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Mixed-state spatio-temporal auto-models

C. Hardouin◦, T. Crivelli•

Abstract

We consider in this paper a general modelling for mixed-state data.
Such data consist of two components of different types: the observations
record many zeros, together with continuous real values. They occur in
many application fields, like rainfall measures, or motion analysis from im-
age sequences. The aim of this work is to present ad hoc spatio-temporal
models for these kinds of data. We present a Markov Chain of Markov
fields modelling, the Markovian fields being defined as mixed-state auto-
models, whose local conditional distributions belong to an exponential
family and the observations derive from mixed-states variables. Some
specific examples are given as well as some preliminary experiments.

◦ SAMM, Université Paris 1, 90 rue de Tolbiac, 75634 Paris Cedex 13, France
• Faculty of Engeneering, University of Buenos Aires, Argentina.
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1 Introduction

This paper is devoted to the study of spatio-temporal data of dual nature, the
data being made of both continuous and discrete values. There is a large variety
of domains where we can observe such phenomenon. For instance, pluviometry
series often consist of rainfall values during some periods, followed by zeros
when the rain is absent ([1]). In the epidemiological context, we collect positive
values when the disease spreads out, and then zeros when it disappears. We
can think also of differences of some data, temperatures for instance, or motion
measurements from video sequences. We are interested in the modelling of such
temporal data, collected on a lattice, and whose main characteristic is the double
feature (discrete/continuous) of its values.

We can find in the literature various attempts involving hierarchical con-
struction. They consider a latent process, which is inherently unobservable,
and needs computational supplementary efforts to be restored. Our approach is
different; we propose a direct modelling, including simultaneously the discrete
and continuous components of the data. The main idea is to consider a tempo-
ral Markov chain of spatial Markov fields, the latter accounting for the mixed
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feature of the data. More precisely, we take for those random fields mixed-state
auto-models presented in [11].

In section 2 we define mixed-state variables and then turn out to the temporal
dynamics on mixed-state Markovian fields; we crucially use some results given in
[12] and [11], that concern the building of spatial multi-parameter auto-models.
The general Markov Chain of Markov Fields dynamics is thoroughly described
in [10].

We consider in section 3 the example of a mixed auto-exponential dynam-
ics, the observations belonging to a mixed-state space E = {0}∪]0,∞[, with
an exponential distribution on the positive part; we explore the properties of
this model, especially ergodicity. A mixed auto-normal dynamics is studied
in section 4; after the study of its general properties, we apply the model to
motion texture modelling; the method achieves good performances for further
recognition, segmentation and tracking.

2 Mixed-state spatio-temporal modelling

Let us define what we call “mixed-state” random variables, defined on a “mixed-
state space” E. In the pure spatial context, Besag ([2]) defined auto-models as
particular Markovian random fields on a finite lattice; roughly speaking, they
rely on two main assumptions, that is, each local conditional density belongs
to an exponential family, and interactions between sites rely on pairwise depen-
dence. The concept has been extended to the multivariate case by [12]. Then it
made possible to define auto-models on a lattice for mixed-state observations,
see [11]. We consider now the spatio-temporal framework, adding a temporal
dynamics over the spatial scheme. We consider a Markov chain in time, of
Markov fields in space, those fields being defined in an analogous way to the
auto-models for mixed-state observations of [11].

2.1 Random variables with mixed states

Random variables with mixed states have been first introduced in [12] and de-
veloped in [11]. We present the results in the context of the mixed-state space
E = {0} ∪ (0,∞), but they hold equally for a general state space E = F ∪ G,
where F = {e1, ..., eM} and G is a subset of R

p (see [11]). Of course, E can be
written E = [0,∞[ but the previous writing points out the dual feature of the
measurements. E is equipped with a “mixed” reference measure

m(dx) = δ0(dx) + λ(dx) ,

where δ0 is the Dirac measure at 0 and λ the Lebesgue measure on (0,∞).
Any random variable X taking its values in E is called a mixed-state random

variable; such a variable arises from the following construction: with probability
γ ∈]0, 1[ we set X = 0; otherwise X is distributed with a continuous probability
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density function g on ]0,∞[. We now make an essential assumption on this
density, that is it belongs to an s−dimensional exponential family:

gξ(x) = H(ξ)L(x) exp〈ξ, T (x)〉 , ξ ∈ R
s , T (x) ∈ R

s

where 〈, 〉 denotes the scalar product in R
l.

We define δ∗(x) = 1 − 1{0}(x). Then we write X’s probability density
function as follows, with respect to m(dx):

fθ(x) = γδ(x) + (1 − γ)δ∗(x)gξ(x)

= exp{δ∗(x) ln
(1 − γ)H(ξ)

γ
+ 〈ξ, T (x)δ∗(x)〉 + ln γ + δ∗(x) ln L(x)}

= H ′(θ)L′(x) exp〈θ,B(x)〉 (1)

with H ′(θ) = γ, L′(x) = exp{δ∗(x) ln L(x)}.
From 1, fθ also belongs to an exponential family, of dimension s + 1, where

the canonical parameter and the sufficient statistics are respectively defined by

θ =
(

θ1

θ2

)
=

(
ln (1−γ)H(ξ)

γ

ξ

)
, B(x) =

(
δ∗(x)

δ∗(x)T (x)

)
.

Moreover the original parameters ξ and γ can be recovered from θ by

ξ = θ2 , γ =
H(θ2)

H(θ2) + eθ1
.

Let us note that the use of δ∗ ensures the normalization equality B(0) = 0,
which will be of interest subsequently.

As a simple example, if we consider the exponential density function on
]0,∞[, gξ(x) = gλ(x) = λ exp(−λx), with λ > 0, then (1) reduces to fθ(x) =
H ′(θ) exp〈θ,B(x)〉 with

θ =

(
ln (1−γ)λ

γ

λ

)
, B(x) =

(
δ∗(x)

−xδ∗(x)

)
.

Let us now consider the Gaussian case on E = {0} ∪ R, gξ(x) = gm,σ(x) =
1√
2πσ

exp− (x−m)2

2σ2 , then fθ(x) = H ′(θ) exp〈θ,B(x)〉 with

θ =

⎛
⎝ ln (1−γ)gμ,σ(0)

γ
1

2σ2
m
σ2

⎞
⎠ , B(x) =

⎛
⎝ δ∗(x)

−x2δ∗(x)
xδ∗(x)

⎞
⎠ .

For other examples and general construction of mixed-state random variables,
we refer the reader to [11].
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2.2 Markov chain dynamics for mixed-state auto-models

Let us consider the spatio-temporal scheme. The idea is to build a temporal
dynamics on spatial fields. We use the general Markov Chain of Markov Field
modelling given in [10] on one hand, and suited spatial auto-models for mixed-
state observations described in [11] on the other hand.

Let us precise the settings. Let S be a finite set of sites. X = {X(t), t ∈ N
∗}

is a Markov chain on ES (equipped with the product measure m⊗S). Each
X(t) = {Xi(t), i ∈ S} is, conditionally to the past, a Markov random field on
S; more precisely, X(t) is a mixed-state auto-model,with Xi(t) ∈ E.

Let us introduce the following notations. We denote xA = {xi, i ∈ A} and
xA = {xj , j /∈ A}. We shall write xi (resp. xi) for x{i} (resp. x{i}). Finally, we
use the notation Xi(t) = yi for the variable at site i at the present time t, and
Xi(t − 1) = xi for the variable at site i at the past time t − 1.

Our model is defined as follows:

[B1] X = {X(t), t ∈ N
∗} is an homogeneous Markov chain (of order one) on

ES .

We assume that the transition probability measure of X has a positive den-
sity P (x, y) with respect to m⊗S , which verifies:

P (x, y) = Z−1(x) exp Q(y | x) (2)

where Z(x) =
∫

ES exp Q(y | x) m⊗S(dy) < ∞.

[B2] Conditionally to the past, the instantaneous dependence is pairwise only:

Q(y | x) =
∑
i∈S

Gi(yi | x) +
∑
{i,j}

Gij(yi, yj | x) .

with, almost surely in x, Gi(0 | x) = Gij(0, yj | x) = Gij(yi, 0 | x) = 0 for
all i ∈ S, j ∈ S.

[B3] For each i, conditionally to (Xi(t) = yi , X(t − 1) = x), the distribution
of Xi(t) is a mixed-state distribution defined in (1).

ln fi(yi | yi, x) = 〈θi(yi, x), Bi(yi)〉 + Ci(yi) + Di(yi, x) (3)

with θi(yi, x) ∈ R
d, Bi(yi) ∈ R

d and the identifiability conditions Bi(0) =
Ci(0) = 0 for all i ∈ S.

[B4] For all i ∈ S, Span {Bi(yi), yi ∈ E} = R
d.

Equation (2) in assumption [B1] defines the temporal dynamics, and states
also the so called positivity condition; the Hammersley-Clifford’s Theorem gives
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then a characterization of P by an energy Q equal to a sum of potentials G
defined on a set of cliques.

Assumptions [B2] and [B3] set the spatial auto-model, i.e. the pairwise
only dependence (with identifiability conditions), and distribution relying in an
exponential family. Assumption [B4] is a regularity condition necessary to define
multivariate auto-models (see [12]). Thus, [B2], [B3] and [B4] define the spatial
mixed-state auto-model, conditionally to the past; adding [B1] completes the
spatio-temporal modelling. We refer the reader to the references for details.

We derive the explicit form of the joint distribution, conditionally to the
past.

Proposition 1 Let us assume that the Markov chain X satisfies assumption
[B1], and the random field probability distribution and its energy Q(y | x) satisfy
[B2], [B3], and [B4]. Then, conditionally to X(t − 1) = x, there exists a fam-
ily of d-dimensional vectors {αi(x), i ∈ S} and a family of d × d matrices
{βij(x), i, j ∈ S, i �= j} verifying βij(x) = βij(x)T such that

θi(yi, x) = αi(x) +
∑

j:{i,j}
βij(x)Bj(yj)

Consequently the set of potentials is given by

Gi(yi | x) = 〈αi(x), Bi(yi)〉 + Ci(yi)

Gij(yi, yj | x) = Bi(yi)T βij(x)Bj(yj)

This result ensures directly from the spatial auto-model feature (see [11] and
[10]). It holds for all conditional distribution lying in the exponential family,
and is not specific for mixed-state distributions. It gives the necessary form of
the local canonical parameters and the potentials to ensure the compatibility
of the conditional distributions in order to reconstruct the (conditional to the
past) global energy.

We can see from the writing above that the conditional energy Q is linked to
two families of potentials; here we have a semi-causal representation associated
to a double graph G = {G,G−} where G and G− depict respectively the time-
instantaneous and time-delay dependencies. 〈i, j〉G holds for 〈(t, i), (t, j)〉G, i.e.
the sites i and j are neighbours at the same time, while 〈i, j〉G− means 〈(t −
1, i), (t, j)〉G, that is i belongs to the past neighbourhood of j. The instantaneous
graph G is symmetric while G− is a directed graph. Then, a site i has two
neighbourhoods which we denote by ∂i = {j ∈ S \ {i} : 〈i, j〉G} and ∂i− = {j ∈
S : 〈j, i〉G−}.

The general framework above contains a large variety of possible models.
Indeed the different models are depicted by the choices for the functions α and β;
these functions describe both past interactions and instantaneous dependencies;
their form is free, subject to the integrability of expQ(y | x).

We turn to the examination of two examples; first, we consider a dynamics
associated to a mixed exponential auto-model on E = {0} ∪ (0,∞). We next
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look for the Gaussian case on E = {0}∪R. For each example, we give conditions
for the well-definiteness of the model, and investigate their properties, especially
ergodicity.

3 The mixed auto-exponential dynamics

Let us now specify assumption [B3]. The state space is E = {0} ∪ (0,∞). For
each i, conditionally to (Xi(t) = yi , X(t − 1) = x), the distribution of Xi(t)
is a mixed exponential distribution defined as follows; Xi(t) = 0 with proba-
bility γi(yi, x) , else Xi(t) follows an exponential distribution with parameter
λi(yi, x) > 0. The probability density function of Xi(t) (given X(t − 1) = x) is

ln fi(yi | yi, x) = 〈θi(yi, x), Bi(yi)〉 + Di(yi, x) (4)

where

θi(yi, x) =

(
ln (1−γi(y

i,x))λi(y
i,x)

γi(yi,x)

λi(yi, x)

)
, B(y) =

(
δ∗(y)

−yδ∗(y)

)
.

We verify that Bi(0) = 0 for all i ∈ S. Let us note that the contributions
of yi and x in the expressions above are in fact restricted to y∂i and x∂i− .

Then, from Proposition 1, and conditionally to X(t − 1) = x, there exist a

family αi(x) = (ai(x), bi(x))t , and a family of matrices βij(x) =
(

cij(x) dij(x)
fij(x) eij(x)

)
verifying cij(•) = cji(•) , eij(•) = eji(•) and fij(•) = dji(•) such that we write
the global energy as:

Q(y | x) =
∑
i∈S

{ai(x)δ∗(yi) − bi(x)yi} (5)

+
∑

(i,j):〈i,j〉
{cij(x)δ∗(yi)δ∗(yj) − dij(x)yjδ

∗(yi) − fij(x)yiδ
∗(yj) + eij(x)yiyj}

We also have the writing of the canonical parameters:

θ1,i(yi, x) = ai(x) +
∑

j:{i,j}
{cij(x)δ∗(yj) − dij(x)yj}

θ2,i(yi, x) = bi(x) +
∑

j:{i,j}
{fij(x)δ∗(yj) − eij(x)yj}

with the one to one correspondence:

λi(yi, x) = θ2,i(yi, x) , γi(yi, x) =
θ2,i(yi, x)

θ2,i(yi, x) + eθ1,i(yi,x)
(6)

The model is well defined if for all i, x, y, λi(yi, x) > 0, γi(yi, x) ∈]0, 1[ and
if the energy is integrable:

∫
ES exp Q(y | x) m⊗S(dy) < ∞. We set the following

conditions:
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(A) (i) For all i ∈ S, for any subset A ⊂ S and any x, bi(x)+
∑

j∈A fij(x) > 0.

(ii) For all {i, j} ∈ S, and any x, eij(x) ≤ 0.

Under the set of assumptions (A), any exponential parameter λi(yi, x) is
strictly positive (ensuring γi(yi, x) ∈]0, 1[); and this also ensures the integrability
of the energy (see Proposition 1 of [11]).

Example
Let us specify more precisely the model, i.e. we explicit the families αi(x)

and βij(x). A simple model is to take linear functions for the αi(•). In order
to keep the model parsimonious (minding about future estimation), we choose
constants for the βij(•). Moreover, we choose to reflect the dual nature of the
variables in the past featuring, introducing both xl and δ	(xl) for xl ∈ ∂i−, and
a kind of pairwise dependence, but keeping the interactions only on pairs of the
same feature, and we eliminate the interactions of type yiδ

∗(xl). This leads us
to consider αi(x) = (ai(x), bi(x))t with

ai(x) = ai +
∑

l∈∂i− αliδ
∗(xl)

bi(x) = bi +
∑

l∈∂i− εlixl

and βij(x) = βij =
(

cij 0
0 eij

)
.

Conditionally to the past, the energy’s writing becomes
Q(y | x) =

∑
i∈S

(
ai +

∑
l∈∂i− αliδ

∗(xl)
)
δ∗(yi)−

∑
i∈S

(
bi +

∑
l∈∂i− εlixl

)
yi+∑

(i,j):〈i,j〉 {cijδ
∗(yi)δ∗(yj) + eijyiyj} .

Conditions (A) become: for all i ∈ S, and any subset A ⊂ S and any
x, bi +

∑
l∈A εlixl > 0 and for all {i, j} ∈ S, eij ≤ 0.

Ergodicity of the dynamics
Let us come back to the general mixed exponential model. We add the

following conditions:

(E) (i) For all i, j ∈ S, the functions ai, bi, cij , dij , eij are continuous.

(ii) There exists η > 0, such that for all x ∈ ES , for all i, j ∈ S, bi(x) +∑
j∈A fij(x) > η.

Proposition 2 Under assumptions (A) and (E), the mixed auto-exponential
dynamics is positive recurrent. Furthermore, we have the following law of large
numbers: denoting by μ the chain’s invariant measure, for any function ϕ which
is μ−a.s. continuous, and such that |ϕ| ≤ aVr + b with Vr(y) =

∑
i∈S yr

i ,
a and b some constants, and r any positive integer, we have the convergence

1
n+1

∑n
k=0 ϕ(Xk) −→ μ(ϕ) a.s.

Proof :
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We follow the proof of Proposition 3 of [10] based on the Lyapunov Stability
Criterion, see [7], 6.2.2.

- From assumption (E)(ii), we can bound the energy Q(y | x) ≤∑i∈S ai(x)+∑
i,j∈S cij(x) − η

∑
i∈S yi ; thus exp Q(y | x) is y−integrable and the chain is

strongly Feller.
- Since we assumed that P is strictly positive, the chain is irreducible and

there exists at most one invariant probability distribution (see [7], Proposition
6.1.9).

- The third and last step is to provide the Lyapunov function.
If Z is a mixed exponential variable with a probability density function

density f(z) = γδ(z) + (1 − γ)δ∗(z)λ exp(−λz) (with λ > 0), then E[Z] =
E[Z 1Z>0] = (1 − γ)

∫∞
0

λ exp(−λz)dz = (1 − γ)λ−1.
In a same way, for any positive integer r, E[Zr] = E[Zr 1Z>0] = (1 −

γ)Γ(r+1)
λr . We deduce that E[Xi(t)r | yi, x] = (1 − γi(yi, x)) Γ(r+1)

θ2,i(yi,x)r ≤ Γ(r+1)
ηr .

Finally, we take V (y) = Vr(y) =
∑

i∈S yr
i as for the Lyapunov function and

we get

E[V (X(t)) | X(t − 1)] ≤ Γ(r + 1)
ηr

× n

which is finite. Applying the Lyapunov stability criterion achieves the proof.

Coming back to the example, conditions (A)+(E) reduce to: there exists η >
0, such that for all x ∈ ES , any subset A ⊂ S, for all i, j ∈ S, bi+

∑
l∈A εlixl > η

and eij ≤ 0.

4 The mixed auto-normal dynamics

4.1 The general case

Let us consider now the Gaussian case; for each i, conditionally to (Xi(t) =
yi , X(t− 1) = x), the distribution of Xi(t) ∈ E = {0}∪R is a mixed Gaussian
distribution with mean mi(yi, x) and variance σ2

i (yi, x) depending on the past
and instantaneous neighbouring values. Then its probability density function
with respect to m(dx) = δ0(dx) + λ(dx) (where λ is the Lebesgue measure on
R now) verifies:

ln fi(yi | yi, x) = 〈θi(yi, x), Bi(yi)〉 + Di(yi, x) (7)

where

θi(yi, x) =

⎛
⎜⎜⎝

ln (1−γi(y
i,x))gi(0;y

i,x)
γi(yi,x)

1
2σ2

i (yi,x)
mi(yi,x)
σ2

i (yi,x)

⎞
⎟⎟⎠ , B(y) =

⎛
⎝ δ∗(y)

−y2δ∗(y)
yδ∗(y)

⎞
⎠ .

with g(0; •) = 1√
2πσ(•) exp− m2(•)

2σ2(•) .
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As previously, Bi(0) = 0 for all i ∈ S , and yi and x hint at y∂i and x∂i− .
Then, from Proposition 1, conditionally to X(t−1) = x, there exist a family

αi(x) = (ai(x), bi(x), ci(x))t , and a family of matrices βij(x) =

⎛
⎝ eij(x) d1

ij(x) d2
ij(x)

f1
ij(x) hij(x) d3

ij(x)
f2

ij(x) f3
ij(x) kij(x)

⎞
⎠

verifying eij(•) = eji(•) , hij(•) = hji(•), kij(•) = kji(•),and fq
ij(•) =

dq
ji(•) for q = 1, 2, 3 such that we can write the global energy as:

Q(y | x) =
∑
i∈S

{
ai(x)δ∗(yi) − bi(x)y2

i + ci(x)yi

}
+

∑
(i,j):〈i,j〉

Bi(yi)T βij(x)Bj(yj)

We also have the writing of the canonical parameters:

θ1,i(yi, x) = ai(x) +
∑

j:{i,j}

{
eij(x)δ∗(yj) − d1

ij(x)y2
j + d2

ij(x)yj

}

θ2,i(yi, x) = bi(x) +
∑

j:{i,j}

{
f1

ij(x)δ∗(yj) − hij(x)y2
j + d3

ij(x)yj)
}

θ3,i(yi, x) = ci(x) +
∑

j:{i,j}

{
f2

ij(x)δ∗(yj) − f3
ij(x)y2

j + kij(x)yj

}
and the one to one correspondence:

mi(yi, x) =
θ3,i(yi, x)
2θ2,i(yi, x)

, σ2
i (yi, x) =

1
2θ2,i(yi, x)

, (8)

and γi(yi, x) =

[
1 +
√

π/θ2,i(yi, x) exp

{
θ2
3,i(y

i, x)
4θ2,i(yi, x)

+ θ1,i(yi, x)

}]−1

(9)

This model is well defined provided that θ2,i(yi, x) > 0 and the energy is
integrable, that is

∫
ES expQ(y | x) m⊗S(dy) < ∞. Under these assumptions, it

is ergodic.

Proposition 3 Let us assume that the mixed auto-normal dynamics is well
defined. It is positive recurrent and we have the following law of large num-
bers: denoting by μ the chain’s invariant measure, for any function ϕ which
is μ−a.s. continuous, and such that |ϕ| ≤ aVr + b with Vr(y) =

∑
i∈S yr

i ,
a and b some constants, and r any positive integer, we have the convergence

1
n+1

∑n
k=0 ϕ(Xk) −→ μ(ϕ) a.s.

Proof: we follow the proof of Proposition 2. For Z a mixed Gaussian
variable, E[Z] = E[Z 1Z �=0] = (1 − γ)m where m is the mean of the Gaussian
part of the variable. Analogously, since a Gaussian variable has moments of any
order, all the moments E[Zr] exist, for any positive integer r. Then the mixed
auto-normal dynamics is positive recurrent.

Due to the complexity of the general model (8) above, one has to specify his
model according to the data, and derive particular conditions to ensure the well
definiteness.
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4.2 An example

We suppose that the mean is a weighted average of the neighbours and the
variance is considered constant, at least not depending on the neighbours. This
is a reasonable assumption; for instance, in the context of homogeneous textures,
the variability does not depend on the neighbours but is constant.

Furthermore, as for the auto-exponential scheme, we think of considering
pairwise interactions between ”similar” states, and eliminate interactions such
as xk

l y2
i or yk

i y2
j , k = 1, 2. Then we consider vectors αi(x) = (ai(x), bi, ci(x))t

with ai(x) = ai +
∑

l∈∂i− αliδ
∗(xl) and ci(x) = ci +

∑
l∈∂i− εlixl, and matrices

βij(x) =

⎛
⎝ eij 0 0

0 0 0
0 0 kij

⎞
⎠ which determine the following writings:

θ1,i(yi, x) = ai +
∑

l∈∂i−
αliδ

∗(xl) +
∑

j:{i,j}
eijδ

∗(yj)

θ2,i(yi, x) = bi

θ3,i(yi, x) = ci +
∑

l∈∂i−
εlixl +

∑
j∈∂i

kijyj

and lead to

mi(yi, x) =
1

2bi

⎡
⎣ci +

∑
l∈∂i−

εlixl +
∑
j∈∂i

kijyj

⎤
⎦ , σ2

i (yi, x) = σ2
i =

1
2bi

, (10)

γi(yi, x) =

⎡
⎣1 + σi

√
2π exp

⎧⎨
⎩ai +

∑
l∈∂i−

αliδ
∗(xl) +

∑
j:{i,j}

eijδ
∗(yj) +

m2
i (y

i, x)
2σ2

i

⎫⎬
⎭
⎤
⎦
−1

(11)
Finally, we can write the conditional energy as:

Q(y | x) =
∑
i∈S

(
(ai +

∑
l∈∂i−

αliδ
∗(xl))δ∗(yi) − biy

2
i + (ci +

∑
l∈∂i−

εlixl)yi

)
(12)

+
∑

(i,j):〈i,j〉
(eijδ

∗(yi)δ∗(yj) + kijyiyj)

Admissibility and ergodicity
The model (12) is well defined if each variance is strictly positive and if the

conditional energy is integrable. The following condition (AG) ensures the well
definiteness of the model.

(AG) For all i ∈ S, bi > 1
2

∑
j:j �=i |kij |.

Proposition 4 Under assumption (AG), the mixed auto-normal dynamics is
well defined (and ergodic).

10



Proof: First, we note that (AG) trivially implies bi > 0 and each variance
is therefore positive.

Let us write the energy as a sum of a discrete and a continuous components:
Q(y | x) = Q∗(y | x) + Qc(y | x) with

Q∗(y | x) =
∑
i∈S

(
(ai +

∑
l∈∂i−

αliδ
∗(xl))δ∗(yi)

)
+

∑
(i,j):〈i,j〉

eijδ
∗(yi)δ∗(yj)

Qc(y | x) =
∑
i∈S

(
−biy

2
i + (ci +

∑
l∈∂i−

εlixl)yi

)
+

∑
(i,j):〈i,j〉

kijyiyj . (13)

Obviously, the energy Q is integrable if Qc is also. But exp Qc is propor-
tional to a transition probability P c(zt−1, zt) for which Zi(t) given (Z(t − 1) =
zt−1, Z

i(t) = zi
t) is normally distributed with mean and variance

mi(yi, x) =
(
ci +

∑
l∈∂i− εlizt−1,l +

∑
,j:〈i,j〉 kij

)
/2bi , σ2

i (yi, x) = 1
2bi

.

Hence the model is well defined if for all i, j ∈ S, bi > 0, kij = kji such that
the matrix Δ = (Δij) defined by Δii = 2bi and Δij = kij is definite positive.
From the Geršgorin theorem (see for example [8]), the eigenvalues of Δ belong
to ∪iDi where Di = {z ∈ C : |z − 2bi| ≤

∑
j:j �=i |kij |}. Then condition (AG)

implies that Δ’s eigenvalues are positive.

Cooperation and parameters influence
We say that a model is spatially cooperative (resp. competitive) if, at each

i, E[Xi(t) | yi, x] is non decreasing (resp. non increasing) in each neighbouring
value yj or xl, and is increasing (resp. decreasing) in at least one. Therefore,
we study E[Xi(t) | yi, x] = (1 − γi(yi, x))E[Xi(t) | Xi(t) �= 0, yi, x] = (1 −
γi(yi, x)) × mi(yi, x).

Then, the model is spatially cooperative if for all i, j, l, εli ≥ 0, kij ≥ 0;
Moreover, if for all i, j, l, αli ≥ 0, eij ≥ 0, then γi(yi, x) is decreasing with

respect to these parameters.

5 Application

We consider temporal textures. We think of dynamic video contents displayed
by natural scenes such as rivers, smoke, or trees. We consider them as textures in
motion. Their study is important for many applications, fire or smoke detection
for instance. Such motion maps exhibit values of two types, zeros when the
motion is absent together with non null continuous values. Therefore, mixed-
state auto-models dynamics are good candidates for the modelling. Let us define

V⊥
i (t) = −

∂Ii(t)
∂t

‖∇Ii(t)‖
∇Ii(t)
‖∇Ii(t)‖ (14)

where Ii(t) is the pixel intensity at time t and location i, ∂Ii(t)
∂t is approximated

by Ii(t)−Ii(t−1), and ∇Ii(t) the spatial intensity gradient at location i = (xi, yi)

11



on the grid (the i−th coordinate of the vector (∂I(t)
∂x , ∂I(t)

∂y )). First we compute
(14) for each image point, using two consecutive frames of the sequence. Then,
we take a weighted average of V⊥

i (t) on a small window centered in i; finally
we search for a model for the scalar motion observation at site i and time t
described by

xi(t) =

∑
j∈W

V⊥
i (t) ‖∇Ij(t)‖2

max

( ∑
j∈W

‖∇Ij(t)‖2, η2

) × ∇Ii(t)
‖∇Ii(t)‖ (15)

where η2 is a regularization constant related to noise. We refer the reader to [5]
for more details about the construction of (15). Let us note that xi(t) ∈ R.

We present in Figure 1 some examples of issued maps and mixed histograms
obtained for such dynamic textures. The top row present some natural scenes:
grass, steam and river. Below are the corresponding motion textures which are
to be modelled; these motion maps are based on normal flow computation (14)
and obtained using two consecutive frames of the sequence. The bottom row
displays the corresponding histograms. We clearly see the two components of
the data, with a peak on zero featuring the discrete null value together with a
continuous distribution.

Looking at the histograms of Figure 1, we are interested to fit the mixed
auto-normal dynamics model (12). Precisely, X(t) = {Xi(t), i ∈ S} represents
the motion texture at time t on S = {1, ...N}, the spatial lattice of pixel loca-
tions, and each Xi(t) is assumed to be a mixed Gaussian variable. We study a
causal temporal model, and we assume spatial conditional independence within
a motion texture at time t; this means that we do not involve the instantaneous
neighbourhood in the model (but xi(t) and xj(t) are still spatially correlated).
Next, we assume that the temporal neighbourhood of a site i is a nine-point
set which consists of i (at time t− 1), and its 8 nearest neighbours on the grid.
Finally we assume translation invariance, and spatial symmetry (βij = βT

ji) but
possible anisotropy between the four directions (horizontal, vertical, diagonal
and anti diagonal).

From these assumptions, the mixed Gaussian distribution is characterized
by its mean mi(yi, x), variance σ2

i (yi, x), and probability of null value given by

mi(yi, x) = mi(x) =
1
2b

[
c +

∑
l∈∂i−

εlxl

]
, σ2

i (yi, x) = σ2 =
1
2b

, (16)

γi(yi, x) = γi(x) =

[
1 + σ

√
2π exp

{
a +

∑
l∈∂i−

αlδ
∗(xl) +

m2
i (x)
2σ2

}]−1

(17)

The conditional energy is:
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Figure 1: Top row: Sample images from dynamics textures (grass, steam, river).
Middle: motion textures. Bottom: motion histograms

Q(y | x) =
∑
i∈S

(
(a +

∑
l∈∂i−

αlδ
∗(xl))δ∗(yi) − by2

i + (c +
∑

l∈∂i−
εlxl)yi

)
. (18)

This leads to estimate a set of 13 parameters φ = (a, b, c, {εl}, {αl}).
As usual in spatial statistics, since the normalizing constant of the likelihood

is intractable, we consider the conditional pseudo-likelihood introduced by Be-
sag ([2]). In the absence of strong dependency, this method has good asymptotic
properties, with the same rate of convergence as the maximum likelihood es-
timator. Let φ0 be the true value of the parameter, and P0 the associated
transition. We suppose φ0 belongs to the interior of Φ, a compact subset of R

d.
We define the maximum pseudo-likelihood estimator by

φ̂T = arg min
φ∈Φ

UT (φ)

where UT (φ) = − 1
T

T∑
t=1

∑
i∈S

ln fi(yi | yi, x;φ)

13



General conditions for the consistency and asymptotic normality for this
estimator can be found in [10]. Roughly speaking, the goodness of the estimation
follows from the temporal ergodicity, joined with the weak dependency of the
Markov chain, and the fact that the pseudo-likelihood is a nice and regular
functional to identify the model.

Practically, we use a gradient descent technique for the optimization as the
derivatives of U are known in closed form. We give in Table 1 estimated pa-
rameters for the three motion textures presented in Figure 1. The estimation is
made over a temporal window of five motion textures (i.e T=5, obtained from
6 images).

a b c αC εc αH εH

Grass −2.3800 3.4294 −0.0336 0.3000 0.0816 0.2670 0.1523
Steam −1.8900 0.0598 −0.0226 0.1810 −0.000813 0.2510 −0.00288
River −2.1000 1.0200 −0.0708 0.1270 0.0586 0.2480 0.1740

αV εV αD εD αAD εAD

Grass 0.3260 0.5707 0.4720 0.5158 0.4790 0.0409
Steam 0.1290 −0.00169 0.1940 −0.00295 0.2080 −0.00281
River 0.2430 0.1230 0.3160 0.1561 0.4350 0.3240

Table 1: Parameter estimates φ for three different types of motion textures;
for parameters α and ε, the subscripts stand for the position of the neighbour
sites (in the past) C: center, H: horizontal, V: vertical, D: diagonal, AD: anti-
diagonal.

Let us make some comments on these results. Coming back to the coop-
eration or competition behaviour, we can see here that for the grass and river
motion textures, the mean mi(x) is an increasing function of x, while for the
steam motion texture, the parameters ε are negative, but very close to zero.
On the other hand, the probability of null value γi(x) is in all cases decreasing,
since the parameters α are all positive. Therefore, there is a cooperative sys-
tem influence for grass and river motion textures. It is more difficult to state
a cooperative or competitive influence in the case of the steam motion texture,
though, since parameters ε are hardly non null, maybe there is an advantage to
cooperation.

This model has been used successfully for motion textures recognition, and
tracking, see [6] for the complete study; first, a motion texture class (fire, smoke,
crowd, grass) is learned and defined through parameter estimation. For instance
we give in Table 2 estimates for two different sets of frames of the same motion
texture, obtained from grass. This is useful for textures classification. This clas-
sification is achieved using a Kullback-Leibler divergence as a distance between
two densities, see [6] for full details. For 10 different classes, motion textures
were well identified with a rate of about 90. Furthermore, motion tracking can
be done, still using the Kullback-Leibler divergence to identify the next location
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of the motion texture. The results obtained are very encouraging, showing a
good performance of the method.

a b c αC εc αH εH

Grass 1 −2.3800 3.4294 −0.0336 0.3000 0.0816 0.2670 0.1523
Grass 2 −2.2500 3.3300 −0.106 0.382 0.197 0.292 0.0615

αV εV αD εD αAD εAD

Grass 1 0.3260 0.5707 0.4720 0.5158 0.4790 0.0409
Grass 2 0.3230 0.4050 0.3930 0.3230 0.3940 0.1530

Table 2: Parameter estimates φ for two grass motion textures.
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