairs of nodes. No assumption is made on Π such that very different
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structures can be taken into account. In particular, as shown in [26], contrary to

the methods mentioned previously, SBM can be used to retrieve both communities

and disassortative mixing in networks.

Many extensions have been developed to overcome some limits of the standard

SBM. For example, Mariadassou, Robin and Vacher [27] introduced recently a prob-

abilistic framework to deal with valued edges, allowing covariates to be taken into

account. While the first model they proposed explains the value of an edge, between

a pair of nodes, through their clusters only, the second and third approaches do ac-

count for covariates through Poisson regression models. This framework is relevant

in practice because extra information on the edges is sometimes available, such as

phylogenetic distances in host-parasite networks or amounts of energy transported

between nodes in powergrids.

Another drawback of SBM is that it assumes that each node belongs to a sin-

gle cluster while many objects in real world applications belong to several groups

or communities [28]. To tackle this issue Airoldi et al. [29] proposed the mixed

membership stochastic block model (MMSBM) [30, 31]. A latent variable πi, drawn

from a Dirichlet distribution, is associated to each node i of a network. Given a

pair (i, j) of nodes, two binary latent vectors Zi→j and Zi←j are then considered.

The vector Zi→j is assumed to be sampled from a multinomial distribution with pa-

rameters (1,πi) and describes the cluster membership of i in its relation towards j.

By symmetry, Zi←j is drawn from multinomial distribution with parameters (1,πj)

and characterizes the cluster membership of j in its relation towards i. Thus, in

MMSBM, since each node can have different latent vectors through its relations

towards other nodes, it can belong to several clusters. The connection probability

between i and j is finally given by pij = Zᵀ
i→jBZi←j. The overlapping stochastic

block model (OSBM) was proposed by Latouche, Birmelé and Ambroise [28] as an

alternative probabilistic model for networks allowing overlapping clusters. Contrary

to MMSBM, edges are influenced by the fact that some nodes belong to multiple

clusters. Thus, each node i is characterized by a binary latent vector Zi sampled

from a product of Bernoulli distributions. An edge between nodes i and j is then

drawn from a Bernoulli distribution with parameter pij=g(aZi,Zj
). The function g(·)
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is the logistic function while aZi,Zj
is a real variable describing the interactions be-

tween the nodes, depending on the different clusters they are associated with. It

is given by aZi,Zj
= Zᵀ

iWZj + Zᵀ
iU + VᵀZj + W ∗. Finally, we mention the work

of Karrer and Newman [32] who proposed an interesting extension of SBM to deal

with node degree heterogeneity inside clusters. The model deals with valued edges

and includes another set of parameters describing vertices attractiveness. Using the

right constraints the model is identifiable (up to permutations of clusters) and the

atractivity parameters can be directly related to vertices degree. This work was

extended to oriented networks in [33] and finally tools for model selection between

different models are derived in [34].

In this paper, we wont consider the extensions for SBM we mentionned, we will

rather focus on the standard SBM. Our goal here is not to propose new extensions,

allowing a SBM like model to be applicable on specific types of networks, or to

introduce new latent structures. Conversely, considering the standard SBM, which

has been widely used in practice for network analysis, for more than a decade, we

aim at developping a new optimization procedure, improving over existing inference

strategies. In SBM, the posterior distribution over the latent variables, given the

parameters and the observed data, cannot be factorized due to conditional depen-

dency. Therefore, optimization techniques such as the expectation maximization

(EM) algorithm cannot be used directly for clustering. To tackle this issue, Daudin,

Picard and Robin [25] proposed an approximation method based on a variational

EM algorithm. Note that an online version of this algorithm exists [35]. A Bayesian

framework was also considered by Nowicki and Snijders [23] where conjugate priors

for the model parameters were introduced. Again, because the posterior distribu-

tion over the model parameters, given the data, is not tractable, approximation

techniques were employed for inference. Thus, Nowicki and Snijders [23] used a

Gibbs sampling procedure while Latouche, Birmelé and Ambroise [36] relied on a

variational Bayes EM algorithm. To our knowledge, only two model selection cri-

teria, the integrated classification likelihood (ICL) and the integrated likelihood

variational Bayes (ILvb) have been developed for SBM in order to estimate the

number K of clusters in networks. Standard criteria such as the Akaike information
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criterion (AIC) or bayesian information criterion (BIC) cannot be used because they

rely on the SBM observed data log likelihood which is not tractable in practice (see

for instance [26]). ICL was originally developed by Biernacki, Celeux and Govaert

[37] for Gaussian mixture models and then adapted by Daudin, Picard and Robin

[25] to SBM. It is based on Laplace and Stirling approximations of the integrated

complete data log likelihood. As shown in [38], it tends to miss some important

structures present in the data for small data sample, because of the asymptotic ap-

proximations. To tackle this drawback, Latouche, Birmelé and Ambroise proposed

in [36] the ILvb criterion which relies on a variational Bayes approximation of the

integrated observed data log likelihood.

In this paper, we show how an analytical expression of the integrated complete

data log likelihood can be obtained in a Bayesian framework and that no asymp-

totic approximation is required. We call the corresponding criterion ICLex where

ex stands for exact. We then propose a greedy inference algorithm which maxi-

mizes this exact quantity. The strategy has three advantages compared to existing

approaches. First, it maximizes an analytical criterion directly derived from SBM,

while variational techniques for instance rely on lower bounds for approximation.

Thus, the lower bound of the variational EM algorithm proposed by Daudin, Pi-

card and Robin [25] approximates the observed data log likelihood, while Latouche,

Birmelé and Ambroise [36] introduced a lower bound to estimate the integrated ob-

served data log likelihood. Second, ICLex only depends on all the latent binary

vectors Zi, stored in the matrix Z, and the number K of clusters, not on the model

parameters which are marginalized out. Therefore, the optimization task focus on

(K,Z) and is purely combinatorial. When using the Gibbs algorithm [23], the suc-

cessive samples for Z and model parameters are highly correlated. As a consequence,

nodes tend to be stuck in clusters, after a few iterations. Similar remarks could be

made for the variational EM and variational Bayes EM algorithms. In our case,

because the parameters are marginalized out (collapsed) the method is expected to

explore more easily the latent space of Z. This property is at the core of collapsing

methods (for more details, we refer to [39]). Finally, our strategy enables the clus-

tering of nodes as well as the estimation of the number of clusters to be performed
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at the same time and no model selection criterion has to be computed for various

values of K. Starting from a complex model with K = Kup clusters, (Kup being

an upper bound for K), the proposed algorithm swaps labels until ICLex reaches a

local maximum. During the process, clusters may disappear, i.e. their cardinality

reaches zero. Such an approach leads to a simple and time attractive algorithm with

complexity of O(L + NK2
up), with L the total number of edges in the network and

N the number of vertices.

As we shall see through a series of experiments, the greedy algorithm takes benefit

of computing the exact ICL and improves over existing methods, both in terms of

clustering and model selection. It can also deal with large networks with tens of

thousands of vertices.

2. The stochastic block model

We consider a binary network with N nodes represented by its adjacency matrix

X such that Xij = 1 if there is an edge from node i to node j, 0 otherwise. In this

paper, we focus on directed networks, i.e. relations are oriented. Therefore X is

not symmetric. Moreover, we do not consider any self loop, that is an edge from

a node to itself. We emphasize that all the optimization equations derived in this

work can easily be adapted to deal with undirected networks or to take into account

self loops.

2.1. Model and notations

The stochastic block model (SBM) introduced by Nowicki and Snijders [23] as-

sumes that the nodes are spread into K clusters with connectivity patterns described

by a K ×K matrix Π. The cluster of each node is given by its binary membership

vector Zi sampled from a multinomial distribution :

Zi ∼M(1,α = (α1, . . . , αK)),
K∑
k=1

αk = 1,

such that Zik = 1 if i belongs to cluster k and zero otherwise. Contrary to the work

of Latouche, Birmelé and Ambroise [28], each node belongs to a single cluster, that
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is
∑K

k=1 Zik = 1, ∀i. Given the vectors Zi and Zj, an edge between node i and j is

then drawn from a Bernoulli distribution with probability Πkl :

Xij|ZikZjl = 1 ∼ B(Πkl).

This leads to a simple yet flexible generative model for networks. First, all the

vectors Zi are sampled independently. We denote Z the binary N × K matrix

storring the Zis as raw vectors :

p(Z|α) =
N∏
i=1

M(Zi; 1,α) =
N∏
i=1

K∏
k=1

αZik
k . (1)

Then, given the latent structure Z, all the edges in X are drawn independently :

p(X|Z,Π) =
N∏
i 6=j

p(Xij|Zi,Zj,Π)

=
N∏
i 6=j

K∏
k,l

B(Xij; Πkl)
ZikZjl

=
N∏
i 6=j

K∏
k,l

(
Π
Xij

kl (1− Πkl)
1−Xij

)ZikZjl

.

(2)

2.2. Integrated classification likelihood criteria

In this paper, we consider the integrated complete data log likelihood log p(X,Z|K)

in order to focus on the inference of Z and K from the observed data X, all the

SBM parameters (α,Π) being integrated out. We first recall existing approxima-

tions and then show in Section 2.2.2 how an analytical expression of this quantity

can be derived.

2.2.1. Asymptotic ICL criterion

When considering a factorized prior distribution p(α,Π|K) = p(α|K)p(Π|K)

over the model parameters, as in [37], the integrated complete data log likelihood

easily decomposes into two terms:

log p(X,Z|K) = log

(∫
α,Π

p(X,Z,Π,α|K)dαdΠ

)
= log

(∫
Π

p(X|Z,Π, K)p(Π|K)dΠ

∫
α

p(Z|α, K)p(α|K)dα

)
= log p(X|Z, K) + log p(Z|K).

(3)
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However, for an arbitrary choice of the priors p(α|K) and p(Π|K), the marginal

distributions p(X|Z, K) as well as p(Z|K) are usually not tractable and (3) does

not have any analytical form. To tackle this issue, Daudin, Picard and Robin [25]

proposed an asymptotic approximation of log p(X,Z|K), so called integrated classi-

fication likelihood criterion (ICL). Note that ICL was originally proposed by Bier-

nacki, Celeux and Govaert [37] for Gaussian mixture models. It was then adapted

by Biernacki, Celeux and Govaert [38] to mixtures of multivariate multinomial dis-

tributions and to the SBM model by Daudin, Picard and Robin [25]. In the case we

consider of a directed graph without self-loop, ICL is given by:

ICL(Z, K) ≈ log p(X,Z|K)

= max
α,Π

log p(X,Z|α,Π, K)− 1

2
K2 log (N(N − 1))− K − 1

2
log(N).

For an extensive description of the use of Laplace and Stirling approximations to

derive the ICL criterion, we refer to [37]. Since it approximates the integrated

complete data log likelihood, ICL is known to be particularly suitable when the focus

is on the clustering task and not on the estimation of the data density. However,

as shown in [38, 27], it tends to miss some important structures present in the data

because of the (asymptotic) approximations.

We emphasize that ICL is only used in the literature as a model selection cri-

terion. In practice, a clustering method such as an EM like algorithm for instance

is employed to obtained some estimates Z̃ of Z, for various values of the number

K of classes. ICL is then computed for every pair (Z̃, K) and the pair (Z̃∗, K∗) is

chosen such that the criterion is maximized. Thus, ICL is optimized only through

the results (Z̃, K) produced by the clustering algorithm. Conversely, after having

given an analytical expression ICLex of the integrated complete data log likelihood

in the next section, we will show in Section 3 how to optimize directly ICLex with

respect to Z and K.

2.2.2. Exact ICL criterion

We rely on the same Bayesian framework as in [23] and [26]. Thus, we consider

non informative conjugate priors for the model parameters α and Π. Since α,

describing the cluster proportions, parametrizes a multinomial distribution (1), we
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rely on a Dirichlet prior distribution:

p(α) = Dir
(
α; n0 = (n0

1, . . . , n
0
K)
)
.

A common choice consists in fixing the hyperparameters to 1/2, i.e. n0
k = 1/2,∀k.

Such a distribution corresponds to a non informative Jeffreys prior which is known

to be proper [40]. A uniform distribution can also be obtained by setting the hyper-

parameters to 1.

Moreover, since the presence or absence of an edge between nodes is sampled

from a Bernoulli distribution, we consider independent Beta prior distributions to

model the connectivity matrix Π:

p(Π) =
K∏
k,l

Beta(Πkl; η
0
kl, ζ

0
kl).

Again, if no prior information is available, all hyperparameters η0
kl and ζ0

kl can be

set to 1/2 or 1 to obtain a Jeffreys or uniform distribution.

With these choices of conjugate prior distributions over the model parameters,

the marginal distributions p(X|Z, K) as well as p(Z|K) in (3) have analytical forms,

and so has the integrated complete data log likelihood, as proved in AppendixA. We

call ICLex the corresponding criterion, where ex stands for exact. It is given by:

ICLex(Z, K) = log p(X,Z|K)

=
K∑
k,l

log

(
Γ(η0

kl + ζ0
kl)Γ(ηkl)Γ(ζkl)

Γ(ηkl + ζkl)Γ(η0
kl)Γ(ζ0

kl)

)
+ log

(
Γ(
∑K

k=1 n
0
k)
∏K

k=1 Γ(nk)

Γ(
∑K

k=1 nk)
∏K

k=1 Γ(n0
k)

)
,

where the components nk are:

nk = n0
k +

N∑
i=1

Zik,∀k ∈ {1, . . . , K},

and can be seen as pseudo counters of the number of nodes in each class. Moreover,

the parameters (ηkl, ζkl) are given by:

ηkl = η0
kl +

N∑
i 6=j

ZikZjlXij,∀(k, l) ∈ {1, . . . , K}2,

and

ζkl = ζ0
kl +

N∑
i 6=j

ZikZjl(1−Xij),∀(k, l) ∈ {1, . . . , K}2.
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They represent pseudo counters of the number of edges and non-edges connecting

nodes of class k to nodes of class l, respectively.

Note that the ICLex criterion is related to the variational Bayes approximation

of the integrated observed data log likelihood log p(X|K) proposed by Latouche,

Birmelé and Ambroise [36]. The key difference is that the parameters (nk, ηkl, ζkl) in

ICLex depend on the hard assignment Z of nodes to classes and not on approximated

posterior probabilities τ . Moreover, ICLex does not involve any entropy term as in

[36].

3. Greedy optimization

Since the model parameters have been marginalized out, the ICLex criterion only

involves the cluster indicator matrix Z whose dimensionality depends on the number

K of clusters. Thus, this integrated likelihood is only a function of a partition P ,

i.e. an assignment of the vertices to clusters. Looking directly for a global maximum

of ICLex is not feasible because it involves testing every possible partition of the

vertices with various values of K. However, this is a combinatorial problem for which

heuristics exist to obtain local maxima. In this paper, we rely on greedy heuristics

which have been shown to scale well with sample sizes [14]. These approaches have

already been used for graph clustering using ad-hoc criteria such as modularity

[14, 41] and are reminiscent of the well known iterated conditional modes algorithm

of Besag [42] used for maximum a posteriori estimation in Markov random fields.

The algorithm (see Algorithm 1) starts with a SBM model withK = Kup clusters,

Kup being an upper bound for the number of clusters. Kup is assumed to be given

as an input along with a N ×Kup matrix Z. In practice, Kup is set to a large value

using user knowledge on the problem at hand, while Z can be initialized with the

methods described in the next section. The algorithm then cycles randomly through

all the vertices of the network. At each step, a single node i is considered while all

the membership vectors Zj for j 6= i are hold fixed. If i is currently in cluster g,

the method looks for every possible label swapping, i.e. removing i from cluster g

and assigning it to a cluster h 6= g, and computes the corresponding change ∆g→h

in the ICLex criterion. Note that ∆g→h takes two forms (see AppendixB) whether
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cluster g is empty after removing i or not. If no label swapping induces an increase

of the criterion, the vector Zi is not modified. Otherwise, the label swapping with

the maximal increase is applied and Zi is changed accordingly. During the process,

clusters may disappear, i.e. their cardinality reaches zero. Each time one of these

moves is accepted, the model is updated and the corresponding column is removed

from the cluster indicator matrix Z. Finally, the algorithm stops if a complete

pass over the vertices did not lead to any increase of the ICLex criterion. Thus, the

algorithm, automatically infers the number of clusters while clustering the vertices of

the network. Starting with an over-segmented initial solution our approach simplifies

the model until a local maximum is reached.

3.1. Complexity

In order to set up such an algorithm, it is sufficient to know how to compute the

changes in the ICLex criterion induced by the possible swap movements (from cluster

g to cluster h) for a given node i, the others being kept fixed. Such changes can be

computed efficiently (see AppendixB for details) and the complexity of finding the

best swap movement for a node is in averageO(l+K2), where l is the average number

of edges per node. Such complexity can be achieved, since good approximations of

the logarithm of the gamma function are available with constant running time. The

greedy algorithm has therefore a total complexity of O(N(l + K2
up) + L), since a

swap movement cost is O(l + K2); the initialization of the edges counters (ηkl, ζkl)

cost is L (the total number of edges in the graph) and several complete passes

over the set of nodes will be performed (typically less than 10). Eventually, this

can be simplified in O(NK2
up + L) and compared to the complexity of O(LK3

up)

achieved using a variational algorithm and a model selection criterion as in [25, 36].

Indeed, contrary to our approach which estimates the number of clusters in a single

run, while clustering the nodes, these approaches are run multiple times for various

values of K and K∗ is chosen such that the corresponding model selection criterion

is maximized. Since each run costs O(LK2), the overall complexity is O(LK3
up).
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Algorithm 1: Greedy ICL

Set K = Kup ; stop = 0 ;

Initialize the N ×Kup matrix Z ; Compute η,ζ,n ;

while stop 6= 1 do

V = {1, . . . , N} ; stop = 1 ;

while V not empty do

Select a node i randomly in V ; Remove i from V ;

If i is in cluster g, compute all terms ∆g→h,∀h 6= g ;

if at least one ∆g→h is positive then

stop = 0 ;

Find h such that ∆g→h is maximum ;

Swap labels of i : Zig = 0 and Zih = 1 ;

if g is empty then

Remove column g in Z ; Set K = K − 1 ;

end

Update rows and columns (g, h) of the matrices η and ζ ;

Update the components g and h of vector n;

end

end

end

Result: (Z, K)

3.2. Initialization and restarts

Several solutions are possible for initializing the algorithm, a simple choice con-

sisting in sampling random partitions while a more relevant though expensive start-

ing point can be obtained with the k-means algorithm. One possible trade-off in

terms of computational burden is to use only few iterations of k-means. We used

the latter method in all the experiments that we carried out. Moreover, since our

method is only guaranteed to reach a local optima, a common strategy is to run

the optimization algorithm with multiple initializations and to keep the best one

according to the ICLex criterion.
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3.3. Hierarchical clustering

Eventually, in a final step, it is possible to check that merge movements between

clusters do not induce any increase of the objective function. This can be done with a

greedy hierarchical algorithm which costs O(K3) (see details in AppendixC). Since

the labels swap algorithm usually greatly reduces the number of clusters (K <<

Kup), the computational cost of this last step is low.

Such a scheme leads to a fast algorithm: sparse networks take about 15 seconds

for N = 500 nodes, and about five minutes for N = 5000 with a naive Matlab

implementation.

4. Experiments on synthetic data

To assess the greedy optimization method, a simulation study was performed and

the proposed solution was compared with available implementations of algorithms

for SBM inference:

• vbmod, [43], a variational-based approach dedicated to the search of commu-

nity structures, implemented in Matlab and C. The random graph model they

considered can be seen as a constrained SBM where all terms on the diagonal

of the connectivity matrix Π are set to a unique parameter λ and off-diagonal

terms to another parameter ε,

• mixer, [25], another variational approach but one which can deal with all

types of SBM models (not only communities structures) implemented in R

and C,

• colsbm, [44], a collapsed Gibbs sampler for SBM in C. The last version of the

code is used in this experimental section. It involves an additional move type

compared to the algorithm described in the associated publication. This move

was found to greatly enhance the results.

Our goal here is to evaluate the ability of the different solutions to recover a

simulated clustering without knowing the number of clusters. Only a reasonable

upper bound Kup on K will be provided to the algorithms when needed. We recall
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that the variational methods optimize a lower bound for various values of K and

select K∗ such that a model selection criterion is maximized: ICL for mixer and

ILvB for vbmod. Conversely, the collapsed Gibbs sampler automatically provides

an estimate of K, since the posterior of K is made available.

The performances are assessed in terms of normalized mutual information (see

for instance [45]) between the estimated cluster membership matrix Ze and the

simulated one Zs. The mutual information I(Ze,Zs) between two partitions is to

this end defined by:

I(Ze,Zs) =
K∑
k,l

pkl log

(
pkl
pekp

s
l

)
, (4)

with

pkl =
1

N

N∑
i,j

Ze
ikZ

s
jl, p

e
k =

1

N

N∑
i=1

Ze
ik, p

s
l =

1

N

N∑
i=1

Zs
il.

The measure I(Ze,Zs) describes how much is learnt about the true partition if the

estimated one is known, and vice versa. The mutual information is not an ideal

similarity measure when the two partitions have a different number of clusters and

it is therefore preferable to use a normalized version of the mutual information such

as:

NI(Ze,Zs) =
I(Ze,Zs)

max (H(Ze), H(Zs))
, (5)

with H(Z) = −
∑K

k=1 pk log(pk) and pk = 1
N

∑N
i Zik. The performances are eval-

uated on simulated clustering problems of varying complexity and with different

settings, in order to give insights about the influence of the number K of clusters,

of the number of vertices N and of the type of connectivity matrix Π.

4.1. Setting 1: small scale community structures

The first setting is a classical community simulation with N = 100 vertices and

K = 5 clusters. The cluster proportions are set to α = (1/5, 1/5, 1/5, 1/5, 1/5)

and the connectivity matrix takes a diagonal form with off-diagonal elements equal

to 0.01: Πkl = 0.01,∀k 6= l and diagonal elements given by Πkk = β, ∀k. β is a

complexity tuning parameter which ranges from 0.45 to 0.01. When β reaches 0.01,

the model is not identifiable (the connectivity matrix is constant) and the true cluster

memberships cannot be recovered. The set of simulated problems is therefore of
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Figure 1: Mean of mutual information between estimated and true cluster membership matrices

using 20 simulated graphs for each value of β in {0.45, 0.43, . . . , 0.03, 0.01}, and with N = 100,K =

5, ε = 0.01 for the different algorithms greedy icl, vbmod, colsbm and mixer.

varying complexity: from problems with a clear structure when β = 0.45 to problems

without any structure when β = 0.01. The experiments are performed twenty times

for each value of β and the average of the normalized mutual information over these

twenty simulated graphs is depicted in Figure 1 (left) for all the algorithms. In

order to produce results as comparable as possible, the parameters of the different

algorithms were set as follows: vbmod, mixer and greedy icl were all started ten

times and for each method the best run was selected according to the corresponding

model selection criterion. The variational methods were run with K between 2 and

20 and the best clustering kept as a final result. For greedy icl, the parameters of

the prior η0, ζ0 and n0
k were set to 1 and Kup fixed to twenty. Finally the collapsed

Gibbs sampler was run for 250 000 iterations (more than twice the default value).

The results illustrated in Figure 1 show that greedy icl outperforms the other

methods for complex problems, i.e. low values of β. The simulated clustering is

recovered until β reaches 0.25. Above this value the different algorithms perform

identically, but beyond this limit the results of greedy icl are a little bit better.

During the transition greedy icl gets slightly better results than the other algo-

rithms, it is followed by colsbm and vbmod which give close results and mixer

that deviates earlier from the planted clustering.
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4.2. Setting 2: small scale community structures with a hub cluster

The second setting aims at exploring the performances of the methods when the

latent structure does not correspond only to communities. To this end, graphs were

generated using the stochastic block model with affiliation probability matrix Π of

the form as in [36]:

Π =



β β . . . . . . β

β β ε . . . ε

β ε β . . . ε

β ε . . . β ε

β ε . . . . . . β


.

The clusters correspond therefore to communities, except one cluster of hubs

which connects with probability β to all other clusters. Graphs with N = 100

vertices, K = 5 clusters and α = (1/5, 1/5, 1/5, 1/5, 1/5) were generated using this

connection pattern. The parameter ε was set to 0.01 and β ranged as previously

from 0.45 to 0.01. Eventually, the other simulation parameters did not change. The

results are shown in Figure 1 (right).

As expected, the vbmod algorithm, which looks only for communities, is strongly

affected by this change of setting and systematically misses the hub cluster. For the

remaining methods, the best results are achieved by greedy icl which still uncovers

the planted clustering when β > 0.25, whereas mixer starts to drop at β equals 0.4.

The collapsed Gibbs sampler achieves also good results in this setting, very close to

those of greedy icl and out-performs mixer.

4.3. Setting 3: medium scale community structures

The third setting is a classical community simulation but with more nodes and

clusters, in order to study the effect of these two parameters. Thus, the number of

vertices was set to N = 500 and the number of clusters to K = 10. The cluster

proportions were defined as α = (1/10, . . . , 1/10) and all the other parameters kept

the same value as previously. For this third experiment, the results presented in

Figure 2 are identical for greedy icl, colsbm and mixer. The vbmod algorithm

seems to be more affected by the dimensionality of the problem, and did not recover
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Figure 2: Mean of mutual information between estimated and true cluster membership matrices

using 20 simulated graphs for each value of β in {0.45, 0.43, . . . , 0.03, 0.01}, and with N = 500,K =

10, ε = 0.01 for the different algorithms greedy icl, vbmod, colsbm and mixer.

exactly the true clusters when β is under 0.2. The results obtained by the different

algorithms in this setting are better than those obtained previously. This can easily

be explained by the increase in the number of nodes per cluster. The transitions

between high and low values of the normalized mutual information were also sharper

than in the previous experiments, for the same reasons.

4.4. Setting 4: large scale problem with complex structure

The final setting involves larger graphs with N = 10 000 vertices. The planted

structure is also not a purely community pattern. Some interactions between clusters

are activated randomly using a Bernoulli distribution as described by the following

generative model:

Πkl =

ZU + (1− Z)ε, if k 6= l

U , if k = l

(6)

with Z ∼ B(0.1), U ∼ U(0.45) and ε = 0.01. The size of the problem and the

complex nature of the underlying structure, let only two algorithms able to deal with

these graphs namely greedy icl and colsbm, since mixer cannot handle such large

graphs and vbmod deals only with community structure. Both were used to cluster

20 simulated graphs generated using this scheme. The greedy algorithm was started
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using Kup = 100 and the same setting as previously for the prior distributions.

The results presented as boxplots in Figure 3 give a clear advantage to greedy

icl over the collapsed sampler. Thus, greedy icl achieves an average normalized

mutual information of 0.88 whereas colsbm reaches only 0.67. In fact, the greedy

solution ended with around 80 clusters for all the simulations whereas the Gibbs

sampler gives more than 240 clusters in average and therefore produces highly over

segmented partitions of the graphs.

0.70 0.75 0.80 0.85 0.90

Colsbm

Greedy ICL

normalized mutual information

Figure 3: Mean of the mutual information between estimated and true cluster membership matrices

using 20 simulated graphs with N = 10000 and K = 50.

To summarize the results we obtained in all the experiments we carried out, it

appears that greedy icl compares favourably with the other existing solutions for

SBM, in all the settings. The results obtained in complex setting, i.e. large graphs

and a complex underlying structure (Setting 4) are particularly encouraging since

greedy icl clearly outperforms the collapsed Gibbs sampler.

5. Real dataset: communities of blogs

The proposed algorithm was finally tested on a real network where vertices cor-

respond to blogs and edges to known hyperlinks between the blogs. All the blogs

considered are related to a common topic, i.e. illustrations and comics.

The network was built using a community extraction procedure [46] which starts

from known seeds and expands them to find a dense core of nodes surrounding them.

It is made of 1360 blogs linked by 33 805 edges. The data set is expected to present

specific patterns, namely communities, where two blogs of the same community

18



are more likely to be connected that nodes of different communities. To test this

hypothesis we used the greedy ICL algorithm and did a qualitative comparison of

the results with those obtained with the community discovery method of Blondel et

al. [41].

Starting with Kup = 100 clusters, greedy ICL found K = 37 clusters. The

corresponding clusters are illustrated in Figure 4 which is an image of the adjacency

matrix with rows/columns sorted by cluster number. Thus, it appears that the

clusters found correspond in their vast majority to small sub-communities. These

sub-communities all correspond to known groups. For instance a group of blogs

of illustrators for Disney was found. Other examples include clusters of blogs of

students who went to the same illustration school such as the ECMA school of

Angouleme or the “Gobelins École de l’image”. However, some clusters have more

complex connectivity structures and are made of hubs which highly connect to blogs

of different clusters. They correspond to blogs of famous writers such as Boulet.

To give a qualitative idea of the interest of the found clustering, we also give

the results obtained by the community discovery algorithm of Blondel et al. [41]

in Figure 5. With this approach only 8 clusters are found, corresponding all to

sub-communities. Clusters of hubs could not be recovered. The major difference

between the number of clusters estimated by the two methods may be explained by

two facts. Firstly, modularity is known to be prone to a resolution limit problem

[47] which prevents such a solution to extract small scale structures. This explains

why the small sub-community extracted by greedy icl are not recovered using the

modularity. For the time being, the behaviour of the ICLex criterion with respect

to the resolution limit problem is not clear and will deserve further investigations.

However, we notice that on this dataset finer structures than those obtained using

modularity are recovered. Secondly, the difference in the way the two criteria use

degree correction or not [32] can also explain the disparity in the number of clusters.

While modularity is a degree-corrected criterion which downscales the weights of the

edges between highly connected vertices, the ICLex criterion for the basic stochastic

block model used here is not. Using a degree correction or not is a modelling choice

which deserves to be validated and investigated; however, it seems that even without
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Figure 4: Adjacency matrix of the network of blogs, the rows/columns are sorted by cluster number

with clusters found by the greedy ICL algorithm. The cluster boundaries are depicted with white

lines.

degree correction the results obtained by greedy icl are meaningful, the hub clusters

being interesting per se.

6. Conclusion

In this paper, we showed how an analytical expression of the integrated complete

data log likelihood could be derived using conjugate priors for the model parame-

ters, and that no asymptotic approximations were required. We then proposed a

greedy optimization algorithm to maximize this exact quantity. Starting from an

over segmented partition, the approach simplifies the model, while clustering the

vertices, until a local maximum is reached. This greedy algorithm has a competitive

complexity and may handle networks with tens of thousands of vertices. We illus-

trated on simulated data that the method improves over existing graph clustering

algorithms, both in terms of model selection and clustering of the vertices. A quali-
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Figure 5: Adjacency matrix of the network of blogs, the rows/columns are sorted by cluster number

with clusters found by modularity optimization. The clusters boundaries are depicted with white

lines.

tative comparison between methods was also carried out on an original network we

built from blogs related to illustration, comics, and animations.

We emphasize that the methodology we considered can be adapted to other

mixture models. In particular, we will investigate the case of the degree corrected

stochastic block model which have been shown to give promising results on real data.
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APPENDIX

AppendixA. Marginal distributions

Proposition AppendixA.1. The marginal distribution p(Z|K) is given by:

p(Z|K) =
C(n)

C(n0)
,

where the components of the vector n are nk = n0
k+
∑N

i=1 Zik, for all k in {1, . . . , K}

and the function C(·) is such that C(x) =
∏K

k=1 Γ(xk)

Γ(
∑K

k=1 xk)
for all x in RK.

Proof.

p(Z|α, K)p(α|K) =

(
N∏
i=1

K∏
k=1

αZik
k

)
Dir(α; n0)

=

(
K∏
k=1

α
∑N

i=1 Zik

k

)
1

C(n0)

K∏
k=1

α
n0
k−1

k

=
1

C(n0)

K∏
k=1

α
n0
k−1+

∑N
i=1 Zik

k

=
1

C(n0)

K∏
k=1

αnk−1
k ,

(A.1)

and we denote n the vector with components nk = n0
k +

∑N
i=1 Zik for all k in

{1, . . . , K}. Thus

p(Z|α, K)p(α|K) =
C(n)

C(n0)

1

C(n)

K∏
k=1

αnk−1
k

=
C(n)

C(n0)
Dir(α; n).

Therefore

p(Z|K) =

∫
α

p(Z|α, K)p(α|K)dα

=
C(n)

C(n0)

∫
α

Dir(α; n)dα

=
C(n)

C(n0)
.

Proposition AppendixA.2. The marginal distribution p(X|Z, K) is given by:

p(X|Z, K) =
K∏
k,l

B(ηkl, ζkl)

B(η0
kl, ζ

0
kl)
,
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where ηkl = η0
kl +

∑N
i 6=j ZikZjlXij and ζkl = ζ0

kl +
∑N

i 6=j ZikZjl(1−Xij) for all (k, l) in

{1, . . . , K}2. The function B(a, b) is such that B(a, b) = Γ(a)Γ(b)
Γ(a+b)

for all (a, b) in R2.

Proof.

p(X|Z,Π, K)p(Π|K) =

(
N∏
i 6=j

K∏
k,l

(
Π
Xij

kl (1− Πkl)
1−Xij

)ZikZjl

)
K∏
k,l

Beta(Πkl; η
0
kl, ζ

0
kl)

=

(
K∏
k,l

Π
∑N

i6=j ZikZjlXij

kl (1− Πkl)
∑N

i 6=j ZikZjl(1−Xij)

)

×
K∏
k,l

1

B(η0
kl, ζ

0
kl)

Π
η0kl−1

kl (1− Πkl)
ζ0kl−1

=
K∏
k,l

1

B(η0
kl, ζ

0
kl)

Π
η0kl−1+

∑N
i6=j ZikZjlXij

kl (1− Πkl)
ζ0kl−1+

∑N
i6=j ZikZjl(1−Xij)

=
K∏
k,l

1

B(η0
kl, ζ

0
kl)

Πηkl−1
kl (1− Πkl)

ζkl−1,

where ηkl = η0
kl +

∑N
i 6=j ZikZjlXij and ζkl = ζ0

kl +
∑N

i 6=j ZikZjl(1 − Xij) for all (k, l)

in {1, . . . , K}2. Thus

p(X|Z,Π, K)p(Π|K) =
K∏
k,l

B(ηkl, ζkl)

B(η0
kl, ζ

0
kl)

1

B(ηkl, ζkl)
Πηkl−1
kl (1− Πkl)

ζkl−1

=
K∏
k,l

B(ηkl, ζkl)

B(η0
kl, ζ

0
kl)

Beta(Πkl; ηkl, ζkl).

Therefore

p(X|Z, K) =

∫
Π

p(X|Z,Π, K)p(Π|K)dΠ

=

∫
Π

(
K∏
k,l

B(ηkl, ζkl)

B(η0
kl, ζ

0
kl)

Beta(Πkl; ηkl, ζkl)

)
dΠ

=
K∏
k,l

(
B(ηkl, ζkl)

B(η0
kl, ζ

0
kl)

∫
Πkl

Beta(Πkl; ηkl, ζkl)dΠkl

)

=
K∏
k,l

B(ηkl, ζkl)

B(η0
kl, ζ

0
kl)
.
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Proposition AppendixA.3. Using factorized and conjugate prior distributions

over the model parameters, the integrated complete data log likelihood is given by:

log p(X,Z|K) =
K∑
k,l

log

(
B(ηkl, ζkl)

B(η0
kl, ζ

0
kl)

)
+ log

(
C(n)

C(n0)

)
,

where

• ηkl = η0
kl +

∑N
i 6=j ZikZjlXij for all (k, l) in {1, . . . , K}2

• ζkl = ζ0
kl +

∑N
i 6=j ZikZjl(1−Xij) for all (k, l) in {1, . . . , K}2

• the components of the vector n are nk = n0
k +
∑N

i=1 Zik, for all k in {1, . . . , K}

• the function B(a, b) is such that B(a, b) = Γ(a)Γ(b)
Γ(a+b)

for all (a, b) in R2

• the function C(·) is such that C(x) =
∏K

k=1 Γ(xk)

Γ(
∑K

k=1 xk)
for all x in RK

Proof. Considering factorized prior distributions, the integrated complete data log

likelihood decomposes into two terms:

log p(X,Z|K) = log

(∫
α,Π

p(X,Z,Π,α|K)dαdΠ

)
= log

(∫
Π

p(X|Z,Π, K)p(Π|K)dΠ

∫
α

p(Z|α, K)p(α|K)dα

)
= log p(X|Z, K) + log p(Z|K).

(A.2)

Using Propositions AppendixA.1 and AppendixA.2 in (A.2) gives:

log p(X,Z|K) =
K∑
k,l

log

(
B(ηkl, ζkl)

B(η0
kl, ζ

0
kl)

)
+ log

(
C(n)

C(n0)

)
.

AppendixB. Change in ICL induced by a swap movement i : g → h

At each step of the greedy ICL algorithm, a single node i is considered. If i is

currently in cluster g, the method tests every possible label swapping g → h, that

is removing i from cluster g and assigning it to a cluster h 6= g. The corresponding

changes in the ICLex criterion are denoted ∆g→h. In order to derive the calculation

of each term ∆g→h, for all h 6= g, we consider two cluster indicator matrices Z as
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well as Ztest. Z describes the current partition of the vertices in the network, while

Ztest represents the partition after applying the swap g → h:
Ztest
j = Zj, ∀j 6= i

Ztest
ik = Zik = 0,∀k 6= g, h

while 
Ztest
ig = 0, Zig = 1

Ztest
ih = 1, Zih = 0

Thus

∆g→h = ICLex(Z
test, Ktest)− ICLex(Z, K).

Note that ∆g→h takes two forms whether cluster g is empty after removing i or not.

In the later scenario, the model dimensionality changes (Ktest = K − 1) and this

must be taken into account to evaluate the possible increase induced by the swap

movement.

AppendixB.1. Case 1 :
∑

i Z
test
ig > 0. Cluster g not empty after removing i

∆g→h = log

(
C(ntest)

C(n)

)
+

K∑
k,l

log

(
B(ηtestkl , ζ

test
kl )

B(ηkl, ζkl)

)

= log

(
Γ(ntestg )Γ(ntesth )

Γ(ng)Γ(nh)

)
+

K∑
l=1

∑
k∈{g,h}

log

(
B(ηtestkl , ζ

test
kl )

B(ηkl, ζkl)

)

+
∑

k/∈{g,h}

∑
l∈{g,h}

log

(
B(ηtestkl , ζ

test
kl )

B(ηkl, ζkl)

)

= log

(
Γ(ng − 1)Γ(nh + 1)

Γ(ng)Γ(nh)

)
+

K∑
l=1

∑
k∈{g,h}

log

(
B(ηkl + δ

(i)
kl , ζkl + ρ

(i)
kl )

B(ηkl, ζkl)

)

+
∑

k/∈{g,h}

∑
l∈{g,h}

log

(
B(ηkl + δ

(i)
kl , ζkl + ρ

(i)
kl )

B(ηkl, ζkl)

)

= log

(
nh

ng − 1

)
+

K∑
l=1

∑
k∈{g,h}

log

(
B(ηkl + δ

(i)
kl , ζkl + ρ

(i)
kl )

B(ηkl, ζkl)

)

+
∑

k/∈{g,h}

∑
l∈{g,h}

log

(
B(ηkl + δ

(i)
kl , ζkl + ρ

(i)
kl )

B(ηkl, ζkl)

)
,
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with δ
(i)
kl the changes in edges counter ηkl induced by the label swap:

δ
(i)
kl = 1{k=h}

N∑
j 6=i

ZjlXij + 1{l=h}

N∑
j 6=i

ZjkXji − 1{k=g}

N∑
j 6=i

ZjlXij

− 1{l=g}

N∑
j 6=i

ZjkXji.

Moreover, ρ
(i)
kl is defined in the following:

ρ
(i)
kl =

(
1{k=h} − 1{k=g}

)
(nl − n0

l − Zil) +
(
1{l=h} − 1{l=g}

)
(nk − n0

k − Zik)− δ
(i)
kl .

These update quantities can be computed in O(li) with li the degree of i (total

number of edges from and to i). Therefore the complexity of finding the best swap

movement for a node is O(l +K2), l for computing the δ
(i)
kl and K2 to compute the

∆swap with all the possible h labels and keep the best one.

AppendixB.2. Case 2 :
∑

i Z
test
ig = 0, cluster g disappear

In this case the dimensionality of n0 changes and we will denote by n0∗ =

(n0, . . . , n0) the corresponding vector of size K − 1.

∆g→h = log

(
C(n0)

C(n)

C(ntest)

C(n0∗)

)
+

∑
(k,l)6=g

k=h or l=h

log

(
B(ηkl + δ

(i)
kl , ζkl + ρ

(i)
kl )

B(ηkl, ζkl)

)
+

∑
k=g or l=g

log

(
B(η0

kl, ζ
0
kl)

B(ηkl, ζkl)

)

= log

(
nh
n0

Γ ((K − 1)n0) Γ(Kn0 +N)

Γ(K n0)Γ((K − 1)n0 +N)

)
+

∑
(k,l)6=g

k=h or l=h

log

(
B(ηkl + δ

(i)
kl , ζkl + ρ

(i)
kl )

B(ηkl, ζkl)

)
+

∑
k=g or l=g

log

(
B(η0

kl, ζ
0
kl)

B(ηkl, ζkl)

)

the complexity in this case is the same as previously i.e. O(l +K2).
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AppendixC. Change in ICL induced by a merge movement

∆g∪h = log

(
C(n0)

C(n)

C(ntest)

C(n0∗)

)
+

∑
(k,l)6=g

k=h or l=h

log

(
B(ηkl + δ

(i)
kl , ζkl + ρ

(i)
kl )

B(ηkl, ζkl)

)
+

∑
k=g or l=g

log

(
B(η0

kl, ζ
0
kl)

B(ηkl, ζkl)

)

= log

(
Γ(n0)

Γ ((K − 1)n0) Γ(Kn0 +N)

Γ(K n0)Γ((K − 1)n0 +N)

Γ(nh + ng − n0)

Γ(ng)Γ(nh)

)
+

∑
(k,l)6=g

k=h or l=h

log

(
B(ηkl + δ

(i)
kl , ζkl + ρ

(i)
kl )

B(ηkl, ζkl)

)
+

∑
k=g or l=g

log

(
B(η0

kl, ζ
0
kl)

B(ηkl, ζkl)

)

with δ
(i)
kl the changes in edges counter ηkl induced by the merge:

δ
(i)
kl = 1{k=h}(ηgl − η0

gl) + 1{l=h}(ηkg − η0
kg) + 1{k=h and l=h}(ηgg − η0

gg). (C.1)

Moreover, ρ
(i)
kl is defined in the following:

ρ
(i)
kl = 1{k=h}(ζgl − ζ0

gl) + 1{l=h}(ζkg − ζ0
kg) + 1{k=h and l=h}(ζgg − ζ0

gg). (C.2)
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