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Abstract

A well-known problem in Malliavin calculus concerns the relation between
the determinant of the Malliavin matrix of a random vector and the determi-
nant of its covariance matrix. We give an explicit relation between these two
determinants for couples of random vectors of multiple integrals. In particu-
lar, if the multiple integrals are of the same order and this order is at most 4,
we prove that two random variables in the same Wiener chaos either admit a
joint density, either are proportional and that the result is not true for random
variables in Wiener chaoses of different orders.
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1 Introduction

The original motivation of the Malliavin calculus was to study the existence and
the regularity of the densities of random variables. In this research direction, the
determinant of the so-callled Malliavin matrix plays a crucial role.

We give here an explicit formula that connects the determinant of the Malliavin
matrix and the determinant of the covariance matrix of a couple of multiple stochastic
integrals. This is related to two open problems stated in [1]. In this reference, the
authors showed that, if F' = (F, .., F;) is a random vector whose components belong
to a finite sum of Wiener chaoses, then the law of F' is not absolutely continuous
with respect to the Lebesque measure if and only if E'det A = 0. Here A denotes the
Malliavin matrix of the vector F'. In particular, they proved that a couple of multiple
integrals of order 2 either admits a density or its components are proportional.

They stated two open questions (Questions 6.1 and 6.2 in [1], arXiv version):
if C is the covariance matrix and A the Malliavin matrix of a vector of multiple
stochastic integrals,

e is there true that F det A > cdet C', with ¢ > 0 an universal constant?

e is there true that the law of a vector of multiple integrals with components in the
same Wiener chaos is either absolutely continuous with respect to the Lesque
measure or its components are proportional?

We make a first step in order to answer to these two open problems. Actually,
we find an explicit relation that connects the two determinants. In particular, if the
multiple integrals are of the same order and this order is at most 4, we prove that
two random variables in the same Wiener chaos either admit a joint density, either
are proportional. The basic idea is to write the Malliavin matrix as a sum of squares
and to compute the dominant term of its determinant.

We organized our paper as follows. Section 2 contains some preliminaries
on analysis on Wiener chaos. Section 3 is devoted to express the Malliavin matrix
as the sum of the squares of some random variables and in Section 4 we derive an
explicit formula for the determinant of A which also involves the determinant of the
covariance matrix. In Section 5 we discuss the existence of the joint density of a
vector of multiple integrals.

2 Preliminaries

We briefly describe the tools from the analysis on Wiener space that we will need
in our work. For complete presentations, we refer to [4] or [2]. Let H be a real and



separable Hilbert space and consider (W (h),h € H) an isonormal process. That is,
(W(h),h € H) is a family of centered Gaussian random variables on the probability
space (2, F, P) such that EW (h)W(g) = (f,g)u for every h,g € H. Assume that
the o-algebra F is generated by W.

Denote, for n > 0, by H,, the nth Wiener chaos generated by W. That is, H,, is
the vector subspace of L?(Q) generated by (H,, (W (h)),h € H,||h|| = 1) where H, the
Hermite polynomial of degree n. For any n > 1, the mapping I,,(h*") = H, (W (h))
can be extended to an isometry between the Hilbert space H®" endowed with the
norm v/n!|| - || ge» and the nth Wiener chaos H,,. The random variable I,,(f) is called
the multiple Wiener It6 integral of f with respect to W.

Consider (e;);>1 a complete orthonormal system in H and let f € H®", g €
H®™ be two symmetric functions with n,m > 1. Then

F= ) Nuinti ®..®¢;, (1)
Jisejn>1
and
Z Bier kel @ .. @ €p,, (2)
k1,...km>1

where the coefficients \; and j3; satisfy A;_ (1)»-edr ) = \j,,..j, and 5kw(1),---,kﬂ(m) = Bhy. ko
for every permutation o of the set {1,...,n} and for every permutation 7 of the set
{1,..,m}. Actually \;, ;. = (f,e;, ®..®e¢€j,) and By, k. = (9, €k, ®..Qey,,) in (1)
and (2). Note that, throughout the paper we will use the notation (-,-) to indicate
the scalar product in H®*, independently of k.

If fe H® ge H®™ are symmetric given by (1), (2) respectively, then the
contraction of order r of I’ and g is given by

&g = E E E )\il,..,u,jl,..,jn,rﬁil,..,ihkl,..,km,r

11yt 21 J1yen—r>1 k1, km—r >

x (e, ®.®¢€j,_,)® (e,ﬂ ® .. Qek,_,) (3)

for every r = 0,..,m A n. In particular f ®) g = f ® g. Note that f ®, g belongs to
H®m+n=21) for every r = 0, .., mAn and it is not in general symmetric. We will denote
by f®,g the symmetrization of f ®, g. In the particular case when H = L*(T, B, j1)
where 1 is a sigma-finite measure without atoms, (3) becomes

(f ®7‘ g) (th 3] tm+n727’)
= / du(ul)du(uT)f(ulv ooy Up,y tla cey tn—r)g(ula oy U,y tn—r—l—la cey tm+n—2r) (4)



An important role will be played by the following product formula for multiple
Wiener-It6 integrals: if f € H®" g € H®™ are symmetric, then

mAn

() 1n(g) = Z L C L n—ar (f®7"g) . (5)

r=0

We will need the concept of Malliavin derivative D with respect to W, but we will
use only its action on Wiener chaos. In order to avoid too many details, we will just
say that, if f is given by (1) and I,(f) denotes its multiple integral of order n with
respect to W, then

DL(f)=n Y Nigudni1(e,®.@e;) e

J1yejn21

If F,G are two random variables which are differentiable in the Malliavin sense, we
will denote throughout the paper by C' the covariance matrix and by A the Malliavin
matrix of the random vector (F,G). That is,

A:( |DF, <DF,DG>H)
(DF,DG)y  ||DF|?,

3 The Malliavin matrix as a sum of squares

In this section we will express the determinant of the Malliavin matrix of a random
couple as a sum of squares of certain random variables. This will be useful in order
to derive the exact formula for the determinant of the Malliavin matrix and its con-
nection with the determinant of the covariance matrix for a given random vector of
dimension 2.

Let f € H®" and g € H®™ be given by (1) and (2) respectively, with n,m > 1.
Let F' = I,,(f),G = I,,(g) denote the multiple Wiener-1t6 integrals of f and g with
respect to W respectively. Then

L= Y. MNigdn(e,®..®¢;,) (6)
J1sesJn>1
and
In(9) = D Brknlm(en ® . Qcy,). (7)
Fiokm>1

From (6) and (7) we have

DFE=n Y Nyjudn1(ep®.®e,) e,

J1sesdn21



and

DG =m Z ﬁkl,..,km[mfl <€k2 ®X..&Q €km) €k -

ke kim>1
This implies
IDE =10 > > NNkt (€55 @ - @ €5,) Loy (€x, ® .. @ €1,
i>1 jorjn>1 k1, kn>1
and
IDGIG =m*Y " Y > BuisinBkskn o1 (€, @ . @ €5,) 1 (e, ® .. @ €,
121 1joyjn>1 Lka, . kn>1
and
(DEDG)y=nmd > > Mo guBijiinlnt (€5 @ @ €5,) L1 (er, © . @ ey,
i>1 joyein>1 ki yonrkim>1
Let us make the following notation. For every i > 1, let
Sir=nY_ > Nijpoiudnc1 (6, ® . @ e;) (8)
121 j2,..,jn>1

and

Sig = mz Z Bik,kmIm—1 (€hy @ .. @ €4,,) - 9)

i>1 k2, km>1

We can write

IDF|3 =Y S, IDGI3 = Sty (DF,DG) =Y " Si 1S,

i>1 1>1 i>1
and
2
det(A) = |DF|}|DG|[} — (DF,DG)}, =Y 57,52, — (Z SLfSi,g) :
ii>1 i>1

A key observation is that

2
1
>SSty - (Z Si,f5i7g> = 52 SisSig — Si.1Sig)? (10)

i>1 i>1 il>1

We obtained



Proposition 1 The determinant of the Malliavin matriz A of the vector (F,G) =
(1.(f), In(g)) can be expressed as

1
det\ = 5 ”Z>1 (Si,rSig — Sl,fSi,g)2

where S; ¢, S, are given by (8) and (9) respectively.

Corollary 1 The determinant of the Malliavin matriz A of the vector (F,G) =
(1.(f), In(g)) can be expressed as

1
deth = - > ((DF,e)(DG,e)) — (DF,e))(DG, e;))?
i1>1
Proof: This comes from Proposition 1 and the relations

S@f = <DF, 6i>7 Si,g = <DG, 62‘>

for every i > 1. [ |

4 The determinant of the Malliavin matrix on Wiener
chaos

Fix n,m > 1 and f, g in H®" H®™ respectively defined by (1) and (2). Consider the
random vector (F,G) = (I,(f), In(g)) and denote by A its Malliavin matrix and by
C its covariance matrix.

Let us compute F det A. Denote, for every i, > 1

Si,f =N Z )\i,jg,..,jnejg ® .. Q ey, (11)
j27--7jm21
and
Stg =M E Blkg,. o €hy @ .. @ €. (12)
k2,--,km21

Clearly, for every i,1 > 1
Sip = In-1(sip), Sig = In-1(sig)- (13)

The following lemma plays a key role in our construction.



Lemma 1 If f € H®" and g € H®™ are given by (1) and (2) respectively and s; ¢, si 4
by (11), (12) respectively, then for every r =0,..,n — 1

1
f®ry19= - ; (Si,f Qe Sz‘,g) .

Proof: Consider first » = 0. Clearly, by (3)

f®&g = Z Z Z NijoresjnBika, km€is @ .. @ €, @ €, @ ..C,,

i>1 jaejn>1 kayekim>1

1
= o Z (Si.f ® Sig) -

i>1

The same argument applies for every r = 1,..,n — 1. Indeed,

f ®r+1 g
= < Z Ajtyesin€it @ - ®€jn> Qr ( Z Brs o €hy © - ®€km>
J1sesJn>1 k1, km>1

- : : : : : : )\il7"7i7‘+17j7‘+27"7jn/8i17"7i7‘+17k7‘+27"7km (ej’l‘+2 ® . ® 6]”) ® (ekT+2’ b ekm)

Uyenlrt1 Jr425-0dn Krt2,..km

and by (3) again

§ Sij Or Sig

i>1

= nm) < > Niorin€ip @ ®ejn> Ry ( D Bikknhs @ ®ekm>

1>1 j27~~7jn21 k27--7km21

= nm E E g E )\Z',Z'Q,..,Z'r+1,jm+27~~7jn/8i7i27--77;7‘+17k1”+27--7km

121 92, ir 41 Jr42500n krg2,..km

X (6jr+2 X .. &R ejn) X (ekr+2, o ekm)
= nm Z Z Z )\il7"7ir+17jT+27~~7jn/8i17--7ir+1,kr+2,--,km (ejr.m ®. & €jn) ® (ekr+27 . ekm)

i17~~7ir+1 jr+27--7jn kr+27~~7km

= f ®r+1 9-

We make a first step to compute E det A.



Lemma 2 Let f € H®" g

,g € H®™ be symmetric and denote by A the Malliavin
matriz of the vector (F,G) = (I,(f

)y Im(g)). Then we have

(n—1)A(m-1)
EdetA= > T;

k=0

where we denote, for k=0,..,(m—1)A(n—1),

Z kP (C C’“ )2 (m+mn—2—2k)||s; ;@ns1y — 815 @ksigl*  (14)

Zl>1
and s; ¢, si 4 are given by (11), (12) fori > 1.

Proof: By Proposition 1 and relation (13)

2detA = Z([n—l(si,f)[m—l(sl,g)— 1 (51, Im-1(s1g))°

i1>1
(m—1)A(n—1) 2
= Z Z k!Ck Ck Lpsn—2—ok (Szf®k3lg - 5lf®kszg)
i1>1 k=0

where we used the the product formula (5). Consequently, from the isometry of
multiple stochastic integrals,

(n—1)A(m—1)
EdetA = = Z Z k'Q (07]%_1)2 (Cs_l)z (m +n—2— Qk)!HS@f@kSl,g — Sl7f®k8i,g|’2
i,0>1
(nfl)/\(mfl)
-y
k=0
|
For every n,m > 1 let us denote by
(n—1)A(m-1)
Rym:= Y. T Ry:=Ru. (15)
k=1

Remark 1 Obviously all the terms Tj, above are positive, fork =0, ..,(n—1)A(n—1).

We will need two more auxiliary lemmas.

8



Lemma 3 Assume f1, f3 € H®" and fo, f4 € H®™ are symmetric functions. Then
for everyr =0,..,(m—1) A (n— 1) we have

<f1 ®n—r f37f2 ®m—r f4> - <f1 ®r f2af3 ®r f4>

Proof: The case r = 0 is trivial, so assume r > 1. Without any loss of the generality,
assume that H is L?(T;pu) where p is a sigma-finite measure without atoms. Then,

by (4)
<f1 Sn—r f37 f2 Om—r f4>

/d,ur(tl,..,tr)/ du"(s1, .., Sr)

(/ d,un—r(ul’ ~-aun—r)fl(u17 cy Un—p, L1, "atT)fS(ula oy Un—ry 815 -+ Sr))
(/ d,um_r(vl, --,Um—r)fQ(Uh ws Um—r, L1, --,tr)f4(1)1, s Um—p; 815 -+, Sr))
- / A (s 1) / O

(f1 ®r f2) (UL, -y Un—p, V1, ooy Uy ) (f3 @1 fa) (U1, o Uny, V1, ooy Uy
= ([1® f2, f3 @ fa).

Lemma 4 Suppose fi, fy € H®", fo, f3 € H®™ are symmetric functions. Then

mAn

(fi&fa, fs®fa) = ZCTC’“ (fr @ f3, 1 @0 fo).

Proof: This has been stated and proven in [3] in the case m = n. Exactly the same
lines of the proofs apply for m # n. [ |

We first compute the term 7j obtained for £ = 0 in (14).

Proposition 2 Let Ty be given by (14) with k = 0.

n—1)A(m—1
T = Y, moamnlCr Oy [If @ gl = IIf @rea gl



Proof: From (14),
T, = 1(m+n—2)‘Z||s~ ®Rs1.4 — 511255 4|
0 2 : — va l,g lvf .9

1 ~ - - -
= g(m+n-2) > lsir@sigl® + [ls1rDsigl1* = 2(si Ds1g, 51./08i,)]
ii>1

Let us apply Lemma 4 to compute these norms and scalar products. We
obtain, by letting fi = s, = fi and fo = s;, = f3 (note that s; r, s; , are symmetric
functions in H®", H®™ respectively)

(m+n = 2)Usi s @s1,9,51,sD519) = (m+n—2)Us; (@51, 514954,5)

(n—1)A(m—1)
= (m=Dln—=1! > CrCh ((sif @ 519,815 Br S1g)
r=0
(n—1)A(m—1)
= (m—Dln—-1)! CraCrllsis @r 514l
r=0

Analogously, for fi = s, = fis and fy = s;, = f3 in Lemma 4 we get

(m+n— 2)!<sl7f®si7g, sl,f®3i,g)
(n—1)A(m-1)
= (n — 1)l (m — 1)IC;,_,C,[s1,r @, 52‘79”2-

r=

o

Next, Wlth f1 = S@f, f2 = Sl,ga f4 = Sl7f, f3 = Si,g

(m+n —2)(s; @814, 51.1RSi 4)
= (m+n—2)s; 1R, 8i,51)
(n—1)A(m—1)
= (n = Dlm = DICT G (sif @ Sigs S5 Or Sig)-

,2
Il
o

10



Then

(mAn—=2)1>" |85, s @515 — 51,5885 |

i>1
(n—1)A(m—1)
= Z (n—Dlm —1IC;_1Cy,
r=0
> s @r sigl® + Isis @r s1gll> = 2051 @1 Sig, 515 @r 514)]
ii>1
(n—1)A(m—1)
=2 > (n=Dm—=DIC;Ch Y [lIsir @ s1gll* = (515 ®p Sig, 515 O 1))
r=0 i,0>1
(n—=1)A(m—1)
=2 > (n-D(m-1)C; Cp
r=0
X Z 53,5 @ Sl,gH2 - <Z Si,f Or Sig, Z S1,F @r S1,g)
i>1 i>1 1>1
(n—1)A(m—1)
=2 > (n=Dm=DIC;_Chy | D lsiy @ sigl® = 1D siy @ sigl®| (16)
r=0 i,1>1 i>1

Notice that, by Lemma 1, for every r =0,..,n — 1

1S sir @ sigll? = nm|f @1 g2 (17)

i>1

We apply now Lemma 3 and we get

D llsis @ sigll® = D (siy ®r S0, ip Sr 1)

i,1>1 i,1>1
= E <5i,f On—1—r Si,f; Sl,g Om—1—r 5179)
i,I>1
i>1 >1

and by Lemma 1 and Lemma 3, this equals

Z ||Si,f ®7" Sl,g||2 = n2m2<f ®n—r fag ®m—r g>

il>1

= n'm’||f @ g|* (18)

11



By replacing (17) and (18) in (16) we obtain

1 ~ -
Ty = §(m +n—2)! Z 81,5 @814 — Slvf®3i79||2

i,0>1
(n—1)A(m-1)
= > mamlnlC_ Co o (I @ gl = 11 @1 gl -
r=0

As a consequence of the above proof, we obtain

Corollary 2 For everyr =0,..,(m — 1) A (n—1) and if s; s, si 4 are given by (11),
(12), it holds that

n*m Z VL @ gl = 1 @1 glP] =D lsip@sig — 515814
i>1

As a consequence, for everyr =0,..,(m —1) A (n— 1) we have

Z S 1 @ gl = 1 @ gl’] = (19)

Proof: It is a consequence of the proof of Proposition 2. [ |

Let us state the main results of this section.

Theorem 1 Let f € H®", g € H®"(n,m > 1) be symmetric and denote by A the
Malliavin matriz of the vector (F,G) = (I,(f), I.(g)). Then

(n—1)A(m—1)

det A= Y mnmnlC,_Cry [IIf @0 gl> = |f ©r419lI°] + Rom

r=0

where for every n,m > 1, R,,, is given by (15). Note that R, ,, > 0 for every
n,m > 1.

Proof: It follows from Proposition 2 and Lemma 2. [ |

In the case when the two multiple integrals live in the same Wiener chaos, we
have a nicer expression.

12



Theorem 2 Under the same assumptions as in Theorem 1 but with m = n, we have

(5]
det A = m?2 det C+(mml!)? (Cr_)> = (Cn )2 (If @ gll? = | f @nr g]I°) +Ron

‘ 3
M

\3
I
A

with R,, given by (15). Here [x] denotes the integer part of .

Proof: Suppose n < m and that m is odd. The case m even is similar. From
Theorem 1 we have

-(m—l) (m—1)
detA = (mm)* | > (Co ) Nf @ gl = > (Coi)’Ilf @egr gl
r=0 r=0
e ) (m—1) )
= (mml)* |3 (Cro) If @ gl = D (Cria) I @i gl
_r:0 r:mTfl
m— 1 m2_1 9
+(mm!)? VN @ gl? =D (Coa)” 1 @i gl
Ll r=0
mTil 2
= (mml)* Y (Cr ) (1 @ gl = 1 @nr ]
r=0

+mm)2 > () I @ gl = 1 @0 g]1?]

r=1

where we made the change of index ' = n — 1 —r in the second and third sum above.
Finally, noticing that for » = 0 we have

m’ml® (C9,1)" [If @0 gl = IS ©n gll] = m*det C

we obtain the conclusion. [ ]

Example 1 Suppose m =n = 2. Then

detA = 16 [|f @ gl> — |/ @2 ]°] + Ro
= 4d6tC+R2.

We retrieve the formula in [1] with Ry = 32 (|| f 1 g||*> — || f&19]) -

13



Assume m =n = 3. Then

detA = 9% 36 [(|f@gl2 = IIf @3 gl?) +9x 36 x (C1)2=1) (I.f @1 gl = If @2 9]?)] + Rs
9det C'+9 x 36 x 3 (|[f @1 9> — |f @2 gl]*) + Rs.

Suppose m =n = 4. Then
det A = 16detC 416 x 4! x 4! ((C3)* = 1) (||f @1 9[> = || f ®3 g|I*) + Ru.

5 Densities of vectors of multiple integrals

Let us discuss when a couple of multiple stochastic integrals has a law which is
absolutely continuous with respect to the Lebesque measure. The situations when
the components of the vector are in the same chaos of in chaoses of different orders
need to be separated.

Let us first discuss the case of variables in the same chaos. In order better
understand the relation between det A and det C' we need more information on the
terms R,, in Theorem 2. It is actually possible to compute the last term 7, ; in

(14).

Proposition 3 Suppose m = n and let T,,_1 be the term obtained in (14) for r =
m — 1. Then

Tt = QO!Q [Hf Om—1 g||2 - <f ®1 9,9 D1 f>] :
Proof: From (14),

Ty = _Z -1 '2|||3zf®m 13l9_3lf®m 1529”

,0>1

=3 Z = DP|lIsis @mo1 s19 = S1.5 O Sigll”
zl>1

1 2

=3 D (m =1 [(s55,510) = (51,5, 519)]
i>1

= (m =D (sif 509> = > (sigss19)(s0s, Sz;g)]

Li,i>1 i,1>1

= (=1 | > (505 © s 510 © s16) = ) (815 @ 890 $1,9 © 51,5)

Li,l>1 i,0>1
(m—1D)Pm* [(f @1 f,g®19) — (f ®19,9®1 f)]
m2m!2 [Hf Qm-1 gH2 - <f ®1 9,9 ®1 f>]

14



where we applied Lemmas 3 and 1. [}

We first answer the open problem 6.2 in [1] for chaoses of order lesser than
five.

Theorem 3 Let m < 4 and let f,g € H®™ be symmetric. Then the random vector
(F,G) = (In(f), In(g)) does not admit a density if and only if

det C = 0.

In other words, the vector (F,G) does not admit a density if and only if its components
are proportional.

Proof: The case m = n = 1 is obvious and the case m = n = 2 follows from [1] (it
also follows from Example 1). Suppose m = n = 3. Then

det A = 9detC +9 x 36 x ((021)2 — 1) [Hf ®19[1% — ||f ®2 9||2}
+9 %36 [||f @2 9]> = (f @29, @2 [)] + Ry

where R is the term with £ = 1 in (14). Using (f ®1 9,9 ®1 f) = (f ®2 9,9 ®2 f)
(Lemma 3) we get

det A = 9detC+9x36x3[|[f @ gll>—(f©19,9®1 f)]
—9x36x2[|[f@29]* = (f ®29,9®: f)] + Rj.

Suppose det A = 0. Then Ty, T}, T from (14) vanish. In particular 75 = 0 in (14)
and so

If @2 9]* = (f ®29,9®2 f) =0.
This implies

9det C'+9x 36 x 3 [[|f @1 9[> = (f @1 9,9@1 )] =0

and therefore det C' = 0 because ||f ®1 g|*> — (f ®1 9,9 @1 f) is positive by Cauchy-
Schwarz.
Suppose m = n = 4.

det A = 16detC +16 x 4* ((C3)* = 1) [||f @1 g|I> = || f ®s3 g]|]
+16 x 4 [[|[f @3 g|1* = (f ®3 9,9 ®5 [)] + R}

15



where R} is the sum of terms obtained for £ = 1 and k = 2 in (14). Since (f ®3¢, 9 ®s3
f) = {f ®19,9 @ f)(Lemma 3) we get

det A = 16detC + 16 x 41 (C1)> = 1) [|If @1 gl> = (f @1 9,9 @1 f)]
—16 x 4> ((C3)* = 2) [IIf @3 9| — (f ®3 9,9 ®3 f)] + R}.

Assume det A = 0. Then in particular 75 from 14) vanishes. So

If @3 9l* = (f ©39,9 @3 f) =0
and this implies det C' = 0.

Remark 2 For m =n > 5, we have

det A = 25det C +25 x 51 (CH2 = 1) [|If @1 g]> = | f ®4 g||’]
+25 x 51 ((C1)* = 1) [l f @2 gl” = | f ®3 g]I”]
+25 x 5 [||f @4 g|> = (f ®1 9.9 ®4 f)] + RS

If det A = 0 then, since Ty vanishes, we get that ||f @4 9||* — (f @49, g R4 f) vanishes.
But this is not enough. We need some additional information in order to handle the
difference ||f @2 g||*> — ||f ®3 gl|>. One possibility is to look to the terms Ty, Ty, Ty
in (14) but these terms cannot be written in a closed form, since they involve more
complicated contractions (some ”contractions of contractions”).

Let us finish by some comments concerning the case of variables in chaoses

of different orders. Consider (F,G) = (I,,(f), In(g)) with n # m. First, let us note
that F det A = 0 does not imply det C' = 0. This can be viewed by considering the
following example.

Example 2 Take F = I,(f) and G = I,(h®?) where ||h|| = 1. In this case
det C' =2 and det A = 0.
One can also choose F = I,,(h®") and G = L, (h®™) with m # n and ||h|| = 1.

In the case (1,(f),I1(g)) there is only one term in (14) obtained for k = 0. It

reads

Ty = nn! [||f @2 gl = [If @1 91I°] -
and therefore the condition for the existence of the joint density is || f @2 g||* — || f @1
gll* > 0.

The case (I,(f),I2(g)) is more complicated and needs new ideas in order to
obtain the if and only if condition for the existence of the density of the vector. Even
the "last term”in (14) (that is, the term obtained for £ = (m — 1) A (n — 1) cannot
be written is a nice form.
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